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1 Introduction

Probabilistic reasoning has been powered by the formalization of causality theory
through Bayesian causal models[1]. Even when its semantic is flexible enough to
model complex problems, it has to deal with the problem of interoperability
between models. In the research community the necessity of contexts for these
models has been pointed out. We need means to represent the context on which
the causal model is developed and the meaning of causal model events in the
real world.

2 Semantic Bayesian Causal Models

We introduce Semantic Bayesian Causal Models(SBCM) which integrate a causal
model with a semantic layer into an intelligent agent. An SBCM works as an in-
ference engine in an intelligent agent in stochastic environments and is basically
constituted by a Bayesian causal model to represent and reason about causal
relationships among events, and semantic annotations in an ontology recognized
by other agents that describe these events. A SBCM is represented by:
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where V' is the set of endogenous variables, U is the set of exogenous variables,
Gyy is a causal graph consisting of variables in V' x U, P(v) is the Bayesian
probabilistic distribution, P(u) is a probabilistic distribution used to explain bias
in the system or interference produced by external factors, C' C V represents
endogenous variables that can be manipulated by agent (control variables), Z
is the subset of endogenous variables that cannot be manipulated by agent (co-
variates), F' € Z represents agent objectives which we interpret as final cause in
Causality theory, A is the set of semantic annotations over V expressed through
Description Logics (DL) statements in terms of OWL ontology O, and B is the
set of current beliefs expressed as interventions (V; = v;)*.

Agent inference process is performed at two levels: semantic and causal. For-
mer enables common understanding between agents meanwhile the latter sum-
marizes agent experience and guides its behavior. In the first phase, agent per-
ceives the environment through its sensors and transforms its perceptions into

! Capital letters represent variables (V;) meanwhile small letter represents values(v;)



DL statements expressed in a given ontology. Then perceptions are compared
against annotations over variables in Z to determine if any covariate can be
instantiated (node instantiation phase). The result of this process is a set of
interventions over Z that are integrated with current beliefs (B). Annotations
associated to every variable (A;) will be expressed as queries in triplet format
(SPARQL). The result of running a variable query over current perceptions will
determine if the variable is activated (intervened). A special variable in the query
will be bind to the variable value in the intervention. If A; doesn’t contain this
special variable, Z variable is made true when perceptions match annotations.
Otherwise, is made false using a kind of negation as failure.

In the second phase beliefs are revised with current perceptions and resulting
interventions are applied to the causal model producing an instantiated causal
model used to perform the inference. Plans aligned to reach F' are identified and
through a heuristic the most feasible plan and action are selected. Selected action
is represented by an intervention over a control variable (C,, = ¢,,). Annotations
over (', are instantiated with c¢,, and triplets resulting are used to encode action.

3 Conclussions

Having annotations over causal model variables enables matching variables among
different causal models and calculating a distributed causal effect[2] through
nodes sharing the same semantic content. Agents will be in position to exchange
information about causal relationships influencing other agents behavior to en-
force cooperation.

Besides, semantic information associated to variables presenting an irregular
behavior (noise) would lead to causal relationships discovery. Semantic informa-
tion dismissed in the node instantiation phase can be used for this purpose. This
way, we are in a position of not just learning probabilistic distributions but the
causal structure too[3].

The final purpose of this model is to develop agents that reason over a network
of causal relationships guided by Causality theory introduced by Aristotle and
mathematical models developed by J. Pearl. We call this architecture Causal
Agent.

References

1. Pearl, J.: Causality. Models, Reasoning, and Inference. Cambridge University Press
(2000)

2. Maes, S., Meganck, S., Manderick, B.: Identification of causal effects in multi-agent
causal models. In: IASTED International Conference on Artificial Intelligence and
Applications. (2005) 178-182

3. Flores-Quintanilla, J., Morales-Menendez, R., Ramirez-Mendoza, R., Garza-
Castanon, L., Cantu-Ortiz, F.: Towards a new fault diagnosis system for electric
machines based on dynamic probabilistic models. In: American Control Conference,
2005. Proceedings of the 2005. Volume 4., IEEE (2005) 2775-2780



