Description Logics in the Calculus of Structures

Jean-David Roubach^{1,2}, Pascal Yim², and Joaquín Rodriguez¹

¹ INRETS – ESTAS Villeneuve d'Ascq, France {roubach,rodriguez}@inrets.fr École Centrale de Lille – LAGIS Villeneuve d'Ascq, France pascal.yim@ec-lille.fr

Abstract. We introduce a new proof system for the description logic \mathcal{ALC} in the framework of the calculus of structures, a structural proof theory that employs deep inference. This new formal presentation introduces positive proofs for description logics. Moreover, this result makes possible the study of sub-structural refinements of description logics, for which a semantics can now be defined.

1 A calculus of structures for description logics

Proof systems in the calculus of structures are defined by a set of deep inference rules operating on *structures*[1]. The rules are said to be *deep* because unlike the sequent calculus for which rules must be applied at the root of sequents, the rules of the calculus of structures can be applied at any depth inside a structure.

As noted by Schild[2], \mathcal{ALC} is a syntactic variant of propositional multimodal logic $K_{(m)}$. Therefore, since this logic involves no interaction between its modalities, its proof system in the calculus of structures can be straightforwardly extended from a proof system of unimodal K in the calculus of structures, such as the cut-free proof system $SKSg_K$ described in [3].

Let \mathcal{A} be a countable set equipped with a bijective function $\overline{\cdot} : \mathcal{A} \to \mathcal{A}$, such that $\overline{A} = A$, and $\overline{A} \neq A$ for every $A \in \mathcal{A}$. The elements of \mathcal{A} are called primitive concepts, and two of them are denoted by \top and \perp such that $\overline{\top} := \perp$ and $\overline{\perp} := \top$.

The set \mathcal{R} of *prestructures* of \mathcal{ALC} concepts is defined by the following grammar, where A is a primitive concept and R is a role name:

 $C, D ::= \top \mid \bot \mid A \mid \overline{C} \mid (C, D) \mid [C, D] \mid \exists R.C \mid \forall R.C .$

On the set \mathcal{R} , the relation = is defined to be the smallest congruence relation induced by the following equations.

Associativity			Commutativity		
(C, (D, E))	=	((C,D),E)	[C,D]	=	[D,C]
[C,[D,E]]	=	[[C,D],E]	(C,D)	=	(D,C)

Units	Negation	Roles		
$(C,\top) = C$	$\overline{(C,D)} = [\bar{C},\bar{D}]$	$\overline{\forall R.C} = \exists R.\bar{C}$		
$[C,\bot] = C$	$\overline{[C,D]} = (\bar{C},\bar{D})$	$\overline{\exists R.C} = \forall R.\bar{C}$		
$[\top,\top] = \top$	$\bar{\bar{C}} = C$	$\forall R.\top = \top$		
$(\perp, \perp) = \perp$		$\exists R. \bot = \bot$		

A structure is an element of $\mathcal{R}/=$, i.e. an equivalence class of prestructures. For a given structure C, the structure \overline{C} is called its *negation*. Contexts are defined by the following syntax, where C stands for any structure: $S ::= \{\circ\} \mid [C, S] \mid (C, S)$. An inference rule is a scheme of the kind $\rho \frac{S\{C\}}{S\{D\}}$. This rule specifies a step of rewriting inside a generic context $S\{\circ\}$. A proof in a given system, is a finite chain of instances of inference rules in the system, whose uppermost structure is the unit \top .

2 System $SKSg_{ALC}$

The following set of rules defines the sound and complete cut-free proof system $\mathsf{SKSg}_{\mathcal{ALC}}$ for \mathcal{ALC} in the calculus of structures :

$$\begin{split} & \mathsf{i} \downarrow \frac{S\{\top\}}{S[C,\bar{C}]} \\ & \mathsf{w} \downarrow \frac{S\{\bot\}}{S\{C\}} \\ & \mathsf{c} \downarrow \frac{S[C,C]}{S\{C\}} \\ & \mathsf{s} \frac{S([C,D],E)}{S[C,(D,E)]} \\ & \mathsf{w} \uparrow \frac{S\{C\}}{S\{\top\}} \\ & \mathsf{c} \uparrow \frac{S[C,C]}{S\{C\}} \\ & \mathsf{c} \uparrow \frac{S[C,C]}{S(C,C)} \\ & \mathsf{k} \downarrow \frac{S\{\forall R.[\bar{C},D]\}}{S[\forall R.\bar{C},\forall R.D]} \\ & \mathsf{k} \uparrow \frac{S(\overline{\exists R.C},\exists R.D)}{S\{\exists R.(\bar{C},D)\}} \end{split}$$

References

- Brünnler, K.: Deep Inference and Symmetry in Classical Proofs. Logos Verlag, Berlin (2004)
- 2. Schild, K.: A correspondence theory for terminological logics: Preliminary report. In: Proceedings of the International Joint Conference on Artificial Intelligence. (1991)
- 3. Stewart, C., Stouppa, P.: A systematic proof theory for several modal logics. In: Advances in Modal Logic. Volume 5., King's College (2005)