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Abstract. We study the semantic difference operator defined in [16] for
ALN . We give a polynomial-time algorithm to compute it. We compare
it with the syntactic difference operator defined in [7], for which we also
give a polynomial-time algorithm for ALN .

1 Introduction

Among non standard reasonings for description logics, the subtraction or differ-
ence operation addresses the problem of computing descriptions that are part
of one concept and not part of another one. Two definitions of the difference
operation have been used in the literature, namely the semantic and the syn-
tactic difference. The semantic difference between two descriptions B and A,
noted B − A, has been defined in [16] as the most general descriptions C such
that C u A ≡ B. Two general kinds of applications of the semantic difference
have been mentioned in [16]: removing specific information from a description
and description decomposition. Such an inference mechanisms can, for example,
be useful in tutorial systems that have to explain concepts to users. Recently,
motivated by two applications in the areas of semantic web service discovery and
querying e-catalog communities, we have used the semantic difference operation
to define a new more flexible concept rewriting approach, called best covering
concepts using terminologies [10, 4, 5].

However, the difference operation suffers from some drawbacks. First, in the
languages that provide full negation the difference B − A is always equal to
¬(A u ¬B), a description which is not very useful in practice [16, 7]. Second, in
many description logics, e.g., ALN , the difference operations is not semantically
unique, i.e., it yields to a set of descriptions that are not semantically equivalent
to each other. In this case, the semantic difference is a set-valued operation and
gives rise to two main difficulties: (i) computation of the semantic difference,
and (ii) manipulation of the results in practical cases.

To cope with these limitations, a syntactic difference operation has been
proposed in [7]. In this case, the difference B−A yield to a syntactically minimal3

description C such that C uA ≡ B uA. The syntactic difference has been used
in [7] to measure the accuracy of an approximation of a given concept.

3 That is a description containing less syntactic redundancies possible.



In contrast with its semantic version, the syntactic difference operation al-
ways produce a unique description and hence it is usually easier to compute.
However, as it can be expected, the result of a syntactic operation is less accu-
rate than the one produced by the semantic one. The overall conclusion is that
the choice of a difference operator, i.e., semantic v.s. syntactic, is application
dependent.

In this paper, we investigate the problem of computing the difference descrip-
tions in the context of the ALN language. The motivation is the extension of
our previous work on the concept covering problem [10] to ALN . We first recall
some useful results about ALN in section 2. Then, in section 3, we provide a
polynomial-time algorithm to compute the semantic difference in ALN . In sec-
tion 4, we provide another polynomial-time algorithm to compute the syntactic
difference in ALN , then we compare both operators, and justify why we have
chosen the semantic one in the study of concept covers. We conclude in section
5.

2 Preliminaries

We assume the reader familiar with the ALN description logic. Let C an ALN -
concept description. The normal form of C, noted Ĉ, is obtained as usual by
applying the set of normalization rules given in [2, 12] that aim at removing
redundancies and making explicit all implicit inconsistencies due to interac-
tions between constructors. For more conveniency, we define in this paper a
set-oriented representation of (normalized) ALN -descriptions. To this end, we
introduce below the notions of ALN -clause and clausal form.

Let P be an atomic concept, the negation of an atomic concept or a number
restriction. An ALN -clause, or more simply a clause, is either: (i) a description
P , or (ii) a description of the form ∀R1.(...(∀Rn.P )). In the following, a clause
of the form ∀R1.(...(∀Rn.P )...) is written ∀R1...Rn.P .

Let C be an ALN -description. A clausal form of C, noted Ĝ#
C , is the set

made of all the clauses that appear in the description obtained by recursively
applying the following rule on Ĉ : (∀R.(E u F )) ≡−→ (∀R.E) u (∀R.F ).

Example 1. The following example shows the normal form and the clausal form
of an ALN -descriptions C.
C ≡ ∀T.((≥ 4 R) u (∃S) u (≤ 1 R)) u (≥ 2 R) u (∀Q.A) u (∀Q.(∀R.(∀S.(B u ¬B))))

Ĉ = (≤ 0 T ) u (≥ 2 R) u (∀Q.(A u ∀R.(≤ 0 S)))

Ĝ#
C ={≤ 0 T, ≥ 2 R, ∀Q.A, ∀QR. ≤ 0 S}

Clausal forms enable a set-oriented representation of concept descriptions
that is easy to understand and manipulate (especially from an algorithmic point
of view). Moreover, previous results regarding subsumption and lcs in ALN ,
achieved using different formal frameworks such as description graphs [14, 11] or
automata theory [1, 11], can be easily translated in our context as shown below.

Theorem 1 (Structural subsumption and lcs in ALN ). Let C and D two
ALN -descriptions. There is :



1. C v D ⇔ ∀cD ∈ Ĝ#
D ,∃cC ∈ Ĝ#

C | cC v cD

2. Ĝ#
lcs(C,D) = {c1 | (c1, c2) ∈ (Ĝ#

C × Ĝ#
D) ∪ (Ĝ#

D × Ĝ#
C ) and c2 v c1}

We recall that, building Ĉ from an ALN -description C can be achieved in poly-
nomial time in the size of C [6]. So Ĝ#

C can also be computed in polynomial
time in the size of C. Consequently, testing subsumption between two ALN
descriptions C and D using theorem 1 can also be achieved in polynomial time
in the sizes of the inputs. Moreover, it is shown in [11] that the lcs of two ALN
descriptions always exists and it can be computed in polynomial time in the
sizes of the inputs.

In order to study the semantic difference in ALN , we need to recall the
notion of weak approximation defined in [8, 9]. The L2-description D is a weak
approximation of the L1-description C if D is the maximal description w.r.t.
subsumption being subsumed by C. In this case, we write D = Approx↑(C).
In fact, as will be seen later, in our work we are only interested in computing
the weak approximation of the negation of an ALN -clause (which is an ALEN -
description) by an ALNdescription. To this end, we reuse the following result
[8, 9]:

Lemma 1 (Weak approximation of ∀R1R2...Rn.P ). Let C be a ALN -clause,
i.e. C ≡ ∀R1R2...Rn.P with P an atomic concept, the negation of an atomic con-
cept or a number restriction. There is:
Ĝ#

Approx↑(¬C) = { ∀R1R2...Rn.(¬P ), ∀R1R2.........Rn−1.(≥ 1 Rn),
∀R1R2......Rn−2.(≥ 1 Rn−1), ...,∀R1.(≥ 1 R2), (≥ 1 R1) }

All previous recalls and following results about semantic and syntactic dif-
ference in ALN can be extended to take into account an ALN -terminology T
containing either concept definitions of the form A ≡ C or atomic concept inclu-
sions of the form A v C, with A an atomic concept and C an ALN -description.
This is due to the fact that testing the subsumption of twoALN -descriptions wrt
T amounts to testing the subsumption of the same but unfolded descriptions wrt
to the empty terminology (i.e. (C vT D) ⇔ (T (C) v T (D))). Thus, to take into
account concept definitions, a first unfolding step is mandatory (which can lead
to an exponential blow-up [15]). Taking into account atomic concept inclusions
can be achieved by replacing them by concept definitions adding a new atomic
concept. For example, A v P1u∀R.P2 would be replaced by A ≡ P1u∀R.P2uA′.
In the sequel, we suppose that we work on unfolded descriptions, so we do not
talk about terminologies any more.

3 Semantic difference in ALN

Given two concept descriptions B and A, the semantic difference B−A amounts
to computing all the maximal, w.r.t. subsumption, descriptions C s.t. C u A is
equivalent to B. So C can be seen as (i) what has to be added to A in order to
get back B, and as (ii) the rest of B after removing its common information with
A. The fact that C must be maximal with respect to subsumption ensures that



there is no semantic redundancy in C, which means (i) C is only what is strictly
necessary to add to A to get B, and (ii) C describes what is really specific in B
w.r.t. A. Primarily defined with the constraint B v A, the semantic difference
is generalized to all couples of descriptions using their least common subsumer,
if it exists [16]. The formal definition of the semantic difference is now given.

Definition 1 (Semantic difference [16]). Let L a description logic, B and
A two L-concept descriptions such that B v A. The semantic difference between
B and A, noted B −A, is defined by :
B −A := Maxv{C|C uA ≡ B}
If the lcs always exists between two L-descriptions (for example in ALN ), then
this definition is extended to couples of descriptions B and A with B 6v A by :
B −A := B − lcs(B,A)

Note that this definition is independent of L, and the result of a semantic dif-
ference may be a set of descriptions. Whereas, in [16] the semantic difference
is especially studied for languages having a special property4 ensuring a unique
description in the result, we study here the semantic difference for ALN . The
difference of two ALN descriptions may lead to potentially numerous non equiv-
alent ALN descriptions (see example 2). This is due to the possibility to decom-
pose the empty concept ⊥ into non trivial conjunctions. Up to our knowledge,
this is the first time that the semantic difference is studied for a language that
implies a non unique difference.

Example 2. Let us consider the following two ALN descriptions:
Q ≡ A u ∀R1.(Bu ≤ 4R2)u ≤ 0R3

S ≡ A u ∀R1.(B u ∀R4.C) u ∀R3.(D u ∀R5.Eu ≤ 2R6)
The lcs of Q and S is:

lcs(Q,S) ≡ A u ∀R1.B u ∀R3.(D u ∀R5.Eu ≤ 2R6)
Hence, the semantic difference between Q and S is given by the set:

Q− S = {∀R1. ≤ 4R2 u ∀R3∀R5.¬E u ∀R3. ≥ 1R5,
∀R1. ≤ 4R2 u ∀R3.¬D,
∀R1. ≤ 4R2 u ∀R3. ≥ 3R6}

We now see algorithm computeALNSemDiff to compute the semantic
difference of two ALN -descriptions A and B. Due to lack of space, its detailed
form is given in [13], but its underlying principle are given in lemma 2 and its
soundness and completeness is given in theorem 2. This is the main contribution
of this paper.

Lemma 2 (Building one description of the semantic difference). Let B
and A two ALN -descriptions such that B v A. Let C be an ALN -description
in B − A. Let P be any atomic concept, the negation of any atomic concept or
any number restriction. Ĝ#

C can be built as follows:

4 This is the so-called structural subsumption property in the sense of [16] which is
stronger than the usual notion of a structural subsumption algorithm.



First, if Ĝ#
A = Ĝ#

B , then Ĝ#
C must be {>}. Else, Ĝ#

C is initialized at ∅, and
then, for all cB in Ĝ#

B :
• Inconsistency case:
if cB = ∀R1R2...Rn−1.(≤ 0 Rn), with n ≥ 0 (if n = 0 then cB = ⊥)

and ∃cA ∈ Ĝ#
A | cA = ∀R1R2...RnRn+1...Rn+m.P , m ≥ 0

then we add to Ĝ#
C all clauses c verifying:(

c = ∀R1R2...Rn.c′, c′ ∈ Ĝ#
Approx↑(¬∀Rn+1...Rn+m.P )

)
and (A 6v c)

• General case:

else if cB 6∈ Ĝ#
A , then we add cB to Ĝ#

C .

Thus, for each clause cB of Ĝ#
B , zero, one or many clauses of Ĝ#

C will be gen-
erated such that the conjunction of these generated clauses and some clauses in
Ĝ#

A gives back cB after normalization. The reason for having a set of descriptions
in the result is due to some clauses in Ĝ#

B that may lead to different possibilities
to generate clauses of Ĝ#

C . More precisely, only clauses cB of Ĝ#
B that have the

form ∀R1R2...Rn−1.(≤ 0 Rn), with n ≥ 05 (i.e. ∀R1R2...Rn.⊥) may lead to such
situations (this is the so-called ”Inconsistency case” in theorem 2). All other
configurations for cB are trivially solved (this is the so-called ”General case” in
theorem 2).

Elements of proof are now given. In the inconsistency case, the weak ap-
proximation is used to generate clauses that stay in ALN (because we can’t
use the full negation constructor in ALN ). The other interesting point concern-
ing the weak approximation is that it ensures the property of maximality w.r.t.
subsumption that is required. Last but not least, we use the characterization
of inconsistency in ALN showed in lemmas 4.2.2 and 6.1.4 of [11] as the main
argument of completeness for this theorem. The detailed proof of lemma 2 is
given in [13].

Based on lemma 2, the computeALNSemDiff algorithm computes all and
only all descriptions in the semantic difference by computing all possible combi-
nations of multiple clauses cases. Theorem 2 proves its soundness and complete-
ness and gives its complexity (see [13] for the proof).

Theorem 2 (computeALNSemDiff characteristics). Let B and A be two
ALN -descriptions, given in their clausal forms, such that B v A. Algorithm
computeALNSemDiff (given in [13]) computes the clausal form of exactly all
ALN -descriptions that belong to the semantic difference of B and A as defined
in definition 1. This computation is PTIME wrt the sizes of B and A (i.e. the
numbers of clauses in their clausal forms and the maximal number of roles in
any of their clauses).

5 If n = 0, then it is the clause ⊥.



4 Semantic versus syntactic difference in ALN

In this section, we focus on the comparison between the semantic difference and
the syntactic difference in ALN . We first show how to compute the syntactic
difference in ALN , and then we compare both operators.

4.1 Syntactic difference in ALN

Syntactic difference has been defined in [11, 7]. The aim of the syntactic difference
B − A is to remove from B all its subdescriptions that are redundant with A
(i.e. that are also in A). The consequence is that the result is minimal in size.
This operator was initially defined to evaluate the loss of information when
approximating an ALC-description by an ALE-description [7].

The syntactic difference relies on the notion of subdescription. Intuitively, D
is a subdescription of E if D can be obtained from E by removing conjuncts
or disjuncts that are in E, replacing parts of the description of E by ⊥ or by
subdescriptions of these parts. This notion of subdescription defines the partial
order �d : D �d E iff D is a subdescription of E [3, 11, 7]. This partial order is
used to define the syntactic difference B−A. Thereafter, we recall the definition
of this operation using ALE for both B and A. It is the only case for which
the difference is uniquely determined, modulo associativity and commutativity
of concept conjunction, and for which a sound and complete algorithm exists
[11, 7]6.

Definition 2 (Syntactic difference in ALE). Let A and B be two ALE de-
scriptions. The syntactic difference B − A of B and A is defined as the ALE
description C which is minimal w.r.t. �d such that C uA ≡ A uB.

Looking at the previous definition, it seems that, in ALN , the only difference
between semantic and syntactic difference is how ⊥ is processed: in the semantic
difference, non trivial conjunctions equivalent to ⊥ are computed, while they
are not in the syntactic difference. If we extend the definition of �d to ALN ,
as well as the definition of the syntactic difference to ALN , we can prove the
previous intuition by the following theorem which is the second contribution of
this paper. This theorem shows that the syntactic difference is basically a set
difference between clauses of A uB and A (see [13] for the full proof).

Theorem 3 (Building the syntactic difference in ALN ). Let A and B
be two ALN -descriptions given in their clausal form. The syntactic difference
B−A defined in definition 2 is a unique ALN -description C such that if A v B,
then C = >, else Ĝ#

C = Ĝ#
AuB \ Ĝ#

A .

Thus, computing the syntactic difference between two ALN descriptions is
PTIME wrt the numbers of clauses in their clausal forms.
6 The case where B is an ALC description and A an ALE has been studied in [7], but

only a heuristic has been given to compute it.



4.2 Comparing semantic and syntactic operators

Theorems 2 and 3 show that, for ALN -descriptions, both difference compute the
same result, except for ⊥ in the two special cases presented below.

– Case 1:
Let B ≡ ∀R.⊥ and A ≡ ∀R.(¬P u P ′). There is:
Semantic difference: B −A = {∀R.P,∀R.¬P ′}.
Syntactic difference: B −A = ∀R.⊥.
This case has already been studied in [11], and the conclusion is the following.
It is true that the semantic difference does give the semantic gap between
B and A, i.e. what has to be added to A to get B. But multiple results
are less easy to figure out by a user (e.g. by a knowledge engineer) than
the unique one of the syntactic difference. Moreover, in this case, the result
of the syntactic difference is more intuitive since it doesn’t refer to any
decomposition of ⊥. Nevertheless, we could add that getting B as the result
of B − A amounts to say that there is no common point between B and A,
whereas lcs(B,A) ≡ A.

– Case 2:
Let B ≡ ∀R.P and A ≡ ∀R.¬P . There is:
Semantic difference: B − lcs(B,A) = {∀R.P}.
Syntactic difference: B −A = ∀R.⊥.
In that case, the result of the semantic difference seems to be more intu-
itive. Indeed, getting B as the result of B − A amounts to say that there
is no common point between B and A, which is verified in that case since
lcs(B,A) ≡ >. By the contrary, the result of the syntactic difference is
harder to interpret, since it cannot be interpreted neither as what remains
of B once A has been removed, nor as what to add to A to get B.

So none of the two operators always produces more intuitive or understand-
able results. On the one hand, syntactic one generates a unique result which
can be easier to manipulate (especially by a human). On the other hand, the
semantic operator really computes the semantic gap between two description,
by possibly generating many results and handling non intuitive decompositions
of ⊥. These multiple results may be more difficult to manipulate, but can allow
a more exhaustive processing of some task. Hence the overall conclusion is that
the choice of a difference operator in ALN will eventually depend more on the
applicative context than on other technical criteria. None is a priori better. How-
ever, in our application context [4, 5], the difference operation is used to define
the notion of best cover of a concept using a terminology. The aim there is to
reformulate a query Q into a description that contain as much as possible of
common information with Q and as less as possible of extra information with
respect to Q. Such a description is called a best cover of Q. In [5], the extra
information contained in a query Q and not in its best cover E, computed using
the difference Q−E, is used to query remote sources in a peer-to-peer integration
system. In such a context, using the semantic difference turns out to be more
adequate than the syntactic one as it enables to query more relevant sources
than what is enabled by the syntactic difference.



5 Conclusion

In this paper, we investigated the problem of computing the semantic and the
syntactic difference operators in the context of the ALN language. We provide
two polynomial-time algorithms to compute them. We compare both and argue
that the semantic one is better suited to extend the notion of concept covers
previously studied in [10, 4, 5].

References
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