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Abstract. EL++ is a rather expressive description logic (DL) that still admits
polynomial time inferencing for many reasoning tasks. Conjunctive queries are
an important means for expressive querying of DL knowledge bases. We ad-
dress the problem of computing conjunctive query entailment for EL++ knowl-
edge bases. As it turns out, querying unrestrictedEL++ is actually undecidable,
but we identify restrictions under which query answering becomes decidable and
even tractable. We give precise characterisations of schema, query, and combined
complexity. To the best of our knowledge, the presented algorithm is the first to
answer conjunctive queries in a DL that admits complex role inclusion axioms.

1 Introduction

Conjunctive queries originated from research in relational databases [1], and, more re-
cently, have been considered for expressive description logics (DLs) as well [2–6]. Al-
gorithms for answering (extensions of) conjunctive queries in the expressive DLSHIQ
have been discussed in [3, 4], but the first algorithm that supports queries for transitive
roles was presented only very recently [6].

Modern DLs, however, allow for complex role inclusion axioms that encompass
role composition and further generalise transitivity. To the best of our knowledge, no
algorithms for answering conjunctive queries in those cases have been proposed yet. A
relevant logic of this kind isSROIQ [7], the basic DL considered for OWL 1.1.1 An-
other interesting DL that admits complex role inclusions isEL++ [8, 9], which has been
proposed as a rather expressive logic for which many inference tasks can be computed
in polynomial time. In this paper, we present a novel algorithm for answering conjunc-
tive queries inEL++, which is based on an automata-theoretic formulation of complex
role inclusion axioms that was also found useful in reasoning withSROIQ [10, 7].

Our algorithm in particular allows us to derive a number of complexity results re-
lated to conjunctive query answering inEL++. We first show that conjunctive queries
in EL++ are undecidable in general, and identify theEL++-fragment ofSROIQ as
an appropriate decidable sub-DL. Under some related restrictions of role inclusion ax-
ioms, we show that conjunctive query answering in general isPS-complete. Query
answering for fixed knowledge bases (query complexity) is shown to be NP-complete,
whereas for fixed queries (schema complexity) it is merely P-complete.

After introducing some preliminaries in Section 2, we present a general undecidabil-
ity result for conjunctive queriesEL++ in Section 3. Thereafter, we present a modified,
automata-based inferencing procedure forEL++ in Section 4. This will be the basis for

1 http://owl1_1.cs.manchester.ac.uk/



the algorithm for checking entailment of conjunctive queries as presented in Section 5,
which operates on a fragment ofEL++ for which this problem is decidable. Finally, we
derive a number of complexity results related to conjunctive queries inEL++. Proofs
are usually omitted in the extended abstract for reasons of space. They are found in the
accompanying technical report [11].

2 Preliminaries

We assume the reader to be familiar with the basic notions of description logics (DLs).
The DLs that we will encounter in this paper areEL++ [8] and, marginally,SROIQ
[7]. A signatureof DL consists of a finite set ofrole namesR, a finite set ofindividual
namesI , and a finite set ofconcept namesC, and we will use this notation throughout
the paper.EL++ supportsnominals, which we conveniently represent as follows: for
anya ∈ I , there is a concept{a} ∈ C such that{a}I = {aI} (for any interpretationI).
As shown in [8], anyEL++ knowledge base is equivalent to one innormal form, only
containing the following axioms:

TBox: A ⊑ C A⊓ B ⊑ C A ⊑ ∃R.C ∃R.A ⊑ C
RBox: R ⊑ T R◦ S ⊑ T

whereA, B ∈ C ∪ {⊤}, C ∈ C ∪ {⊥}, andR, S, T ∈ R. Note that ABox statements of
the formsC(a) andR(a, b) are internalised into the TBox. The standard model theoretic
semantics ofEL++ can be found in [8]. Unless otherwise specified, the lettersC, D, E
in the remainder of this work always denote (arbitrary) concept names, and the letters
R, S denote (arbitrary) role names. We do not consider concrete domains in this paper,
but are confident that our results can be extended accordingly.

For conjunctive queries, we largely adopt the notation of [6] but directly allow for
individuals in queries. LetV be a countable set ofvariable names. Given elementsx,
y ∈ V ∪ I , a concept atom(role atom) is an expressionC(x) with C ∈ C (R(x, y) with
R ∈ R). A conjunctive query qis a set of concept and role atoms, read as a conjunction
of its elements. ByVar(q) we denote the set of variables occurring inq. Consider an
interpretationI with domain∆I, and a functionπ : Var(q)∪I → ∆I such thatπ(a) = aI

for all a ∈ I . We define

I, π |= C(x) if π(x) ∈ CI, and I, π |= R(x, y) if (π(x), π(y)) ∈ RI.

If there is someπ such thatI, π |= A for all atomsA ∈ q, we writeI |= q and say thatI
models q. A knowledge baseKB entailsq if all models ofKB entailq.

3 Conjunctive Queries inEL++

We first investigate the complexity of conjunctive queries in generalEL++ as defined
in [8]. The following result might be mildly surprising, butis in fact closely related to
similar results for logics with complex role expressions (see, e.g., [12]).

Theorem 1. For an EL++ knowledge base KB and a conjunctive query q, the entail-
ment problem KB|= q is undecidable. Likewise, checking class subsumptions inEL++

extended with inverse roles or role conjunctions is undecidable, even if those operators
occur only in the concepts whose subsumption is checked.



Proof. Intuitively, the result holds since RBoxes can encode context-free languages, the
intersection of which can then be checked with conjunctive queries/inverse roles/role
conjunctions. This problem is undecidable. The proof in [11] uses an even simpler re-
duction of the undecidable Post correspondence problem. ⊓⊔

Clearly, arbitrary role compositions are overly expressive when aiming for a de-
cidable (or even tractable) logic that admits conjunctive queries. We thus restrict our
attention to the fragment ofEL++ that is in the (decidable) description logicSROIQ
[7], and investigate its complexity with respect to conjunctive query answering.

Definition 1. AnEL++ RBox in normal form isregularif there is a strict partial order
≺ onR such that, for all role inclusion axioms R1 ⊑ S and R1 ◦R2 ⊑ S , we find Ri ≺ S
or Ri = S (i= 1, 2). AnEL++ knowledge base is regular if it has a regular RBox.

The existence of≺ ensures that the role hierarchy does not contain cyclic dependen-
cies other than through direct recursion of a single role.

4 Reasoning Automata forEL++

In this section, we describe the construction of an automaton that encodes certain con-
cept subsumptions entailed by anEL++ knowledge base. The automaton itself is closely
related to the reasoning algorithm given in [8], but the representation of entailments via
nondeterministic finite automata (NFA) will be essential for the query answering algo-
rithm in the following section. We describe an NFAA as a tuple (QA, ΣA, δA, iA, FA),
whereQA is a finite set of states,ΣA is a finite alphabet,δA : QA × QA → 2ΣA is a
transition function that maps pairs of states to sets of alphabet symbols,2 iA is the initial
state, andFA is a set of final states.

Consider anEL++ knowledge baseKB. Given a concept nameA ∈ C, we construct
an NFAAKB(A) = (Q, Σ, δ, i, F) that computes superconcepts ofA, where we omit the
subscript ifKB is clear from the context. SetQ = F = C ∪ {⊤}, Σ = C ∪ R ∪ {⊤,⊥},
and i = A. The transition functionδ is initially defined asδ(C,C) ≔ {C,⊤} (for all
C ∈ Q), and extended iteratively by applying the rules in Table 1.The rules correspond
to completion rules in [8, Table 2], though the conditions for (CR6) are slightly relaxed,
fixing a minor glitch in the original algorithm.

It is easy to see that the rules of Table 1 can be applied at mosta polynomial number
of times. The words accepted byA(A) are strings of concept and role names. For each
such wordw we inductively define a concept expressionCw as follows:

– if w is empty, thenCw = ⊤,
– if w = Rvfor someR ∈ R and wordv, thenCw = ∃R.(Cv),
– if w = Cv for someC ∈ C and wordv, thenCw = C ⊓Cv.

For instance, the wordCRDEStranslates intoCCRDES = C⊓∃R.(D⊓E⊓∃S.⊤). Based
on the close correspondence of the above rules to the derivation rules in [8], we can
now establish the main correctness result for the automatonA(A).

2 A possibly more common definition is to map pairs of states andsymbols to sets of states, but
the above is more convenient for our purposes.



Table 1.Completion rules for constructing an NFA from anEL++ knowledge baseKB.

(CR1) If C′ ∈ δ(C,C), C′ ⊑ D ∈ KB, andD < δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ {D}.
(CR2) If C1,C2 ∈ δ(C,C), C1 ⊓C2 ⊑ D ∈ KB, andD < δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ {D}.
(CR3) If C′ ∈ δ(C,C), C′ ⊑ ∃R.D ∈ KB, andR < δ(C,D) thenδ(C,D) ≔ δ(C,D) ∪ {R}.
(CR4) If R ∈ δ(C,D), D′ ∈ δ(D,D), ∃R.D′ ⊑ E ∈ KB, and E < δ(C,C) then δ(C,C) ≔

δ(C,C) ∪ {E}.
(CR5) If R ∈ δ(C,D), ⊥ ∈ δ(D,D), and⊥ < δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ {⊥}.
(CR6) If {a} ∈ δ(C,C) ∩ δ(D,D), and there are statesC1, . . . ,Cn such that

– C1 ∈ {C,⊤,A} ∪ {{b} | b ∈ I },
– δ(C j ,C j+1) , ∅ for all j = 1, . . . ,n− 1,

as well asCn = D, andδ(D,D) * δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ δ(D,D).
(CR7) If R ∈ δ(C,D), R⊑ S, andS < δ(C,D) thenδ(C,D) ≔ δ(C,D) ∪ {S}.
(CR8) If R1 ∈ δ(C,D), R2 ∈ δ(D,E), R1 ◦R2 ⊑ S, andS < δ(C,E) thenδ(C,E) ≔ δ(C,E) ∪ {S}.

Theorem 2. Consider a knowledge base KB, concept A, and NFAA(A) as above, and
let w be some word over the associated alphabet. Then KB|= A ⊑ Cw iff one of the
following holds:

– A(A) accepts the word w, or
– there is a transition⊥ ∈ δ(C,C) where C = ⊤, C = A, or C = {a} for some

individual a.

In particular,A(A) can be used to check all subsumptions between A and some atomic
concept B.

The second item of the theorem addresses the cases whereA is inferred to be empty
(i.e. inconsistent) or where the whole knowledge base is empty. While the above yields
an alternative formulation of theEL++ reasoning algorithm presented in [8], it has the
advantage that it also encodes allpathswithin the inferred models. This will be essential
for our results in the next section where we will use the following convenient definition.

Definition 2. Consider a knowledge base KB, concepts A, B∈ C, and the NFAA(A) =
(Q, Σ, δ, i, F). The automatonAKB(A, B) (or justA(A, B)) is defined as(Q,R, δ, i, F′)
where F′ = ∅ whenever⊥ ∈ δ(A,A), and F′ = {B} otherwise.

A(A, B) obviously accepts all wordsR1, . . . ,Rn such thatA ⊑ ∃R1(. . .∃Rn.B . . .) is
a consequence ofKB, with the border case wheren = 0 andKB |= A ⊑ B. Moreover,
the language accepted by the NFA is empty wheneverA ⊑ ⊥ has been inferred.

5 Deciding Conjunctive Queries forEL

In this section, we present a nondeterministic algorithm that decides the entailment of
a queryq with respect to some knowledge baseKB. This is done by constructing a so-
calledproof graphwhich establishes, for any interpretationI of KB, the existence of a
suitable functionπ that shows query entailment.

Formally, a proof graph is a tuple (N, L,E) consisting of a set of nodesN, a labelling
function L : N → C ∪ {⊤}, and a partial transition functionE : N × N → A, where
Ais the set of all NFA over the alphabetC ∪ {⊤,⊥} ∪ R. The nodes of the proof graph



are abstract representations of elements in the domain of some model ofKB. The labels
assign a concept to each node, and our algorithm ensures thatthe represented element
is necessarily contained in the interpretation of this concept. Intuitively, the label en-
codes all relevant concept information about one node. Thisis only possible since (1)
KB is in normal form and thus supplies concept names for all composite concept ex-
pressions such as conjunctions, and (2)EL++ does not allow inverse roles or number
restrictions that could be used to infer further information based on the relationship of
an element to elements in the model. Finally, the transitionfunction encodes paths in
each model, which provide the basis for inferencing about role relationships between el-
ements. It would be possible to adopt a more concrete representation for role paths (e.g.
by guessing a single path), but our formulation reduces nondeterminism and eventually
simplifies our investigation of algorithmic complexity.

The automaton of Definition 2 encodes concept subsumptions based on TBox and
RBox. For deciding query entailment we also require automata that represent the con-
tent of the RBox.

Proposition 1. Given a regularEL++ RBox, and some role R∈ R, there is an NFA
A(R) over the alphabetR which accepts a word R1 . . .Rn iff R1 ◦ . . . ◦ Rn ⊑ R is a
consequence of everyEL++ knowledge base with the given RBox.

Proof sketch.One possible construction for the required automaton is discussed in [7].
Intuitively, the RBox can be understood as a grammar for a regular language, for which
an automaton can be constructed in a canonical way. ⊓⊔

The above construction might be exponential for some RBoxes. In [10], restrictions
have been discussed that prevent this blow-up, leading to NFA of only polynomial size
w.r.t. the RBox. Accordingly, an RBox issimplewhenever, for all axioms of the form
R1◦S ⊑ S, S◦R2 ⊑ S, the RBox does not contain a common subroleRof R1 andR2 for
which there is an axiom of the formR◦S′ ⊑ R′ or S′ ◦R⊑ R′. We will usually consider
only such simple RBoxes whenever the size of the constructedautomata matters.

We are now ready to present the algorithm. It proceeds in various consecutive steps:

Query factorisation.The algorithm nondeterministically selects a variablex ∈ Var(q)
and some elemente ∈ Var(q)∪ I , and replaces all occurrences ofx in q with e. This step
can be executed an arbitrary number of times (including zero).

Proof graph initialisation.The proof graph (N, L,E) is initialised by settingN ≔ {⊤}∪
I ∪ Var(q). L is initialised byL(⊤) ≔ ⊤, L(a) ≔ {a} for eacha ∈ I . For eachx ∈
Var(q), the algorithm selects a labelL(x) ∈ C ∪ {⊤}. Finally, E is initialised by setting
E(n, a) ≔ A(L(n), L(a)) for eachn ∈ N, a ∈ I . A nodem ∈ N is reachableif there is
some noden ∈ N such thatE(n,m) is defined, andunreachableotherwise. Clearly, all
nominal nodes are reachable by the initialisation ofE. Now as long as there is some
unreachable nodex ∈ Var(q), the algorithm nondeterministically selects one suchx and
some noden ∈ N that is either reachable or⊤, and setsE(n, x) ≔ A(L(n), L(x)). After
this procedure, the graph (N, L,E) is such that all nodes other than⊤ are reachable.
Finally, the algorithm checks whether any of the automataE(n,m) (n, m ∈ N) accepts
the empty language, and aborts with failure if this is the case.



Checking concept entailment.For all concept atomsC(n) ∈ q, the algorithm checks
whetherL(n) |= C with respect toKB.

For the remaining steps of the algorithm, some preliminary definitions and observa-
tions are needed. The automataE(n,m) of the proof graph represent chains of existential
role restrictions that exist within any model. Ifm ∈ Var(q), then the automaton encodes
(all possible) ways of constructing an element that belongsto the interpretation ofL(m)
in each model. The role automataA(R) in turn encode possible chains of roles that suf-
fice to establish roleR along some such path. To show that an atomR(n,m) is entailed,
one thus merely has to check whether the automataE(n,m) andA(R) have a non-empty
intersection. Two issues must be taken into account. Firstly, not every pair of nodes is
linked via some edgeE(n,m), so one might have to look for a longer path and check
non-emptiness of its intersection withA(R). Secondly, there might be many role atoms
that affect the path betweenn andm, and all of them must be satisfied concurrently.
Hence, one either needs to check intersections of many automata concurrently, or one
needs to retain the restrictions imposed by one (processed)role atom before treating
further atoms. The following is easy to prove.

Proposition 2. For every pair of nodes n, m∈ N, there either is a uniqueshortest
connecting path n0 = n, n1, . . . , nk = m with ni ∈ N and E(ni, ni+1) defined, or there
is no connecting path at all. If it exists, this path can be computed by a deterministic
algorithm in polynomial time.

Now any role atom in the query should span over some existing path, and we need
to check whether this path suffices to establish the required role. To do this, we nonde-
terministically split the role automaton into parts that are distributed along the path.

Definition 3. Consider an NFAA = (Q, Σ, δ, i, { f }). Asplit ofA into k parts is given by
NFAA1, . . . ,Ak that are constructed as follows. For every j= 0, . . . , k, there is some
state qj ∈ Q such that q0 = i and qk = f . The NFAA j has the form(Q, Σ, δ, q j−1, {q j}).

It is easy to see that, if each split automatonA j accepts some wordw j , we find that
w1 . . .wk is accepted byA. Likewise, any word accepted byA is also accepted in this
sense by split ofA. Since the combination of any split in general accepts less words
thanA, splitting an NFA usually involves some don’t-know nondeterminism. We can
now proceed with the steps of the algorithm.

Splitting of role automata.For each role atomR(n,m) within the query, the algorithm
computes the shortest pathn = n0, . . . , nk = m from n to m, or aborts with failure if
no such path exists. Next, it splits the NFAA(R) into k automataA(R(n,m), n0, n1),...,
A(R(n,m), nk−1, nk), and aborts with failure if any of the split automata is empty.

Check role entailment.Finally, for eachn, m ∈ N with E(n,m) defined, the algorithm
executes the following checks:

– If m ∈ I , it checks whether the intersection of the edge automatonE(n,m) with any
single split automaton of the formA(F, n,m) is empty.

– If m ∈ Var(q), it checks whether the simultaneous intersection of the edge automa-
ton E(n,m) with all split automata of the formA(F, n,m) is empty.



If all those intersections have been shown to be non-empty, the algorithm confirms the
entailment of the query (we say that the algorithmacceptsthe query). Otherwise it
terminates with failure.

Formal proofs of soundness and completeness of the algorithm are given in [11].
Soundness is established by showing that acceptance implies the existence of a match
for the query w.r.t. any model ofKB. Indeed, a suitable section of the model can be
found by retracting the algorithms construction of the proof graph to find suitable do-
main element, and by noting that the properties that the algorithm has inferred ensure
that all conditions imposed by the query are satisfied for this match. For completeness,
a canonical model is constructed and this model is used to guide the choices of the al-
gorithm to successful acceptance. Similar to the constructed proof graph, the canonical
model exposes a certain local “tree-likeness”: while the presence of nominals prevents
the model from being a tree, all cycles in the model must involve a named constant (and
thus a nominal). This fact is exploited by the algorithm in its construction of shortest
paths and allows us to focus on only one unique such path for showing the entailment
of all role atoms in the query.

6 Complexity of Query Answering for EL++

Finally, we harvest a number of complexity results from the algorithm of Section 5.

Theorem 3. The complexities of conjunctive query entailment for regular EL++ knowl-
edge bases – estimated w.r.t. the size of the variable input –are shown in the following
table. Whenever the RBox is variable, we assume that it is simple.

Variable parts:
QueryRBoxTBoxABox Complexity

Combined complexity × × × × PS-complete
Query complexity × NP-complete

Schema complexity × × × P-complete
Data complexity × P-complete

Proof. The hardness proofs detailed in [11] apply known hardness results for the data-
complexity of instance checking in fragments ofEL [13], evaluation of single Data-
log clauses (NP-complete, [14]), and emptiness of the intersection of finite automata
(PS-complete, [15]). For containment in the respective complexity classes, one
carefully estimates complexity boundaries for the algorithm of Section 5. ⊓⊔

We remark that the above results are quite generic, and can beestablished for many
other DLs. Especially, NP-hardness w.r.t. knowledge base size can be shown for any
logic that admits an ABox, whereas PS hardness of the combined problem follows
whenever the DL additionally admits role composition and existential role restrictions.

7 Conclusion

We have proposed a novel algorithm for answering conjunctive queries inEL++ KBs,
which is worst-case optimal under various assumptions. Apparently, this also consti-
tutes the first inference procedure for conjunctive queriesin a DL that supports complex



role inclusions (including composition). Showing undecidability of conjunctive queries
for unrestrictedEL++, we illustrated that combining role atoms in queries and complex
role inclusion axioms can make reasoning significantly moredifficult.

A compact automata-based representation of role chainsand (parts of) models al-
lowed us to establish polynomial bounds for inferencing in various cases, thus identify-
ing querying scenarios that are still tractable forEL++. Conjunctive queries inherently
introduce some nondeterminism, but automata can conveniently represent sets of possi-
ble solutions instead of considering each of them separately. We therefore believe that
central methods from the presented algorithm can be a basis for actual implementation
that introduces additional heuristics to ameliorate nondeterminism.

References

1. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational
data bases. In Hopcroft, J.E., Friedman, E.P., Harrison, M.A., eds.: Proc. STOC’77, ACM
Press (1977) 77–90

2. Horrocks, I., Sattler, U., Tessaris, S., Tobies, S.: How to decide query containment under
constraints using a description logic. In Parigot, M., Voronkov, A., eds.: Proc. LPAR 2000.
Volume 1955 of LNAI., Springer (2000) 326–343

3. Hustadt, U., Motik, B., Sattler, U.: A decomposition rulefor decision procedures by
resolution-based calculi. In: Proc. LPAR 2004. (2005) 21–35

4. Ortiz, M.M., Calvanese, D., Eiter, T.: Data complexity ofanswering unions of conjunctive
queries inSHIQ. In: Proc. DL 2006, CEUR Electronic Workshop Proceedings (2006)

5. Ortiz, M.M., Calvanese, D., Eiter, T.: Characterizing data complexity for conjunctive query
answering in expressive description logics. In: Proc. AAAI’06. (2006)

6. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the descrip-
tion logicSHIQ. In: Proc. IJCAI-07, Hyderabad, India (2007)

7. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. KR2006,
AAAI Press (2006) 57–67

8. Baader, F., Brandt, S., Lutz, C.: Pushing theEL envelope. In: Proc. IJCAI-05, Edinburgh,
UK, Morgan-Kaufmann Publishers (2005)

9. Krisnadhi, A., Lutz, C.: Data complexity in theEL family of DLs. In: Proc. DL 2007, CEUR
Electronic Workshop Proceedings (2007)

10. Horrocks, I., Sattler, U.: Decidability ofSHIQ with complex role inclusion axioms. In:
Proc. IJCAI-03, Acapulco, Mexico, Morgan-Kaufmann Publishers (2003) 343–348

11. Krötzsch, M., Rudolph, S.: Conjunctive queries forEL with role composition. Techni-
cal report, Universität Karlsruhe (TH), Germany (2007) Available athttp://www.aifb.
uni-karlsruhe.de/Publikationen/showPublikation?publ_id=1463.

12. Wessel, M.: Obstacles on the way to qualitative spatial reasoning with description logics:
Some undecidability results. In: Proc. DL 2001. (2001)

13. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M.,Rosati, R.: Data complexity of
query answering in description logics. In: Proc. KR 2006. (2006) 260–270

14. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Computing Surveys33 (2001) 374–425

15. Kozen, D.: Lower bounds for natural proof systems. In: Proc. 18th Symp. on the Foundations
of Computer Science. (1977) 254–266


