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Abstract. EL is a rather expressive description logic (DL) that still aigm
polynomial time inferencing for many reasoning tasks. @oofive queries are
an important means for expressive querying of DL knowledgseb. We ad-
dress the problem of computing conjunctive query entailnienE.L™" knowl-
edge bases. As it turns out, querying unrestriégd™ is actually undecidable,
but we identify restrictions under which query answeringdees decidable and
even tractable. We give precise characterisations of sehguery, and combined
complexity. To the best of our knowledge, the presentedrilgo is the first to
answer conjunctive queries in a DL that admits complex nodduision axioms.

1 Introduction

Conjunctive queries originated from research in relaticlagabases [1], and, more re-
cently, have been considered for expressive descript@gioddDLSs) as well [2—6]. Al-
gorithms for answering (extensions of) conjunctive queinehe expressive DEHIQ
have been discussed in [3, 4], but the first algorithm thapstg queries for transitive
roles was presented only very recently [6].

Modern DLs, however, allow for complex role inclusion axi®tihat encompass
role composition and further generalise transitivity. fie best of our knowledge, no
algorithms for answering conjunctive queries in those s&s&e been proposed yet. A
relevant logic of this kind isSSROZQ [7], the basic DL considered for OWL 11An-
other interesting DL that admits complex role inclusionS 5™ [8, 9], which has been
proposed as a rather expressive logic for which many interésmsks can be computed
in polynomial time. In this paper, we present a novel algonifor answering conjunc-
tive queries inSL**, which is based on an automata-theoretic formulation ofgler
role inclusion axioms that was also found useful in reaspmiith SROZQ [10, 7].

Our algorithm in particular allows us to derive a number ofhpdexity results re-
lated to conjunctive query answeringdC**. We first show that conjunctive queries
in &£ are undecidable in general, and identify th&**-fragment of SROIQ as
an appropriate decidable sub-DL. Under some related ctstrs of role inclusion ax-
ioms, we show that conjunctive query answering in gene@Bsce-complete. Query
answering for fixed knowledge bases (query complexity) ashto be NP-complete,
whereas for fixed queries (schema complexity) it is meretpRplete.

After introducing some preliminaries in Section 2, we presegeneral undecidabil-
ity result for conjunctive querieSL** in Section 3. Thereafter, we present a modified,
automata-based inferencing procedureddi** in Section 4. This will be the basis for
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the algorithm for checking entailment of conjunctive gesras presented in Section 5,
which operates on a fragment®£** for which this problem is decidable. Finally, we
derive a number of complexity results related to conjurctjueries inL**. Proofs
are usually omitted in the extended abstract for reasongaafes They are found in the
accompanying technical report [11].

2 Preliminaries

We assume the reader to be familiar with the basic notiongséription logics (DLS).
The DLs that we will encounter in this paper &«£** [8] and, marginallySROIQ
[7]. A signatureof DL consists of a finite set able namesR, a finite set oindividual
named, and a finite set ofoncept name€, and we will use this notation throughout
the paper&L** supportsnominals which we conveniently represent as follows: for
anya € |, there is a concefit € C such thafa}! = {a’} (for any interpretatior?).
As shown in [8], anyL** knowledge base is equivalent to oneniormal form only
containing the following axioms:

TBox: AC C AnBcLC C AC 3IRC dJRAC C

RBox: RE T RoSCT
whereA, Be CU{T},C e CuU{L}, andR, S, T € R. Note that ABox statements of
the formsC(a) andR(a, b) are internalised into the TBox. The standard model theoret
semantics oEL** can be found in [8]. Unless otherwise specified, the letie®, E
in the remainder of this work always denote (arbitrary) @pimames, and the letters
R, S denote (arbitrary) role names. We do not consider conciateaths in this paper,
but are confident that our results can be extended accoyding|

For conjunctive querigswe largely adopt the notation of [6] but directly allow for
individuals in queries. LeV be a countable set afariable namesGiven elements,
y € V U I, aconcept atonfrole atonj is an expressiof(x) with C € C (R(x,y) with
R € R). A conjunctive query s a set of concept and role atoms, read as a conjunction
of its elements. Byar(g) we denote the set of variables occurringginConsider an
interpretation/ with domain4”, and a functionr : Var(g)ul — 4% such thar(a) = a’
forallae|. We define

I,mreCXifr(x)eCf, and I,7kERXY)if(x(x),n(y))eR.

If there is somer such thatZ, = = A for all atomsA € g, we write 7 | q and say thaf
models gA knowledge bas&B entailsq if all models ofK B entailg.

3 Conjunctive Queries in&EL*

We first investigate the complexity of conjunctive queriegeneralEL** as defined
in [8]. The following result might be mildly surprising, big in fact closely related to
similar results for logics with complex role expressiores(se.g., [12]).

Theorem 1. For an 8L knowledge base KB and a conjunctive query g, the entail-
ment problem KB= g is undecidable. Likewise, checking class subsumptio&<iit
extended with inverse roles or role conjunctions is undei€, even if those operators
occur only in the concepts whose subsumption is checked.



Proof. Intuitively, the result holds since RBoxes can encode cdfftee languages, the
intersection of which can then be checked with conjunctiverggginverse rolegole
conjunctions. This problem is undecidable. The proof ir] ddes an even simpler re-
duction of the undecidable Post correspondence problem. O

Clearly, arbitrary role compositions are overly expressithen aiming for a de-
cidable (or even tractable) logic that admits conjunctiverigs. We thus restrict our
attention to the fragment @£+ that is in the (decidable) description logBRO7Q
[7], and investigate its complexity with respect to conjivequery answering.

Definition 1. AnEL™ RBox in normal form isegularif there is a strict partial order
< onR such that, for all role inclusion axioms;RE S and Ro R, C S, we find R< S
orR =S (i=1,2). AnEL* knowledge base is regular if it has a regular RBox.

The existence of ensures that the role hierarchy does not contain cyclicrodgre
cies other than through direct recursion of a single role.

4 Reasoning Automata for&6 £**

In this section, we describe the construction of an automtitat encodes certain con-
cept subsumptions entailed by@#** knowledge base. The automaton itself is closely
related to the reasoning algorithm given in [8], but the espntation of entailments via
nondeterministic finite automata (NFA) will be essentialtfte query answering algo-
rithm in the following section. We describe an NEAas a tuple Qa, X4, 4,14, F4),
whereQg is a finite set of states 4 is a finite alphabetj# : Q4 x Qz — 2*7 is a
transition function that maps pairs of states to sets ofadphsymbols,i 4 is the initial
state, andF 4 is a set of final states.

Consider ar£ L™+ knowledge basi&B. Given a concept nam& e C, we construct
an NFAAkgs(A) = (Q,2, 4,1, F) that computes superconceptsfofwhere we omit the
subscript ifKB is clear from the context. S& = F = CU({T},2 = CURU({T, 1},
andi = A. The transition functiord is initially defined ass(C,C) := {C, T} (for all
C € Q), and extended iteratively by applying the rules in Tabl&He rules correspond
to completion rules in [8, Table 2], though the conditions(foR6) are slightly relaxed,
fixing a minor glitch in the original algorithm.

Itis easy to see that the rules of Table 1 can be applied atarpsiynomial number
of times. The words accepted F(A) are strings of concept and role names. For each
such wordw we inductively define a concept express@pas follows:

— if wis empty, therC,, = T,
— if w= Rvfor someR € R and wordv, thenC,, = AR.(C,),
— if w= Cvfor someC € C and wordv, thenC,, = Cn C,.

For instance, the wor@ RDE Stranslates int@€crpes = CMAR (DM EMAS.T). Based
on the close correspondence of the above rules to the derivaies in [8], we can
now establish the main correctness result for the automata).

2 A possibly more common definition is to map pairs of statessymabols to sets of states, but
the above is more convenient for our purposes.



Table 1. Completion rules for constructing an NFA from &£ ** knowledge bas& B.

(CR1) IfC’ € 6(C,C),C’' C D € KB, andD ¢ 6(C,C) thens(C,C) = §(C,C) U {D}.
(CR2) IfC;,C; € 6(C,C),C, N C, C D € KB, andD ¢ §(C,C) thens(C,C) := 6(C,C) U {D}.
(CR3) IfC’ € 6(C,C),C’ C ARD € KB, andR ¢ §(C, D) thens(C, D) := §(C, D) U {R}.
(CR4) IfR € 6(C,D), D’ € §(D,D), ARD’ C E € KB, andE ¢ 6(C,C) thens(C,C) =
§(C,C) U {E}.
(CR5) IfRe §(C,D), L € §(D, D), and_L ¢ §(C,C) thens(C,C) := 6(C,C) U {L}.
(CR6) If{a} € 6(C,C) n (D, D), and there are stat€y, ..., C, such that
—Cie{C,T,Alu{{b}|bel},
- 0(Cj,Cj) = 0forall j=1,...,n-1,
as well asC,, = D, ands(D, D) ¢ 6(C,C) thens(C,C) := 6(C,C) u 6(D, D).
(CR7) IfRe §(C,D), RC S, andS ¢ 6(C, D) thens(C, D) := 6(C, D) U {S}.
(CR8) IfR; € §(C,D), R, € 6(D,E), Ry o R, C S, andS ¢ 6(C, E) thens(C, E) := §(C, E) U {S}.

Theorem 2. Consider a knowledge base KB, concept A, and SfA) as above, and
let w be some word over the associated alphabet. Then=K&8 C C,, iff one of the
following holds:

— A(A) accepts the word w, or
— there is a transitionL € 6(C,C) where C= T, C = A, or C = {a} for some
individual a.

In particular, A(A) can be used to check all subsumptions between A and someatomi
concept B.

The second item of the theorem addresses the cases Wiergferred to be empty
(i.e. inconsistent) or where the whole knowledge base isgrihile the above yields
an alternative formulation of th8.£** reasoning algorithm presented in [8], it has the
advantage that it also encodesmthswithin the inferred models. This will be essential
for our results in the next section where we will use the felltg convenient definition.

Definition 2. Consider a knowledge base KB, concepts &,®B, and the NFAA(A) =
(Q,2,6,1,F). The automatotAkg(A, B) (or just A(A, B)) is defined agQ, R, 6,1, F’)
where F = 0 wheneverL € §(A, A), and F = {B} otherwise.

A(A, B) obviously accepts all wordR, ..., R, such thatA C ARy(...dR,.B.. ) is
a consequence &fB, with the border case where= 0 andKB = A C B. Moreover,
the language accepted by the NFA is empty when@verL has been inferred.

5 Deciding Conjunctive Queries forEL

In this section, we present a nondeterministic algorithat tfecides the entailment of
a queryq with respect to some knowledge bdéB. This is done by constructing a so-
calledproof graphwhich establishes, for any interpretatidrof KB, the existence of a
suitable functionr that shows query entailment.

Formally, a proof graph is a tupl&l(L, E) consisting of a set of nodé§ a labelling
functionL : N —» C U {T}, and a partial transition functiof : N x N — A, where
Ais the set of all NFA over the alphab@tu {T, L} U R. The nodes of the proof graph



are abstract representations of elements in the domaimtd stodel oK B. The labels
assign a concept to each node, and our algorithm ensurethéhapresented element
is necessarily contained in the interpretation of this epacintuitively, the label en-
codes all relevant concept information about one node. iEtosily possible since (1)
KB is in normal form and thus supplies concept names for all asite concept ex-
pressions such as conjunctions, and&2)* does not allow inverse roles or number
restrictions that could be used to infer further informatitased on the relationship of
an element to elements in the model. Finally, the transhimction encodes paths in
each model, which provide the basis for inferencing abdetnedationships between el-
ements. It would be possible to adopt a more concrete rapaimn for role paths (e.g.
by guessing a single path), but our formulation reduces etamohinism and eventually
simplifies our investigation of algorithmic complexity.

The automaton of Definition 2 encodes concept subsumptiassdon TBox and
RBox. For deciding query entailment we also require autarttzdt represent the con-
tent of the RBox.

Proposition 1. Given a regular8L** RBox, and some role R R, there is an NFA
A(R) over the alphabeR which accepts aword R.. R, if Rio...oR, C Risa
consequence of eve8/ " knowledge base with the given RBox.

Proof sketchOne possible construction for the required automaton sudised in [7].
Intuitively, the RBox can be understood as a grammar for aleedanguage, for which
an automaton can be constructed in a canonical way. O

The above construction might be exponential for some RBdrdg40], restrictions
have been discussed that prevent this blow-up, leading fodfenly polynomial size
w.r.t. the RBox. Accordingly, an RBox simplewhenever, for all axioms of the form
RiocSLC S, SoR, C S, the RBox does not contain a common subite R; andR, for
which there is an axiom of the forRo S’ C R or S’oRC R'. We will usually consider
only such simple RBoxes whenever the size of the constriatgaata matters.

We are now ready to present the algorithm. It proceeds imuargonsecutive steps:

Query factorisation.The algorithm nondeterministically selects a variable Var(q)
and some elememte Var(q) Ul, and replaces all occurrencesah q with e. This step
can be executed an arbitrary number of times (including)zero

Proof graph initialisation. The proof graphi|, L, E) is initialised by settindN := {T}uU

I U Var(g). L is initialised byL(T) := T, L(a) := {a} for eacha € I|. For eachx €
Var(q), the algorithm selects a labe(x) € C U {T}. Finally, E is initialised by setting
E(n,a) := A(L(n), L(a)) for eachn € N, a € I. Anodem € N is reachablef there is
some node € N such thateE(n, m) is defined, andinreachableotherwise. Clearly, all
nominal nodes are reachable by the initialisatiorEoNow as long as there is some
unreachable nodee Var(q), the algorithm nondeterministically selects one syeimd
some node € N that is either reachable ar, and setE£(n, X) := A(L(n), L(X)). After
this procedure, the grapMN(L, E) is such that all nodes other thanare reachable.
Finally, the algorithm checks whether any of the autont&ta m) (n, m € N) accepts
the empty language, and aborts with failure if this is theecas



Checking concept entailmenEor all concept atom€(n) € g, the algorithm checks
whetherl(n) E C with respect tdK B.

For the remaining steps of the algorithm, some preliminafinitions and observa-
tions are needed. The automé&i, m) of the proof graph represent chains of existential
role restrictions that exist within any modelnife Var(q), then the automaton encodes
(all possible) ways of constructing an element that beldagse interpretation of (m)
in each model. The role automaf{R) in turn encode possible chains of roles that suf-
fice to establish rol® along some such path. To show that an aiR({m m) is entailed,
one thus merely has to check whether the autofafiam) and A(R) have a non-empty
intersection. Two issues must be taken into account. Finstit every pair of nodes is
linked via some edg&(n, m), so one might have to look for a longer path and check
non-emptiness of its intersection wi#(R). Secondly, there might be many role atoms
that dfect the path betweemandm, and all of them must be satisfied concurrently.
Hence, one either needs to check intersections of many at@oroncurrently, or one
needs to retain the restrictions imposed by one (procesetxintom before treating
further atoms. The following is easy to prove.

Proposition 2. For every pair of nodes n, n& N, there either is a uniqushortest
connecting pathi= n,ny,...,nx = m with n € N and En;, ni;1) defined, or there
is no connecting path at all. If it exists, this path can be pated by a deterministic
algorithm in polynomial time.

Now any role atom in the query should span over some existtig, and we need
to check whether this path flices to establish the required role. To do this, we nonde-
terministically split the role automaton into parts tha distributed along the path.

Definition 3. Consider an NFAA = (Q, 2, 6,1, { f}). Asplitof A into k parts is given by
NFA A, . .., Ak that are constructed as follows. For every=jo0, ..., k, there is some
state g € Q suchthatg=iand ¢ = f. The NFA4A; has the form(Q, 2, 6, gj-1, {q;}).

Itis easy to see that, if each split automat@naccepts some wond;, we find that
Wi ... W is accepted byA. Likewise, any word accepted b3t is also accepted in this
sense by split ofA. Since the combination of any split in general accepts lessisv
thanA, splitting an NFA usually involves some don’t-know nondetgism. We can
now proceed with the steps of the algorithm.

Splitting of role automatalor each role atorR(n, m) within the query, the algorithm
computes the shortest path= ng,...,nx = mfrom n to m, or aborts with failure if
no such path exists. Next, it splits the NEAR) into k automataA(R(n, m), ng, ny),...,
A(R(N, m), n_1, N), and aborts with failure if any of the split automata is eynpt

Check role entailmentFinally, for eachn, m € N with E(n, m) defined, the algorithm
executes the following checks:

— If me |, it checks whether the intersection of the edge autom&faym) with any
single split automaton of the fort#(F, n, m) is empty.

— If me Var(q), it checks whether the simultaneous intersection of tigeeditoma-
ton E(n, m) with all split automata of the forri(F, n, m) is empty.



If all those intersections have been shown to be non-enfghalgorithm confirms the
entailment of the query (we say that the algorithteptsthe query). Otherwise it
terminates with failure.

Formal proofs of soundness and completeness of the algodtk given in [11].
Soundness is established by showing that acceptance spéeexistence of a match
for the query w.r.t. any model d{B. Indeed, a suitable section of the model can be
found by retracting the algorithms construction of the prgraph to find suitable do-
main element, and by noting that the properties that therigtfgo has inferred ensure
that all conditions imposed by the query are satisfied far thatch. For completeness,
a canonical model is constructed and this model is used tteghe choices of the al-
gorithm to successful acceptance. Similar to the constdugtoof graph, the canonical
model exposes a certain local “tree-likeness”: while thespnce of nominals prevents
the model from being a tree, all cycles in the model must wealnamed constant (and
thus a nominal). This fact is exploited by the algorithm mdbnstruction of shortest
paths and allows us to focus on only one unique such path twisly the entailment
of all role atoms in the query.

6 Complexity of Query Answering for EL**

Finally, we harvest a number of complexity results from tigmethm of Section 5.

Theorem 3. The complexities of conjunctive query entailment for rag8l.** knowl-
edge bases — estimated w.r.t. the size of the variable inpté shown in the following
table. Whenever the RBox is variable, we assume that it jslsim

Variable parts:
QueryRBo}TBo¥ABoX Complexity

Combined complexity x X X X |PSace-complete
Query complexity | x NP-complete
Schema complexity X X X P-complete
Data complexity X P-complete

Proof. The hardness proofs detailed in [11] apply known hardnesdteefor the data-
complexity of instance checking in fragments&f [13], evaluation of single Data-
log clauses (NP-complete, [14]), and emptiness of the getion of finite automata
(PSace-complete, [15]). For containment in the respective coxipteclasses, one
carefully estimates complexity boundaries for the aldponibf Section 5. O

We remark that the above results are quite generic, and castakelished for many
other DLs. Especially, NP-hardness w.r.t. knowledge b&sean be shown for any
logic that admits an ABox, whereas RR& hardness of the combined problem follows
whenever the DL additionally admits role composition anidtextial role restrictions.

7 Conclusion

We have proposed a novel algorithm for answering conjuadiveries inrS.L** KBs,
which is worst-case optimal under various assumptions.afgmtly, this also consti-
tutes the first inference procedure for conjunctive quéni@sDL that supports complex



role inclusions (including composition). Showing undeidity of conjunctive queries
for unrestricted&L**, we illustrated that combining role atoms in queries andgem
role inclusion axioms can make reasoning significantly naldfiecult.

A compact automata-based representation of role claidgparts of) models al-
lowed us to establish polynomial bounds for inferencingarnous cases, thus identify-
ing querying scenarios that are still tractable&f**. Conjunctive queries inherently
introduce some nondeterminism, but automata can conviniepresent sets of possi-
ble solutions instead of considering each of them sepgratéd therefore believe that
central methods from the presented algorithm can be a basigfual implementation
that introduces additional heuristics to ameliorate noeraeinism.
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