
Exploiting Description Logic Reasoners in
Inductive Logic Programming Systems:

An Experience within the Semantic Web area

Francesca A. Lisi

Dipartimento di Informatica, Università degli Studi di Bari,
Via E. Orabona 4, 70125 Bari, Italy

lisi@di.uniba.it

Abstract. In spite of the increasing effort spent on building ontologies
for the Semantic Web, little attention has been paid to the impact of
these ontologies on knowledge-based intelligent systems such as Inductive
Logic Programming (ILP) systems which were not conceived for dealing
with DL knowledge bases. In this paper, we describe an extension of the
ILP system AL-QuIn to deal with a background knowledge in the form
of OWL DL ontology. The extension consists of a preprocessing of the
ontology that mainly relies on the services of the DL reasoner Pellet.

1 Introduction

Description Logics (DLs) are the most currently used among the logical for-
malisms proposed by Ontological Engineering [5]. Also the DL-based approach
to Ontological Engineering is playing a relevant role in the definition of the Se-
mantic Web. The Semantic Web is the vision of the World Wide Web enriched
by machine-processable information which supports the user in his tasks [2]. Its
architecture consists of several layers, each of which is equipped with an ad-hoc
mark-up language. DLs, more precisely the very expressive DL SHIQ, have
guided the design of the mark-up language OWL for the ontological layer [6].
A DL reasoner, Pellet [16], has been recently proposed for OWL. In spite of
the increasing effort spent on building ontologies for the Semantic Web, little
attention has been paid to the impact of these ontologies on knowledge-based
intelligent systems such as Inductive Logic Programming (ILP) systems which
were not conceived for dealing with DL knowledge bases. Note that the use of
background knowledge has been widely recognized as one of the strongest points
of ILP when compared to other forms of concept learning and has been empiri-
cally studied in several application domains [11]. Yet the background knowledge
in ILP systems is often not organized around a well-formed conceptual model
and still ignores the latest developments in Knowledge Engineering such as on-
tologies and ontology languages based on DLs. In a recent position paper, Page
and Srinivasan have pointed out that the use of special-purpose reasoners in ILP
is among the pressing issues that have arisen from the most challenging ILP ap-
plications of today [12]. We think that this is the case for ILP applications in the

Semantic Web area. In this paper we report on an experience with DL reasoners
in ILP within the Semantic Web application area. In particular, we describe an
extension of the ILP system AL-QuIn [10] to deal with a background knowledge
in the form of OWL DL ontology. The extension consists of a preprocessing of
the ontology that mainly relies on the reasoning services of Pellet.

The paper is structured as follows. Section 2 briefly describes AL-QuIn.
Section 3 illustrates the use of Pellet in AL-QuIn. Section 4 concludes the paper.

2 The ILP system AL-QuIn

The ILP system AL-QuIn (AL-log Query Induction) [10] supports a data min-
ing task known under the name of frequent pattern discovery. In data mining
a pattern is considered as an intensional description (expressed in a given lan-
guage L) of a subset of a given data set r. The support of a pattern is the relative
frequency of the pattern within r and is computed with the evaluation function
supp. The task of frequent pattern discovery aims at the extraction of all fre-
quent patterns, i.e. all patterns whose support exceeds a user-defined threshold
of minimum support. AL-QuIn solves a variant of the frequent pattern discovery
problem which takes concept hierarchies into account during the discovery pro-
cess, thus yielding descriptions at multiple granularity levels up to a maximum
level maxG. More formally, given

– a data set r including a taxonomy T where a reference concept Cref and
task-relevant concepts are designated,

– a multi-grained language {Ll}1≤l≤maxG of patterns
– a set {minsupl}1≤l≤maxG of user-defined minimum support thresholds

the problem of frequent pattern discovery at l levels of description granularity,
1 ≤ l ≤ maxG, is to find the set F of all the patterns P ∈ Ll that describe the
reference concept w.r.t. the task-relevant concepts and turn out to be frequent in
r. Note that P ’s with support s such that (i) s ≥ minsupl and (ii) all ancestors
of P w.r.t. T are frequent in r. Note that a pattern Q is considered to be an
ancestor of P if it is a coarser-grained version of P .

Example 1. As a showcase we consider the task of finding frequent patterns that
describe Middle East countries (reference concept) w.r.t. the religions believed
and the languages spoken (task-relevant concepts) at three levels of granular-
ity (maxG = 3). Minimum support thresholds are set to the following values:
minsup1 = 20%, minsup2 = 13%, and minsup3 = 10%. The data set and the
language of patterns will be illustrated in Example 2 and 3, respectively.

In AL-QuIn data and patterns are represented according to the hybrid
knowledge representation and reasoning system AL-log [4]. In particular, the
data set r is represented as an AL-log knowledge base B, thus composed of a
structural part and a relational part. The structural subsystem Σ is based on
ALC [14] whereas the relational subsystem Π is based on an extended form of
Datalog [3] that is obtained by using ALC concept assertions essentially as
type constraints on variables.

Example 2. For the task of interest, we consider an AL-log knowledge base BCIA
that integrates a ALC component ΣCIA containing taxonomies rooted into the
concepts Country, EthnicGroup, Language and Religion and a Datalog com-
ponent ΠCIA containing facts1 extracted from the on-line 1996 CIA World Fact
Book2. Note that Middle East countries have been defined as Asian countries
that host at least one Middle Eastern ethnic group:

MiddleEastCountry ≡ AsianCountry u ∃Hosts.MiddleEastEthnicGroup.

In particular, Armenia (’ARM’) and Iran (’IR’) are classified as Middle East
countries because the following membership assertions hold in ΣCIA:

’ARM’:AsianCountry.
’IR’:AsianCountry.
’Arab’:MiddleEastEthnicGroup.
’Armenian’:MiddleEastEthnicGroup.
<’ARM’,’Armenian’>:Hosts.
<’IR’,’Arab’>:Hosts.

Also ΠCIA includes constrained Datalog clauses such as:

believes(Code, Name)←
religion(Code, Name, Percent) & Code:Country, Name:Religion.

speaks(Code, Name)←
language(Code, Name, Percent) & Code:Country, Name:Language.

that define views on the relations religion and language, respectively.

The language L = {Ll}1≤l≤maxG of patterns allows for the generation of
AL-log unary conjunctive queries, called O-queries. Given a reference concept
Cref , an O-query Q to an AL-log knowledge base B is a (linked and connected)3

constrained Datalog clause of the form

Q = q(X)← α1, . . . , αm&X : Cref , γ1, . . . , γn

where X is the distinguished variable and the remaining variables occurring
in the body of Q are the existential variables. Note that αj , 1 ≤ j ≤ m, is
a Datalog literal whereas γk, 1 ≤ k ≤ n, is an assertion that constrains a
variable already appearing in any of the αj ’s to vary in the range of individuals
of a concept defined in B. The O-query

Qt = q(X)← &X : Cref

is called trivial for L because it only contains the constraint for the distinguished
variable X. Furthermore the language L is multi-grained, i.e. it contains expres-
sions at multiple levels of description granularity. Indeed it is implicitly defined

1 http://www.dbis.informatik.uni-goettingen.de/Mondial/mondial-rel-facts.flp
2 http://www.odci.gov/cia/publications/factbook/
3 For the definition of linkedness and connectedness see [11].

by a declarative bias specification which consists of a finite alphabet ∆ of Data-
log predicate names and finite alphabets Γ l (one for each level l of description
granularity) of ALC concept names. Note that the αi’s are taken from A and
γj ’s are taken from Γ l. We impose L to be finite by specifying some bounds,
mainly maxD for the maximum depth of search and maxG for the maximum
level of granularity.

Example 3. To accomplish the task of Example 1 we define LCIA as the set of
O-queries with Cref = MiddleEastCountry that can be generated from the
alphabet ∆= {believes/2, speaks/2} of Datalog binary predicate names,
and the alphabets

Γ 1= {Language, Religion}
Γ 2= {IndoEuropeanLanguage, . . . , MonotheisticReligion, . . .}
Γ 3= {IndoIranianLanguage, . . . , MuslimReligion, . . .}

of ALC concept names for 1 ≤ l ≤ 3, up to maxD = 5. Examples of O-queries
in LCIA are:

Qt= q(X) ← & X:MiddleEastCountry
Q1= q(X) ← speaks(X,Y) & X:MiddleEastCountry, Y:Language
Q2= q(X) ← speaks(X,Y) & X:MiddleEastCountry, Y:IndoEuropeanLanguage
Q3= q(X) ← believes(X,Y)& X:MiddleEastCountry, Y:MuslimReligion

where Qt is the trivial O-query for LCIA, Q1 ∈ L1
CIA, Q2 ∈ L2

CIA, and Q3 ∈ L3
CIA.

Note that Q1 is an ancestor of Q2.

The support of an O-query Q ∈ Ll w.r.t an AL-log knowledge base B is
defined as

supp(Q,B) =| answerset(Q,B) | / | answerset(Qt,B) |

where answerset(Q,B) is the set of correct answers to Q w.r.t. B. An answer
to Q is a ground substitution θ for the distinguished variable of Q. An answer
θ to Q is a correct (resp. computed) answer w.r.t. B if there exists at least one
correct (resp. computed) answer to body(Q)θ w.r.t. B. Thus the computation of
support relies on query answering in AL-log.

Example 4. The pattern Q2 turns out to be frequent because it has support
supp(Q2,BCIA) = (2/15)% = 13.3% (≥ minsup2). It is to be read as ’13.3 %
of Middle East countries speak an Indoeuropean language’. The two correct
answers to Q2 w.r.t. BCIA are ’ARM’ and ’IR’.

3 Exploiting Pellet in AL-QuIn

3.1 Coverage of observations

In ILP the evaluation of inductive hypotheses (like candidate patterns in frequent
pattern discovery) w.r.t. a set of observations (data units) is usually referred to as

the coverage test because it checks which observations satisfy (are covered by) the
hypothesis. Since evaluation is the most computationally expensive step when
inducing hypotheses expressed in (fragments of) first-order logic, an appropriate
choice of representation for observations can help speeding up this step. In AL-
QuIn the extensional part of Π is partitioned into portions Ai each of which
refers to an individual ai of Cref . The link between Ai and ai is represented
with the Datalog literal q(ai). The pair (q(ai),Ai) is called observation.

Example 5. By assuming MiddleEastCountry as reference concept, the obser-
vation AARM contains Datalog facts such as

language(’ARM’,’Armenian’,96).
language(’ARM’,’Russian’,2).

concerning the individual ’ARM’ whereas AIR consists of facts like

language(’IR’,’Turkish’,1).
language(’IR’,’Kurdish’,9).
language(’IR’,’Baloch’,1).
language(’IR’,’Arabic’,1).
language(’IR’,’Luri’,2).
language(’IR’,’Persian’,58).
language(’IR’,’Turkic’,26).

related to the individual ’IR’.

In ILP the coverage test must take the background knowledge into account.
The portion K of B which encompasses the whole Σ and the intensional part
(IDB) of Π is considered as background knowledge for AL-QuIn. Therefore prov-
ing that anO-query Q covers an observation (q(ai),Ai) w.r.t.K equals to proving
that θi = {X/ai} is a correct answer to Q w.r.t. Bi = K ∪Ai.

Example 6. Checking whether Q2 covers the observation (q(’ARM’),AARM) w.r.t.
KCIA is equivalent to answering the query

Q
(0)
2 = ← q(’ARM’)

w.r.t. KCIA ∪ AARM ∪Q2. The coverage test for (q(’IR’),AIR) is analogous.

A common practice in ILP is to use a reformulation operator, called sat-
uration [13], to speed-up the coverage test. It enables ILP systems to make
background knowledge explicit within the observations instead of implicit and
apart from the observations. In the following we will discuss the implementation
of the coverage test in AL-QuIn and clarify the role of Pellet in supporting the
saturation of observations w.r.t. a OWL-DL background knowledge Σ.

3.2 Saturation and instance retrieval

AL-QuIn is implemented with Prolog as usual in ILP. Thus, the actual repre-
sentation language in AL-QuIn is a kind of DatalogOI [15], i.e. the subset of

Datalog 6= equipped with an equational theory that consists of the axioms of
Clark’s Equality Theory augmented with one rewriting rule that adds inequality
atoms s 6= t to any P ∈ L for each pair (s, t) of distinct terms occurring in
P . Note that concept assertions are rendered as membership atoms, e.g. a : C
becomes c C(a).

Example 7. The following query

q(X) ← c MiddleEastCountry(X), believes(X,Y), c MonotheisticReligion(Y),
believes(X,Z), Y6=Z

is the DatalogOI rewriting of:

q(X) ← believes(X,Y), believes(X,Z) &
X:MiddleEastCountry, Y:MonotheisticReligion

where the absence of a ALC constraint for the variable Z explains the need for
the inequality atom.

When implementing the coverage test in AL-QuIn, the goal has been to
reduce constrained SLD-resolution of AL-log to SLD-resolution on DatalogOI .
A crucial issue in this mapping is to deal with the satisfiability tests of ALC
constraints w.r.t. Σ which are required by constrained SLD-resolution because
they are performed by applying the tableau calculus for ALC. The reasoning
on the constraint part of O-queries has been replaced by preliminary saturation
steps of the observations w.r.t. the background knowledge Σ. By doing so, the
observations are completed with concept assertions that can be derived from
Σ by posing instance retrieval problems to a DL reasoner. Here, the retrieval
is called levelwise because it follows the layering of T : individuals of concepts
belonging to the l-th layer T l of T are retrieved all together. Conversely the
retrieval for the reference concept is made only once at the beginning of the
whole discovery process because it makes explicit knowledge of interest to all
the levels of granularity. This makes SLD-refutations of queries in Ll work only
on extensional structural knowledge at the level l of description granularity.

A Java application, named OWL2Datalog, has been developed to support
the saturation of observations w.r.t. a OWL-DL background knowledge Σ in
AL-QuIn. To achieve this goal, it supplies the following functionalities:

– levelwise retrieval w.r.t. Σ
– DatalogOI rewriting of (asserted and derived) concept assertions of Σ

Note that the former is implemented by a client for the DIG server Pellet.

Example 8. The DatalogOI rewriting of the concept assertions derived for T 2

produces facts like:

c AfroAsiaticLanguage(’Arabic’).
. . .
c IndoEuropeanLanguage(’Armenian’).
. . .
c MonotheisticReligion(’ShiaMuslim’).
. . .

to be considered during coverage tests of O-queries in L2.

The concept assertions, once translated to DatalogOI , are added to the
facts derived from the IDB of Π at the loading of each observation. The coverage
test therefore concerns DatalogOI rewritings of both O-queries and saturated
observations.

Example 9. The DatalogOI rewriting

q(X) ← c MiddleEastCountry(X), speaks(X,Y), c IndoEuropeanLanguage(Y)

of Q2 covers the DatalogOI rewriting:

c MiddleEastCountry(’ARM’).
speaks(’ARM’,’Armenian’).
. . .
c IndoEuropeanLanguage(’Armenian’).
. . .

of the saturated observation ÂARM.

Note that the translation from OWL-DL to DatalogOI is possible because
we assume that all the concepts are named. This means that an equivalence
axiom is required for each complex concept in the knowledge base. Equivalence
axioms help keeping concept names (used within constrained Datalog clauses)
independent from concept definitions.

4 Final remarks

In this paper we have shown how to exploit DL reasoners to make existing ILP
systems compliant with the latest developments in Ontological Engineering. We
would like to emphasize that AL-QuIn was originally conceived to deal with
background knowledge in the form of ALC taxonomic ontologies but the imple-
mentation of this feature was still lacking4. Therefore, Pellet makes AL-QuIn
fulfill its design requirements. More precisely, the instance retrieval problems
solved by Pellet support the saturation phase in AL-QuIn. Saturation then
compiles DL-based background knowledge down to the usual Datalog-like for-
malisms of ILP systems. In this respect, the pre-processing method proposed in
[8] to enable legacy ILP systems to work within the framework of CARIN [9]
is related to ours but it lacks an implementation. Analogously, the method pro-
posed in [7] for translating OWL-DL to disjunctive Datalog is far too general
with respect to the specific needs of our application. Rather, the proposal of
interfacing existing reasoners to combine ontologies and rules [1] is more similar
to ours in the spirit. For the future we intend to compare AL-QuIn with other
ILP systems able to deal with ontological background knowledge as soon as they
are implemented and deployed.

4 AL-QuIn could actually deal only with concept hierarchies in DatalogOI .

References

1. U. Assmann, J. Henriksson, and J.Maluszynski. Combining safe rules and ontolo-
gies by interfacing of reasoners. In J.J. Alferes, J. Bailey, W. May, and U. Schwer-
tel, editors, Principles and Practice of Semantic Web Reasoning, volume 4187 of
Lecture Notes in Computer Science, pages 33–47. Springer, 2006.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, May, 2001.

3. S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer,
1990.

4. F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog
and Description Logics. Journal of Intelligent Information Systems, 10(3):227–252,
1998.

5. A. Gómez-Pérez, M. Fernández-López, and O. Corcho. Ontological Engineering.
Springer, 2004.

6. I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

7. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ-description logic to dis-
junctive datalog programs. In D. Dubois, C.A. Welty, and M.-A. Williams, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth
International Conference (KR2004), pages 152–162. AAAI Press, 2004.

8. J.-U. Kietz. Learnability of description logic programs. In S. Matwin and C. Sam-
mut, editors, Inductive Logic Programming, volume 2583 of Lecture Notes in Arti-
ficial Intelligence, pages 117–132. Springer, 2003.

9. A.Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in
CARIN. Artificial Intelligence, 104:165–209, 1998.

10. F.A. Lisi. Data Mining in Hybrid Languages with ILP. In D. Calvanese, G. De
Giacomo, and E. Franconi, editors, Proc. 2003 International Workshop on Descrip-
tion Logics. http://SunSITE.Informatik.RWTH-Aachen.de/Publications/CEUR-
WS/Vol-81/lisi.pdf, 2003.

11. S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming, volume 1228 of Lecture Notes in Artificial Intelligence. Springer, 1997.

12. D. Page and A. Srinivasan. ILP: A short look back and a longer look forward.
Journal of Machine Learning Research, 4:415–430, 2003.

13. C. Rouveirol. Flattening and saturation: Two representation changes for general-
ization. Machine Learning, 14(1):219–232, 1994.

14. M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1–26, 1991.

15. G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S. Ferilli. A logic framework
for the incremental inductive synthesis of Datalog theories. In N.E. Fuchs, editor,
Proceedings of 7th International Workshop on Logic Program Synthesis and Trans-
formation, volume 1463 of Lecture Notes in Computer Science, pages 300–321.
Springer, 1998.

16. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics, 2006.

