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Abstract

The construction and investigation of parallel algorithms for the numer-
ical realization of 3D models of transport and deposition of suspended
matter and 2D models of bottom sediment transport in coastal marine
systems have already developed. 3D model has been presented for nu-
merical modeling of gravitational waves near the shoreline in this work.
It consists of Navier-Stokes equation system, which includes three mo-
mentum equations and mass conservation law equation in region with
dynamically varying boundaries. It has been shown that presented 3D
model gives more realistic description of physical wave process near the
coastal line. The practical significance of constructed 3D model, numer-
ical algorithm and the complex of programs consist in the possibility
of its application for the study of hydrophysical processes in coastal
water systems, as well as in assessing of the hydrodynamic effect on
shore protection constructions and coastal structures in the presence of
gravitational surface waves.

1 Introduction

The study of the hydrodynamic processes of the coastal waters connected with the investigation of the influence
of wave processes generated in the open sea or in the coastal zone of the reservoir. The movement of waves can
lead to negative results affecting the operation of the coastal zone: to the transformation of the bottom surface
resulting from the rise of bottom sediments, to abrasion, the process of destruction by the waves and surf of the
banks of various water systems [Suk05]. The result of the interaction of waves with the bottom surface and the
coastal slope is refraction, diffraction and changes in wave structure. The most significant factors are fluctuations
in water surface level, wind phenomena, currents, transport of bottom materials and deformation of the coastal
slope.

Characteristic feature of the coastal waters is the significant influence of the bottom surface on the wave
processes, which makes it difficult to study tidal phenomena in the coastal regions of the seas and river mouths
[Gus02, Suk05’]. The influence of wave processes on the coastal zone can be ambivalent [Gus04]: wave processes
can have a significant effect on the accumulation and abrasion of the coastal zone of the reservoir and directly
on coastal structures.

Copyright 2019 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

In: S. Hölldobler, A. Malikov (eds.): Proceedings of the YSIP-3 Workshop, Stavropol and Arkhyz, Russian Federation,
17-09-2019–20-09-2019, published at http://ceur-ws.org

1



To simulate the hydrodynamic processes, the problem of practical application of computationally effective
methods is actualized, which makes it possible to obtain a fairly accurate approximate numerical solution [Ale13].
There is a need of constructing a set of interrelated models of three-dimensional wave processes intended for
modeling wave processes.

2 Statement of the Problem of Wave Hydrodynamics

The initial equations of hydrodynamics of shallow water bodies are [Suk05, Gus02, Suk05’]:
- the equation of motion (Navier-Stokes):
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- the equation of continuity in the case of variable density:

ρ
′

t + (ρu)
′

x + (ρv)
′

y + (ρw)
′

z = 0, (2)

Where V = {u, v, w} are the components of the velocity vector, p is the pressure, ρ is the density, µ, ν are
the horizontal and vertical components of the coefficient of turbulent exchange, g is the acceleration of gravity.

The system of equations (1)-(2) is considered under the following boundary conditions:
- at the entrance

u(x, y, z, t) = u(t), v(x, y, z, t) = v(t),
p′n(x, y, z, t) = 0, V ′n(x, y, z, t) = 0,

(3)

- the lateral border (shore and bottom)

ρµ(u′)n(x, y, z, t) = −τx(t), ρµ(v′)n(x, y, z, t) =
= −τy(t), Vn(x, y, z, t) = 0, p′n(x, y, z, t) = 0,

- the upper limit
ρµ(u′)n(x, y, z, t) = −τx(t),
ρµ(v′)n(x, y, z, t) = −τy(t),
w(x, y, t) = −ω − p′t/ρg, p′n(x, y, t) = 0

where ω is the evaporation rate of the liquid, τx, τy are the components of the tangential stress [Gus04, Ale13].
The components of the tangential stress for the free surface: τx = ρaCp (|~w|)wx |~w|, τy = ρaCp (|~w|)wy |~w|,
where ~w is the vector of the wind speed relative to the water, ρa is the density of the atmosphere, Cp (x) is the
dimensionless coefficient.

Figure 1: The geometry of the computational domain

Fig. 1 shows the geometry of the computational domain.The components of the tangential stress for the
bottom, taking into account the notation, can be written as follows: τx = ρvCp (|V |)u |V |, τy = ρvCp (|V |) v |V |
where ρv is the density of bottom sediments.

The approximation considered below makes it possible to build on the basis of the measured velocity pulsations
the coefficient of vertical turbulent exchange, inhomogeneous in depth [Ale13]:
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where U, V are the time-averaged pulsations of the horizontal velocity components, ∆ is the characteristic scale
of the grid, and Cs is the dimensionless empirical constant whose value is usually determined on the basis of
calculating the decay process of homogeneous isotropic turbulence.

3 The discrete model of hydrodynamics of shallow water reservoirs

The computational domain inscribed in a parallelepiped. For the numerical realization of the discrete mathe-
matical model of the hydrodynamic problem posed, a uniform grid is introduced:

w̄h = {tn = nτ, xi = ihx, yj = jhy, zk = khz; n = 0..Nt, i = 0..Nx, j = 0..Ny, k = 0..Nz;

Ntτ = T, Nxhx = lx, Nyhy = ly, Nzhz = lz} ,

where τ is the time step, hx, hy hz are steps in space, Nt is the number of time layers, T is the upper bound on
the time coordinate, Nx, Ny Nz is the number of nodes by spatial coordinates, lx, ly lz are boundaries along the
parallelepiped in the direction of the axes Ox, Oy and Oz accordingly.
To solve the hydrodynamic problem, we used the method of correction to pressure. The variant of this method
in the case of a variable density will take the form [Suk11, Bel75]:
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τ

= −1

ρ̂
p̂′x,

v̂ − ṽ
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where V = {u, v, w} are the components of the velocity vector, {û, v̂, ŵ},{ũ, ṽ, w̃} are the components of the
velocity vector fields on the new and intermediate time layers, respectively, ū = (ũ+ u) /2, ρ̂ and ρ is the
distribution of the density of the aqueous medium on the new and previous time layers, respectively.
In the construction of discrete mathematical models of hydrodynamics, the fullness of the control cells was taken
into account, which makes it possible to increase the real accuracy of the solution in the case of a complex
geometry of the investigated region by improving the approximation of the boundary.
Through oi, j,kmarked fullness of the cell (i, j, k) [Suk14]. The degree of fullness of the cell is determined by the
pressure of the liquid column inside this cell. If the average pressure at the nodes that belong to the vertices of
the cell in question is greater than the pressure of the liquid column inside the cell, then the cell is considered
to be full (oi, j,k = 1). In the general case, the fullness of the cells can be calculated by the following formula
[Suk11]:

oi,j,k =
pi,j,k + pi−1,j,k + pi,j−1,k + pi−1,j−1,k

4ρghz
, (6)

where p is the pressure.
We introduce the coefficients q0, q1, q2, q3, q4, q5, q6, describing the fullness of regions located in the vicinity

of the cell (control areas). The value characterizes the fullness of the region
D0: {x ∈ (xi−1, xi+1), y ∈ (yj−1, yj+1), z ∈ (zk−1, zk+1)}, q1 – D1: {x ∈ (xi, xi+1), y ∈ (yj−1, yj+1),
z ∈ (zk−1, zk+1)}, q2 – D2: {x ∈ (xi−1, xi), y ∈ (yj−1, yj+1), z ∈ (zk−1, zk+1)}, q3 – D3: {x ∈ (xi−1, xi+1),
y ∈ (yj , yj+1), z ∈ (zk−1, zk+1)}, q4 – D4: {x ∈ (xi−1, xi+1), y ∈ (yj−1, yj), z ∈ (zk−1, zk+1)}, q5 – D5: {x ∈
(xi−1, xi+1), y ∈ (yj−1, yj+1), z ∈ (zk, zk+1)}, q6 – D6: {x ∈ (xi−1, xi+1), y ∈ (yj−1, yj+1), z ∈ (zk−1, zk)}.
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The filled parts of the regions Dm will be called Ωm, where m = 0..6. In accordance with this, the coefficients
qm can be calculated from the formulas:

(qm)i, j,k =
SΩm

SDm

, (q0)i, j,k =
1

2

(
(q1)i, j,k + (q2)i, j,k

)
,
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oi+1, j,k + oi+1, j+1,k + oi+1, j,k+1 + oi+1, j+1,k+1

4
,

(q2)i, j,k =
oi, j,k + oi, j+1,k + oi, j,k+1 + oi, j+1,k+1

4
,

(q3)i, j,k =
oi+1, j+1,k + oi, j+1,k + oi+1, j+1,k+1 + oi, j+1,k+1

4
,

(q4)i, j,k =
oi, j,k + oi+1, j,k + oi, j,k+1 + oi+1, j,k+1

4
,

(q5)i, j,k =
oi, j,k+1 + oi+1, j,k+1 + oi+1, j+1,k+1 + oi, j+1,k+1

4
,

(q6)i, j,k =
oi, j,k + oi+1, j,k + oi+1, j+1,k + oi, j+1,k

4
.

In the case of boundary conditions of the third kind c′n(x, t) = αnc+βn, the discrete analogues of the convective

uc′x and diffusion (µc′x)
′

x transfer operators, obtained with the help of the integro-interpolation method, taking
into account the partial ”fullness” of the cells, can be written in the following form:

uc′x ' (q1)i ui+1/2
ci+1 − ci

2hx
+ (q2)i ui−1/2

ci − ci−1

2hx
,

(µc′x)
′

x ' (q1)i µi+1/2
ci+1 − ci

h2
x

− (q2)i µi−1/2
ci − ci−1

h2
x

− |(q1)i − (q2)i|µi
αxci + βx

hx
.

Similarly, approximations for the remaining coordinate directions will be recorded. The error in approximating

the mathematical model is equal to O
(
τ + ‖h‖2

)
, where ‖h‖ =

√
h2
x + h2

y + h2
z. The conservation of the flow

at the discrete level of the developed hydrodynamic model is proved, as well as the absence of non-conservative
dissipative terms obtained as a result of discretization of the system of equations. A sufficient condition for the
stability and monotony of the developed model is determined on the basis of the maximum principle [Suk11],
with constraints on the step with respect to the spatial coordinates:

hx < |2µ/u| , hy < |2µ/v| , hz < |2ν/w| or Re ≤ 2N,

where Re = |V | · l/µ are Reynolds numbers, l is the characteristic size of the region N = max {Nx, Ny, Nz}.
Discrete analogs of the system of equations (5) are solved by an adaptive modified alternating-triangular

method of variational type.

4 Method for solving grid equations

The resulting grid equations can be written in the matrix form [Suk12]:

Ax = f, (7)

where A – a linear, positive definite operator (A > 0). To find the solution of problem (7) we will use an implicit
iterative process

B
xm+1 − xm

τm+1
+Axm = f. (8)

In equation (8), m is the iteration number, τ > 0 is an iteration parameter, and B is an invertible operator,
called the preconditioner or stabilizer. The inversion of the operator B in (8) must be substantially simpler
than the direct inversion of the original operator A in (7). In constructing B, we proceed from the additive
representation of the operator A0 is the symmetric part of the operator A:

A0 = R1 +R2, R1 = R∗2, (9)
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where A = A0 +A1, A0 = A∗0, A1 = −A∗1.

The preconditioner operator will be written in the following form:

B = (D + ωR1)D−1(D + ωR2), D = D∗ > 0, ω > 0, (10)

where D ia an operator.

Relations (9)-(10) define modified alternate-triangular method (MATM) for the solution of the problem if
operators R1, R2 are defined and methods for determining parameters τm+1, ω and the operator D are indicated.

The algorithm of the adaptive modified alternating-triangular method of minimum corrections for calculating
the grid equations with a nonselfadjoint operator has the form:

B(ωm)wm = rm, rm = Axm − f, ω̃m =

√
(Dwm, wm)

(D−1R2wm, R2wm)
, (11)

s2
m = 1− (A0w

m, wm)
2

(B−1A0wm, A0wm) (Bwm, wm)
, km =

(
B−1A1w

m, A1w
m
)

(B−1A0wm, A0wm)
,

θm =
1−

√
s2mkm

(1+km)

1 + km (1− s2
m)
, τm+1 = θm

(A0w
m, wm)

(B−1A0wm, A0wm)
,

xm+1 = xm − τm+1w
m, ωm+1 = ω̃m,

where rm is the discrepancy vector, wm is the correction vector, the diagonal part of the operator D is used as
the operator.

5 The parallel version of the algorithm for solving grid equations

Consider the parallel algorithm for calculating the correction vector [Suk12]:

(D + ωmR1)D−1(D + ωmR2)wm = rm,

where R1 is the lower-triangular matrix, and R2 is the upper-triangular matrix. To this end, we solve successively
the systems:

(D + ωmR1)ym = rm, (D + ωmR2)wm = Dym.

Figure 2: The scheme for calculating the vector ym

First, the vector ym is calculated, and the calculation starts in the lower left corner. Then the calculation of
the correction vector wm begins from the upper right corner. Fig. 2 shows the calculation of the vector ym.

The results of calculating the acceleration and efficiency, depending on the number of processors for the
parallel variant of the adaptive alternating-triangular method, are given in the table 1.

The table 1 shows that the algorithm of the alternating-triangular iterative method and its parallel realization
on the basis of decomposition in two spatial directions can be effectively applied to solve hydrodynamic problems
for a sufficiently large number of calculators (p ≤ 128).
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Table 1: The dependence of acceleration and efficiency on the number of processors.
Number of pro-
cessors

Time, sec. Acceleration Efficiency

1 7,490639 1 1
2 4,151767 1,804 0,902
4 2,549591 2,938 0,734
8 1,450203 5,165 0,646
16 0,882420 8,489 0,531
32 0,458085 16,351 0,511
64 0,265781 28,192 0,44
128 0,171535 43,668 0,341

6 Results of numerical experiments

The constructed complex of programs allows you to set the shape and intensity of the source of oscillations, as
well as the geometry of the surface object. Fig. 3 (a) shows the results of numerical experiments on modeling the
propagation of wave hydrodynamic processes in the flow of an aquatic environment around a surface body, taking
into account the geometries of the bottom of an object located in a liquid and the bottom of a reservoir. As an
example of the practical use of a problem-oriented program complex, the problem of calculating the hydrodynamic
effect of support waves on structures is solved. Surface dimensions: 5 m wide, 10 m long, immersion depth 20
cm. The structure is installed at the bottom of the reservoir with the help of 6 supports. The selected section
of the simulation has dimensions of 50x50 m and a depth of 1 m. The source of disturbances is set at some
distance from the surface object. The boundaries of the computational domain are located so that the wave
reflected from them does not change the parameters of the hydrodynamic force action on the surface structures.
At the initial moment of time, the liquid is at rest. It is required to determine the subsequent movement of the
aquatic environment when there is a surface object on the surface and hydrodynamic force loads on the structure
supports. To solve this problem, a grid of 100x100 sizes was used, the time step is 0.01 seconds.

Figure 3: The level function of water flow around the surface of the body having a support

Figure 4: Power loads on supports of the surface structure: 1 - on the front pair from the side of the incident
wave, 2 - on the central pair, 3 - on the far pair of supports

Fig. 3 shows that during the propagation of a plane wave, which encounters an obstacle in the form of a
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surface body, there is a reflection of wave oscillations from a stationary object, which in turn leads to a change
in the wave profile. The source of oscillations is distributed along the left border and has a sinusoidal shape.
The results of numerical experiments on modeling the propagation of hydrodynamic wave processes and provide
an opportunity to assess the impact of waves on structures that have a support at the bottom of the reservoir.
Fig. 4 shows the force hydrodynamic effect on the supports of the surface structure installed at the bottom of
the reservoir. The ordinate axis shows the power loads in tons, the abscissa axis indicates the time counted from
the onset of oscillations in seconds.

On the basis of full-scale data, a three-dimensional model of wave hydrodynamic processes has been developed
that describes the motion of an aquatic environment taking into account the wave’s output to the shore. A modern
software package adapted for simulation of hydrodynamic wave processes is developed, the field of application
of which is the construction of the velocity and pressure field of the aquatic environment, and the evaluation
of the hydrodynamic impact on the shore in the presence of surface waves. Based on the developed complex of
programs, numerical simulation of hydrodynamic wave processes in the coastal zone of a shallow water body was
carried out.

The practical significance of numerical algorithms and the complex of programs that realize them consists
in the possibility of their application in the study of hydrophysical processes in coastal water systems, as well
as in the construction of the velocity and pressure field of the aquatic environment, and the evaluation of the
hydrodynamic impact on the shore in the presence of surface waves. The constructed program complex allows
you to specify the shape and intensity of the oscillation source, as well as the geometry of the bottom of the
reservoir. Fig. 6 shows the results of numerical experiments on the simulation of the propagation of wave
hydrodynamic processes when the wave leaves the shore, taking into account the geometries of the bottom of
the object located in the liquid and bottom of the reservoir.

Figure 5: The field of the velocity vector of the aquatic environment (XOZ plane cut)

Figure 6: Level and bottom elevation function

As an example of the practical use of a problem-oriented program complex, the problem of calculating the
velocity and pressure fields is solved. The selected modeling site measures 50x50 m and a depth of 2 m, the peak
point rises above sea level by 2 m. The disturbance source is given at some distance from the shore line. At the
initial time, the liquid is at rest. To solve this problem, a grid of 100x100x40 dimensions was used, the time step
is 0.01 seconds.
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Fig. 6 shows the field of the vector of the velocity of the aquatic environment when the wave rolls to the shore,
while the function of elevating the level dynamically changes, zones of flooding and shallowing are formed. Fig.
7 shows that the land area was flooded with an incident wave. Accounting for flooding and dehumidification
of coastal areas was carried out by recalculating the occupancy of the calculated cells. The proposed approach
makes it possible to solve problems in domains with a complex and dynamically rearranged geometry of the
boundary.

It should be noted that the developed software package has a distinctive feature, when modeling the propa-
gation of surface waves, the wave output to the shore is taken into account.

Fig. 7 shows the results of modeling wave propagation towards the shore obtained from two different models
with the same input parameters. The calculations are based on a two-dimensional model constructed on the
basis of a system of shallow water equations (a) and a mathematical model involving three equations of motion
(b). The calculated interval in both cases was 5 sec.

Figure 7: Level and bottom elevation function

Figure 8: Level and bottom elevation function

Fig. 8 shows the functions of level elevation obtained on the basis of a two-dimensional system of shallow
water equations and a mathematical model that includes three equations of motion for a section with the plane
y=25. The figure shows that the results vary considerably. The wave profiles calculated on the basis of a
two-dimensional model of shallow water overtake the wave profiles obtained on the basis of a three-dimensional
model. The maximum distance between the two profiles was 32.9 cm.

7 Conclusion

The work is devoted to the development of a model of three-dimensional wave processes, designed to simulate
wave processes taking into account wave propagation towards the shore. A full-scale experiment was conducted
to measure various parameters of wave propagation in shallow water. On the basis of experimental data, the
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values of the spectrum of the function of elevating the water level are obtained. The description of the developed
program complex is given. The complex of programs constructed allows one to specify the shape and intensity
of the source of oscillations, and also takes into account the flooding and drainage of coastal areas. On the basis
of the developed software package, further studies of the calculation of the wave force effects on surface objects
and objects of coastal infrastructure and bottom surface geometry are possible.
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