
WEB Platform for Modeling Network Activity Based on

Docker Container Virtualization Technology

Bukhanov D.G.
db.old.stray@gmail.com

Polyakov V.M.
p−v−m@mail.ru

Kalgov I.V.
calgovilya@gmail.com

Redkina M.A
ritushhaa@gmail.com

Belgorod State Technological University named after V.G. Shukhov

Abstract

The paper proposes an approach to creating a system for modeling
network activity. To demonstrate the proposed approach, a web-based
modeling platform for network activity was developed based on the
container virtualization technology. Docker containers were used as
virtual machines. Demonstration and testing of the developed system
was carried out. The results of the temporal characteristics of modeling
the behavior of network activity in the following scenarios: ping, syn-
flood and WinFreeze.

1 Introduction

The development of information systems has led to an increase in cybercrime [Sha, Cyb]. To ensure safety,
there are a set of legal, economic and technical measures. Technical measures includes following: a system
broadcast address and port, intrusion detection systems (IDS) [JNSA16], tunneling traffic systems, firewalls
(FW). The tendency to an increase in information security breaches suggests that attackers are one step ahead
of the developers of computer security enhancement systems (CS) [Ora, Unp].

One of the aspects of improving security is penetration testing and security threat modeling [dJ16, OS11].
They are designed to identify new and most dangerous threats in terms of protection systems. According to
[Cis], the number of network attacks using distributed bot services increased last year. The modeling of such
security threats is dealt with in [SBL+17]. These systems are based on KVM technology, which is a Linux
kernel loadable module designed to provide virtualization on the Linux platform. In [PR14, ASH17], Netkit
is used to emulate network activity. In [BNNK17], open source software CORE is used to simulate network
interaction. The disadvantages of these systems are: lack of cross-platform support; problems with adding
support for new hardware and software environments; the complexity of setting up a virtualization system; a
resource consumption of virtual machines.

Simulation of network interactions allows to test security tools, such as firewall and IDS, and also allows you
to demonstrate the peculiarity of a particular network attack.

To simulate network activity, physical or virtual data networks can be used. The advantage of the first is a
complete approximation to real conditions, in turn, the disadvantage is the high resource intensity. The second

Copyright 2019 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

In: S. Hölldobler, A. Malikov (eds.): Proceedings of the YSIP-3 Workshop, Stavropol and Arkhyz, Russian Federation,
17-09-2019–20-09-2019, published at http://ceur-ws.org

1



approach require, significantly less resources and use for this purpose virtualization and emulation at the host
level.

Table 1 provides a brief overview of the main existing systems for modeling the behavior of network activity.

Table 1: A brief overview of the mainstream virtualization systems

Title Supported OS Emulated OS Limitations License

VMWare

Windows,
Linux,
macOS

Windows,
Linux,
macOS

Price, small number
of supported guest
operating systems Commercial

QEMU

Windows,
Linux,
macOS

Windows,
Linux,
macOS

Slowness due to
lack of hardware

acceleration Open source

Kathara

Windows,
Linux,
macOS

Windows,
Linux

Lack of user-friendly
interface to configure gateways Open source

Xen
Linux,
BSD

Windows,
Linux

High cost of
deployment guest systems

due high consumption of RAM Open source

One of the approaches to virtualization is the use of virtual containers, each of which runs the corresponding
operating system. This approach to virtualization uses the Docker development platform. It shields the user
from complex virtualization mechanisms, and provides a convenient interface for using.

2 Development of a common structure for a system for modeling network activity
of the CS

As a development platform, it is proposed to use web technologies. The advantage of this approach is the
possibility of cross-platform use of the system and the provision of an open service without installing specialized
software. Figure 1 shows the general scheme of interaction between the elements of the system emulating the
behavior of a CS.

Figure 1: The general scheme of the system of modeling network activity of the CS

2



Connection to the developed system occurs via the http protocol through port 8001. Nginx is used as a web
server. Django was used as a framework for developing server-side applications. Upon successful authorization
and transition to the simulation page, the application server creates a new virtualization project and saves it to
the database (DB). Adding a new node to the workspace binds it to the current project and puts the selected
parameters for it in the database. The following components are available for building a network topology:
computers, switches and routers, and communication lines. All components are emulated on Ubuntu 18.04 LTS
with the creation of appropriate network interfaces. After building the computer network topology, the server
software sends the Docker creation commands for configuring the containers with the parameters specified for
them. Each Docker-container contains all possible networking scenarios.

After the configured computer network is started, one of the predefined network interaction scripts is selected
and executed on the already running Docker containers that are already running. Figure 2 shows a diagram of
how to run networking scenarios through a web interface.

Figure 2: The scheme of running network interactions scenarios

The user in the web interface select the script to run, enter the required parameters and send an http request to
the Django-server. The request contains: script name, source address (IP of the container from which script will
be run), destination IP and additional parameters. The server retrieves the script startup parameters, configure
the docker exec command according to the received parameters, and then execute. Executing the command will
run a network communication script on one of the containers.

Here is an example of running the script ping. Select the script ”ping in the web interface, enter 192.168.0.2
in the ”source Address” and 192.168.0.3 in the ”destination Address”. Additionally, you can fill in the ”number
of packages” and ”package Size” fields, initially they contain the values 3 and 64 respectively. After filling in
the required fields, click ”Run”. Clicking this button generates an http packet containing the specified script
launch parameters and send it to the Django server. The server receives the packet, extracts the parameters
run a script that generates the command ”docker exec container02 python3 ping.py -c 3-s 64 192.168.0.3 &”
and execute it. Executing the command activate the ”ping” script on the container that corresponds to the IP
address 192.168.0.2. The container sends 3 ICMP at 64K on the container with an IP address of 192.168.0.3,
then the script exits.

During the execution of scripts, Docker-containers send a request about their state, containing the following
fields: IP address of the sender, IP address of the recipient, error status, structure state of the node, containing
information about the state of the node on the server. Tornado server and WebSockets are used as a receiver of
this data. Tornado returns a response structure, whose fields match the request, to the network activity modeling
page to visualize the process. Tornado saves intermediate results to the database. Results contains the following
fields: source address, destination address, error status, and site status structure. In the error status field, 0 is
written if the packet was successfully delivered, otherwise, the error code, the node state structure is abstract,
because of the script that was selected will depend on which fields it will contain. Figure 2 shows the system
state diagram.

3



Figure 3: State diagram of the system modeling the behavior of network activity

The initial state is the open project state. From it you can go to the following states: add node, add link, start
emulation, save project, close project. From the add node state, a transition to the add link state is possible, a
reverse transition is also available. From these two states there is a transition to the states start emulation, close
project, save project. From the start emulation state you can return to the initial open project state in order to
reconfigure the network topology and restart the project. Also from this state there are transitions to the ping,
SYN-flood and WinFreeze states. These states assume the execution of the corresponding python scripts. After
executing the corresponding script, the system returns to the start emulation state, or goes to the save project or
close project state. From the save project state, it is possible to switch to the start emulation and close project
states. The close project status means the shutdown of the network activity modeling system.

For testing the developed system, three types of scripts are implemented: ping, SYN-flood and WinFreeze.
The ping script is designed to verify the integrity of the connection between two nodes. To perform it, the user
enters the following parameters: the source address, the destination address, the number of packets, the size of
each packet. The script collects ICMP packets with the parameters specified by the user, calculates a checksum,
encapsulates them into IP packets, sends them and waits for an echo reply or timeout. Returned responses are
sent to the Tornado server and contain the fields for the destination address, the source address, error status,
packet size, sequence ID, TTL, response time. In the event of a timeout, only the direction, destination and
error status are sent to the server.

The SYN flood script implements a denial of service attack. The user must specify the IP address of the
machine from which the attack will be conducted, the IP address and port of the victim. The attacker’s
computer overflows the connection queue on the victim’s computer, sending SYN requests. SYN + ACK packets
received from the victim are ignored, keeping its ports in a half-open state. The script keeps the queue full so
that the connection to the ports of the victim is difficult or impossible [BSR13]. When receiving a SYN + ACK
packet, the script sends a packet to the Tornado server containing the attacker’s IP, the victim’s IP and port
number.

The WinFreeze script causes the victim’s computer to attack itself. The user specifies the attacker’s IP and
attack target IP. The attack is performed inside the victim’s network. The attacker sends ICMP redirect messages
on behalf of the router to the target address, informing about the choice of a non-optimal route and the need
to add the best route to the routing table. All victim packets are redirected back at the victim by attacker.
Due to the large number of such messages, the victim will spend most of his resources processing packets and
attempting to modify the routing table. With each packet received, the script sends to the Tornado server a
packet containing the attacker’s IP, the victim’s IP and the number of packets already forwarded. Figure 3 shows
a web interface with an example of network topology.

4



Figure 4: Web-interface with an example of network topology

The figure shows a topology with two subnets with the following addresses: 192.168.0.0/24 and 192.168.1.0/24.
Green lines indicate routes that ping between nodes 192.168.0.4 and 192.168.1.4. Under the working area there
are buttons for adding switches, routers, computers and communication lines, a button for starting the emulation,
as well as buttons for emulating network activity: ping, syn-flood and WinFreeze.

3 Experimental results of the time characteristics of the developed system for
modeling the behavior of network activity

Figure 4 shows the graphs of the delay between the experiment performed and the visualization time.

Figure 5: Time to visualize the results of experiments

The time of visualization of the experiment coincides with the time of its holding. The graph shows that
the time between the experiment and the transfer of results to the user almost coincides. Due to the lack
of desynchronization of time intervals on the main OS and containers, it allows the user to connect to the
corresponding container to conduct a more detailed analysis of the script.

Figure 5 shows the graphs of time when a packet is transmitted in a real physical network and within the
developed modeling system. During testing packet size of 62535 bytes was used.

5



Figure 6: Temporal characteristics of packet transmission between IP subnets

Experiments show that the use of virtualization significantly reduces the simulation time. This is due to the
following factors: packets are not sent outside the network interface of the host, containers of the same subnet
are connected to a common virtual interface such as a bridge. As the number of devices grows, and consequently
the number of containers deployed by Docker, the simulation time starts to slow down. The limit value of the
maximum number of running containers is determined by the resources of the server running the network activity
modeling system.

The results of the work in comparison with the Kathara system are show in table 2.

Table 2: A brief overview of the mainstream virtualization systems

Number of Subnets Kathara (ms) WEB platform (ms)
1 1.394 0.976
2 1.957 1.253
5 3.009 2.669
10 5.582 4.989
25 12.198 10.391
50 22.446 18.74

As a comparison tool was used the standard utility ”ping” with the help of which packets of 62535 bytes were
transmitted between different number of subnets.

4 Conclusion

The paper proposed an approach to creating a system for modeling network activity. A web platform for modeling
network activity was developed based the Docker containers. A study of the developed system for compliance
with the requirements. The study showed the possibility of using the Docker platform for the implementation
of a network activity modeling system. All network attacks carried out in the created virtual network work
equivalently to real network. The time delay between the experiment being conducted and the virtualization
time does not exceed one second. The proposed approach and the developed web-platform can be used in testing
and developing mechanisms for countering network threats. A feature of the developed system is the ability to
package in a single Docker image for rapid deployment.

References

[ASH17] Yuri Ariyanto, Yan Watequlis Syaifudin, and Budi Harijanto. Performance analysis of network em-
ulator based on the use of resources in virtual laboratory. In 2017 4th International Conference on
Electrical Engineering, Computer Science and Informatics (EECSI). IEEE, September 2017.

[BNNK17] Cristian Hernandez Benet, Robayet Nasim, Kyoomars Alizadeh Noghani, and Andreas Kassler. Open-
StackEmu — a cloud testbed combining network emulation with OpenStack and SDN. In 2017 14th
IEEE Annual Consumer Communications & Networking Conference (CCNC). IEEE, January 2017.

6



[BSR13] Mitko Bogdanoski, Tomislav Shuminoski, and Aleksandar Risteski. Analysis of the SYN flood DoS
attack. International Journal of Computer Network and Information Security, 5(8):15–11, June 2013.

[Cis] Cisco 2018 annual cybersecurity report.

[Cyb] Cybersecurity threatscape 2018: trends and forecasts.

[dJ16] Rina Elizabeth Lopez de Jimenez. Pentesting on web applications using ethical - hacking. In 2016
IEEE 36th Central American and Panama Convention (CONCAPAN XXXVI). IEEE, November
2016.

[JNSA16] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. A deep learning approach for
network intrusion detection system. In Proceedings of the 9th EAI International Conference on Bio-
inspired Information and Communications Technologies (formerly BIONETICS). ACM, 2016.

[Ora] Oracle weblogic deserialization rce vulnerability (0day).

[OS11] Xinming Ou and Anoop Singhal. Security risk analysis of enterprise networks using attack graphs.
In Quantitative Security Risk Assessment of Enterprise Networks, pages 13–23. Springer New York,
October 2011.

[PR14] Maurizio Pizzonia and Massimo Rimondini. Netkit: network emulation for education. Software:
Practice and Experience, 46(2):133–165, May 2014.

[SBL+17] Nils Schmidt, Lars Baumgartner, Patrick Lampe, Kurt Geihs, and Bernd Freisleben. MiniWorld:
Resource-aware distributed network emulation via full virtualization. In 2017 IEEE Symposium on
Computers and Communications (ISCC). IEEE, July 2017.

[Sha] Internet issues & availability report 20182019.

[Unp] Unpatched zero-day vulnerability in social warfare plugin exploited in the wild.

7


