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Abstract. Emerging Industrial Internet of Things (IIoT) applications are pushing 

the academic and industrial research towards novel solutions for, on the one hand, 

frameworks to facilitate the rapid and cost-effective exploitation of general-pur-

pose machine learning mechanisms and tools, and, on the other hand, hw/sw in-

frastructures capable of guaranteeing the desired and challenging quality of ser-

vice indicators in industrial scenarios, e.g., latency and reliability. We claim that 

these directions can be effectively and efficiently addressed through the adoption 

of innovative quality-aware edge cloud computing platforms for the design, im-

plementation, and runtime support of distributed AI solutions that execute on 

both global cloud resources and edge nodes in industrial plant premises. In par-

ticular, the paper presents the first experiences that we are doing within the frame-

work of the H2020 Innovation Action IoTwins, for the implementation and opti-

mization of distributed hybrid twins in the IIoT application domains of predictive 

maintenance and manufacturing optimization. IoTwins exploits distributed hy-

brid twins, partly executing at edge cloud nodes in industrial plant localities, to 

perform process/fault predictions and manufacturing line reconfigurations under 

time constraints, also by enabling some forms of sovereignty on industrial mon-

itoring data. In addition, the paper overviews our original taxonomy of the state-

of-the-art research literature about distributed AI for decentralized learning, with 

specific focus on federated settings and on emerging trends for the IIoT domain. 

Keywords: Industrial Internet of Things, Edge Cloud Computing, Distributed 

Digital Twins, Decentralized Learning, IoTwins. 

1 Introduction 

One of the major challenges of the Industrial Internet of Things (IIoT) is to take ad-

vantage of the IoT technology in industrial decisions. IoT today generates a myriad of 

data by the billions of connected devices, including sensors and actuators, that are usu-

ally aggregated and stored on cloud platforms [1, 2]. Mainly for manufacturing indus-

tries, the interaction and the management of IoT devices become enablers for new 
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service opportunities including predictive maintenance, continuous monitoring of the 

parts that are more subjected to degradation and ageing, scheduling and remote running 

of maintenance interventions, and simulation of operations to predict product quality 

and to evaluate process optimizations through digital twin implementation. However, 

it is recognized that the IIoT exhibits several characteristics that are peculiar and sig-

nificantly different from the general-purpose IoT that we deal with in smart cities or 

smart buildings, e.g., in terms of communication bandwidth needed for machine-to-

machine big data transmission in real-time. Other IIoT-specific and quality-related 

challenges refer to latency improvements and robust connectivity, together with limited 

costs on large scale deployment scenarios; the overall goal is that real-time decisions 

are enabled, under the quality constraints of the specific application domain and de-

ployment environment, and result to efficiency, safety, and stability of large scale IIoT.  

In more traditional IIoT solutions, an integrated infrastructure is deployed to collect 

information from heterogeneous sensors, to transmit it to the cloud, and to update the 

related parameters in the form of a closed-loop system [3]. The growth of edge/fog 

computing (we will use the term edge computing below to indicate generically both 

kinds of distributed cloud) is enabling the potential to move computing functionality 

from centralized and globally available datacenters to the edge of the network [4]. Gen-

erally speaking, edge computing (either statically or dynamically) migrates core capa-

bilities such as networking, computing, storage, and applications closer to devices and 

in particular to IIoT endpoints. There are already interesting examples in the related 

literature about intelligent services close to manufacturing units, e.g., to meet key re-

quirements such as agile connection, data analytics via edge nodes, highly responsive 

cloud services, and personalized enforcement of privacy policy strategies [5].  

We claim that these directions can be effectively and efficiently addressed via the 

adoption of innovative quality-aware edge cloud computing platforms for the design, 

implementation, and runtime support of distributed AI solutions that execute on both 

global cloud resources and edge nodes in industrial plant premises. In particular, the 

paper presents the first research activities and the first development experiences that 

we are doing, within the framework of the H2020 Innovation Action IoTwins [6]. 

Within this large project, better and more extensively described in Section 2, we have 

the ambition to design, implement, evaluate, and optimize distributed hybrid twins with 

specific features that are suitable for the IIoT application domains of predictive mainte-

nance and manufacturing optimization. In particular, our distributed hybrid twins are 

designed to partly execute at edge cloud nodes in industrial plant localities, to perform 

process/fault predictions and manufacturing line reconfigurations under strict time con-

straints and under the respect of reliability guarantees, also by enabling some forms of 

sovereignty on industrial monitoring data.  

In addition to presenting the general guidelines of solution and the primary technical 

challenges that we are investigating within the framework of the IoTwins project, this 

paper aims at providing a significant contribution to the community of researchers in 

the field by offering an original taxonomy of the state-of-the-art research literature 

about distributed AI for decentralized learning, with the specific focus on federated 

settings and on emerging trends for the IIoT domain. In fact, this application domain is 

strongly stimulating research on the possibility to exploit machine learning techniques 
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to feed hybrid twin models and whose learning/refinement processes are distributed and 

uncoordinated as much as possible, in order to improve scalability and locality-aware 

specific optimizations. This is pushing for innovative models and original efficient plat-

forms for decentralized learning where i) initial learning can be done centrally at the 

global cloud, once and in a uniform way for all involved industrial plants and facilities; 

ii) learned models are moved at the target edge nodes for running efficiently at the 

desired locality (e.g., for quality control purposes); iii) learned models can be refined 

at edge nodes in a differentiated way depending on the functioning history at each lo-

cality; and iv) local refinements of learned models may feed the next generation of 

cloud-based uniform learned models through proper collection and harmonization of 

the contribution from the distributed and federated network of edge nodes.  

The remainder of this paper is organized as follows. Section 2 rapidly overviews the 

primary objectives and solution directions adopted in the IoTwins project, while Sec-

tion 3 sketches the main features of our distributed hybrid twins. An original taxonomy 

of the first decentralized learning solutions based on edge computing that have been 

recently appeared in the related literature is presented in Section 4. Primary directions 

of most open technical challenges and most promising research activities in the field of 

decentralized learning, together with some brief concluding remarks, end the paper. 

2 The IoTwins Project 

The original results presented in the following parts of this paper have been achieved 

within the context of the just started H2020 IoTwins Innovation Action project, scien-

tifically coordinated by our research group. IoTwins is a large (3 years, 20.1M€ budget) 

industry-driven project that puts together 23 partners from 8 countries; it has the ambi-

tion to lower the barriers, in particular for SMEs, to building edge-enabled and cloud-

assisted intelligent systems and services based on big data for the domains of manufac-

turing and facility management. To this purpose, IoTwins is working to design a refer-

ence architecture for distributed and edge-enabled twins and is experimenting its im-

plementation, deployment, integration, and in-the-field evaluation in several industrial 

testbeds.  

IoTwins claims that IoT, edge computing, and industrial cloud technologies together 

are the cornerstones for the creation of distributed twin infrastructures that, after test-

bed experimentation, refinement, and maturity improvements, can be easily adopted by 

SMEs: i) industrial cloud, also based on HPC resources, enables the creation of accurate 

predictive models based on advanced ML for end-to-end deep networks, which require 

huge computing power for training; ii) elastic cloud resource availability creates the 

opportunity to boost model accuracy by fitting and complementing data produced by 

industrial IoT sensors with data produced by large-scale parallel simulation; iii) edge 

computing makes it possible to close the loop between accurate models and optimal 

decisions by enabling very responsive on-line local management of operational param-

eters in the targeted plants and filtered/fused reporting to the cloud side of only signif-

icant monitoring data (e.g., anomalies and deviations); and iv) edge computing can lev-

erage and accelerate the adoption of digital twin techniques by exploiting its industry-
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perceived advantages in terms of increased reliability/autonomy (e.g., independently of 

continuous connectivity to the global remote cloud) and of improved locality preserva-

tion of critical production data that can be maintained and used directly at the plant 

premises (data sovereignty). 

In particular, the IoTwins distributed hybrid twins are essentially models that accu-

rately represent a system (either infrastructure or process or machine) along with its 

performance, see Figure 1. These models enable the description of the system itself and 

its dynamics (descriptive or interpretative models), the prediction of its evolution (pre-

dictive models), and the optimization of its operation, management and maintenance 

(prescriptive models). They may be hybrid, i.e., by exploiting mixed and heterogeneous 

types of input from in-the-field experimental measurements (online/offline monitoring) 

and from analytical models as well as simulations/emulations. Of course, this is not the 

first case of digital twins in the literature: more traditionally, digital twins are meant as 

virtual representations of real-world objects (typically mobile and/or temporarily dis-

connected devices), e.g., in smart city scenarios [7] or in commercial applications to 

make IoT products remotely monitorable and controllable [8].  

 

 
Figure 1. Conceptual vision of IoTwins distributed hybrid twins. 

 

IoTwins distributed twins are used to detect and diagnose anomalies, to determine 

an optimal set of actions that maximize key performance metrics, to effectively and 

efficiently enforce on-line quality management of production processes under latency 

and reliability constraints, and to provide predictions for strategic planning to help 
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companies, especially SMEs, to significantly improve their profitability through digi-

talization, as well as to open up new opportunities for them for the creation of new 

services and business models. The IoTwins hybrid twins, among the others, enable: i) 

the description of systems; ii) the prediction of systems evolution; iii) the management 

and maintenance of systems. They are going to be used to detect and diagnose anoma-

lies, to determine an optimal set of actions that maximize key performance metrics, to 

effectively and efficiently enforce on-line quality management of production processes 

under latency and reliability constraints, and to provide predictions for strategic plan-

ning to help companies to significantly improve their profitability through digitaliza-

tion, as well as to open up new opportunities for them for the creation of new services 

and business models.  

A crucial focus and primary activity of the project will be to deliver twelve industrial 

testbeds, of significant interest for SMEs, by sharing the same underlying methodology. 

The IoTwins testbeds are grouped into three classes: i) testbeds in the manufacturing 

sector with the goal of optimizing production quality and plant maintenance, ii) testbeds 

for the optimization of facility/infrastructure management, and iii) testbeds for the in-

the-field verification of the replicability, scalability, and standardization of the pro-

posed approach, as well as the generation of new business models. In particular, in the 

manufacturing sector, four industrial pilots are aimed at providing predictive mainte-

nance services that exploit sensors data to forecast the time to failure and produce 

maintenance plans that optimize maintenance costs; this will permit to reduce the risk 

of unplanned downtime of around 25%, that is estimated to affect up from 5% to 20% 

of the overall manufacturing productivity. In the service sector, the three IoTwins 

testbeds concern facility management, by covering online monitoring and operation 

optimization in IT facilities and smart grids, as well as intervention planning and infra-

structure maintenance/renovation on sport facilities on the basis of the data collected 

by sophisticated and heterogeneous monitoring infrastructures. These three pilots are 

aimed at improving the environmental footprint of ICT facilities, by increasing the ef-

ficiency and resiliency of large critical ICT infrastructures, and at maximizing people 

safety via online adaptation of evacuation plans (and mobility flows in general) in sport 

facilities. The five last testbeds have the original goal of showcasing the replicability 

of the proposed IoTwins methodology in different sectors, the scalability of the adopted 

solutions, and their capability to help SMEs to generate new business models. For ex-

ample, some industrial partners are interested to customize and apply the solutions de-

veloped in the first set of testbeds in other more articulated deployment environments 

(larger multi-site production plants in the case of Guala Closures or larger stadium fa-

cilities in the case of Barcelona Football Club). 

3 Edge Cloud for Distributed Hybrid Twins in IoTwins 

IoTwins distributed hybrid twins foster the distribution of trained models and of control 

intelligence at the cloud, at the topological edges of the interested network localities 

(edge twins), and possibly also at the IoT network leaves (IoT twins running directly at 

sensors/actuators/production machinery). The attempt to use the cloud as the only host 
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for the execution of trained models stopped in the stochastic nature of the Internet, in 

the need to transfer massive amounts of data towards the cloud, and in the inability to 

achieve responsiveness in some application fields that demand rapid reaction to events. 

The edge computing paradigm fills that gap, by bringing computing power and storage 

to the surrounds of targeted devices, while keeping the advantages of dynamic deploy-

ment, resource virtualization, and possible elasticity of the cloud. 

The edge of a network operator typically includes several heterogeneous devices that 

can be used to execute services. These include, on the one hand, (resource-constrained) 

home gateways, which are able to host only lightweight services, namely network ap-

plications executed in lightweight execution environments (e.g., Docker containers, or 

even processes executed on the bare metal); on the other hand, (possibly fat) servers, 

up to micro datacenters, located either in a Point of Presence or on Radio Access Net-

work nodes, which can host services with larger resource requirements (CPU, memory). 

From a software perspective, IoTwins aims to design and realize an edge automation 

platform able to tackle different aspects: i) to enable interoperability so to glue together 

different edge platforms proposed/employed by IoTwins partners (TTT Nerve, Sie-

mens, etc.); ii) to support the dynamic migration of trained models (application/control 

logic and data) at IoT and edge nodes and between these nodes (if needed); iii) to dy-

namically refine trained models at edge nodes based on local observations (local opti-

mization vs global optimization at the cloud); iv) to enforce soft real-time quality re-

quirements at edge nodes in terms of latency and reliability by enabling fast locally-

computed interactions and feedbacks; and v) to support distributed orchestration of Vir-

tualized Network Functions (VNFs), by overcoming the limitations of current orches-

trators that are typically centralized and unable to coordinate multiple and highly het-

erogeneous edge nodes, via extensions of standard-compliant orchestrators, e.g., the 

ETSI Management and Orchestration (MANO)-compliant OpenBaton. 

 

 
Figure 2. The workflow for big data management and processing by IoTwins hybrid twins, 

generating a decentralized setting for model learning and refinement. 

 

To remark that IoTwins works on an integrated cloud+edge infrastructure that is 

easily replicable and highly interoperable, we concisely report here the most relevant 

standardization efforts in the domain of edge/fog computing that IoTwins is carefully 
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taking into account. On the one hand, ETSI Multi-access Edge Computing (MEC), 

emerged in 2014, is often seen as the key enabler for offering ultra-low latency and 

high bandwidth in edge solutions. The MEC system exposes a standardized and open 

system that shall be capable of supporting various virtualization techniques as well as 

the capability to provide a mechanism to edge-based services to discover applications 

available on other edge hosts. IoTwins edge twins will be based on different technolo-

gies, such as TTT Nerve and Open Baton, which is an ETSI MANO-compliant Network 

Function Virtualization (NFV) orchestrator; Open Baton is part of the OpenSDNCore 

project driven by Fraunhofer FOKUS and TUB with the objective of providing a com-

pliant implementation of the ETSI NFV MANO specification; recently new extensions 

for the OpenBaton exploitation over industrial gateway edge nodes have been intro-

duced by Fraunhofer, TUB, and UNIBO. Moreover, the OpenFog Consortium, as one 

of its first specifications, released the OpenFog Reference Architecture (RA) that clar-

ifies the characteristics and requirements for fog nodes. The OpenFog RA mentions 

orchestration functionality only superficially so far, and it is expected that new specifi-

cations in this direction will be released soon. IoTwins will take into careful consider-

ation these specifications when available. Finally, the Industrial Internet Consortium 

(IIC) is an international consortium acting as a driver for the development of next gen-

eration technology for industrial applications. It has proposed the interesting Industrial 

Internet RA (IIRA). Fraunhofer FOKUS is a member of the consortium, actively con-

tributing to the discussion, thorough the IIC Task Groups, especially around Smart Fac-

tories and Edge Computing. Within IoTwins, UNIBO and ETXE will provide solutions 

fully compliant with IIRA in the domains of edge deployment, dynamic management, 

functionality migration, and orchestration. 

4 An Original Taxonomy for Decentralized Learning based on 

Edge Nodes 

The unprecedented amount of rich data being generated at the edge of the network — 

and expected to steadily grow [9] — not only by mobile phones and IoT devices, but 

also by IIoT sensors and actuators, represents the perfect ingredient to build accurate 

Machine Learning (ML) and in particular Deep Learning (DL) models for a wide range 

of applications, from improving the usability of personal devices [10–12] to smartifying 

the manufacturing process (e.g., defeat reduction, automated self-regulation of predic-

tion processes, and predictive maintenance). However, the sensitive nature of IoT data 

in general, and particularly of IIoT-generated data through which it is possible to make 

inferences on characteristics of industrial production processes, implies that there are 

privacy concerns and responsibilities when managing, storing, and processing those 

data in centralized locations. Furthermore, the data tsunami produced by edge devices 

risks to overwhelm the network backbone with unnecessary raw data headed to the 

cloud, hence a part of these data should instead be consumed or processed in proximity 

to their sources, as suggested in [9].  

Decentralized Learning has recently gained momentum exactly to meet these needs 

and to become a promising alternative solution to the more traditional cloud-based ML. 
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Decentralized Learning leverages on the primary idea of leaving training data distrib-

uted on the devices that have generated them, by working to enable the learning of joint 

models via local computation and periodic communications. Similarly to the frame-

works designed for distributed settings, i.e., datacenter-oriented deployment environ-

ments such as in [13, 14], most Decentralized Learning approaches leverage data-par-

allel variants of (sequential) iterative optimization algorithms, e.g., Gradient Descent-

based algorithms [15]. The current global model is usually replicated on multiple nodes 

(e.g., edge devices), with each replica independently training on its private dataset, 

which can be considered as a subset of a global training dataset; in these solutions, each 

replica also works to produce updates (e.g., locally computed gradients or updated pa-

rameters) for the global model; the updates are periodically aggregated (e.g., averaged 

in the simplest type of merging of local updates towards a next-generation global 

model) until the model verifies a convergence condition. 

The ephemeral nature1 of these updates — they are meaningful only with respect to 

the current global model — and their typically lower informative content — compared 

to the raw data (data processing inequality) — pave the way for upgrading the data 

owner’s privacy. It is also worth noting that the size of a single update is independent 

of the size of the local training data corpus, thus considerably reducing the necessary 

network bandwidth if compared with the trivial solution of uploading the whole raw 

data to a global datacenter.   

However, the challenge of learning from decentralized data requires to consider a 

different optimization setting with respect to the traditional distributed training per-

formed in datacenters, where the data is evenly distributed among different datacenter 

nodes (often, further assuming that the number of nodes is much less than the ratio 

between the amount of training examples and the number of nodes), and each machine 

is supposed to have a representative sample of the underlying data distribution. Fur-

thermore, Decentralized Learning communication costs dominate even more than in 

datacenter optimizations (e.g., edge devices may have limited connectivity, for example 

for battery and/or cost motivations, if compared with tightly connected distributed sys-

tems such as clusters of machines in datacenters). These considerations have led to the 

development of new algorithms tailored for the so-called Decentralized Learning fed-

erated setting [16], where the assumptions made for the traditional distributed setting 

do not hold. In federated settings, training examples are massively distributed among a 

large number of nodes (in particular, the number of nodes can be much higher than the 

average number of samples stored on a specific node) and unbalanced, i.e., different 

nodes may have very different amounts (orders of magnitude) of training examples. 

Furthermore, the data points on each participant may be non-IID2, i.e., training data 

available locally are not representative samples of the overall distribution.   

Between these two extremes of distributed and federated settings, in IoTwins we 

claim the suitability of an intermediate setting, where the learning participants are lim-

ited in number (e.g., less than 100), and with relaxed connectivity constraints with 

 
1 As, for example, indicated in Article 5 of the GDPR [53] by the European Parliament.    
2 In this field, the IID acronym is recognized and stands for Independent and Identically Distrib-

uted. 
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respect to the federated setting. However, their data can still be non-IID and unbalanced 

among different participants. We call this Decentralized Learning setting as geograph-

ically distributed to indicate that learners are not physically located in the same prem-

ises. The participants are trusted entities (e.g., manufacturing industries or facility man-

agement organizations), which want to collaboratively learn a shared knowledge with-

out disclosing their sensitive data. 

A Decentralized Learning framework able to address specific setting peculiarities 

can be designed by considering different degrees of freedom. The coordination among 

the learners can be facilitated by a star-shaped network topology that leverages a central 

entity, namely a parameter server, to distribute the current state of the global model at 

the beginning of each local iteration, and maintain the state updated during the training 

task. Participants can directly exchange their locally computed updates as well, in a 

peer-to-peer fashion, hence not requiring any infrastructure at the price of possible in-

creased communication cost. For example, there could be different models, with each 

one of them taking random walks in the network and being updated when visiting a 

new device. As traditional distributed training algorithms, also Decentralized Learning 

approaches can exploit asynchronous updates to optimize on speed by using potentially 

stale parameters for local training or wait for the slowest participant to synchronously 

aggregate all the produced updates without risks to use outdated parameters. 

In [17], the authors proposed their pioneering Distributed Selective Stochastic Gra-

dient Descent (DSSGD), where participants asynchronously download and locally re-

place a fraction of their neural network parameters, run local training, and asynchro-

nously upload a tiny fraction (e.g., 1%) of the computed gradients to a parameter server. 

The asynchronicity is determined by the absence of coordination among participants; 

since model updates may occur during local computations, stale gradients [18] could 

be used for local training. The privacy improvement resulting from the approach in [17] 

is threefold: i) training data remain stored locally, ii) participants are aware of the learn-

ing objective (and control how much to reveal about their individual models), and iii) 

they can infer the joint model locally without sharing their raw data. Furthermore, to 

address indirect leakage of sensitive information about any individual point of the train-

ing dataset, differentially private mechanisms are employed [19–21]. 

Among the various Decentralized Learning algorithms inspired by [17], Federated 

Learning (FL) builds a global model by iteratively aggregating (e.g., averaging) in a 

synchronous manner the locally computed updates (gradients or model parameters), by 

leveraging on a parameter server that provides the current model parameters to the se-

lected learning participants at the beginning of each round, i.e., local training iteration 

[22, 23]. To balance the communication costs, learners might take several steps of the 

local iterative optimization method (e.g., several steps of mini-batch gradient descent) 

during a single round. 

A plethora of works have tried to address the diverse issues within the context of FL. 

To prevent the possible leakage of privacy-sensitive information from the updates [24, 

25], various techniques have been proposed, such as participant-level differential pri-

vacy, i.e., hiding the presence or absence of any specific participant’s private dataset in 

the training [26, 27], secure multi-party aggregation [28], and homomorphic encryption 

[29]. To cope with the inherent non-IIDness of data in federated settings, which can 
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cause model divergence or significantly degrade the model accuracy [30], data sharing 

[30] among participants have been empirically proved to be effective at the cost of less 

decentralization; moreover, in [31] and [32] the original FedAvg [22] framework is 

extended by providing both theoretical analysis and empirical evaluation about the im-

proved robustness to data heterogeneity. The latter works also tolerate, respectively, 

inexact updates and model poisoning [33–35], i.e., malicious participants that manipu-

late the training process through voluntarily malicious model updates. In addition, sev-

eral efforts have been made to enhance communication efficiency, targeting the upload 

link [36–38] or both upload and download links [39–41]. A communication-efficient 

variation of FL is designed in [42], namely Federated Distillation (FD), a distributed 

knowledge distillation where learners exchange not the model parameters but the model 

output, i.e., the communication payload size only depends on the output dimension.  

A peer-to-peer fashioned alternative to FL, namely Gossip Learning (GL), has been 

proposed in [43], although it was already explored when considering the more tradi-

tional distributed setting (e.g., [44, 45]). After having initialized a local model, each 

node sends it to another node, which firstly merges the received model with its current 

parameters, then updates the resulting model by exploiting its private dataset, and the 

process repeats. These cycles are not synchronized; hence a node may merge its fresher 

model with an outdated one — albeit with limited impact thanks to an age parameter 

associated with models. 

To complete the picture of Decentralized Learning strategies, summarized in Table 

1, we introduce a differently designed method to decouple the training of neural net-

work models from the need for directly accessing the raw data. This technique, some-

times referred as Split Learning [46] or splitNN, horizontally partitions the neural net-

work among the training participant, which holds the shallower layers, and a central 

entity, which holds the deeper layers. Inter-layer values, i.e., activations and gradients, 

are communicated in place of raw data. Differently from the previously presented ap-

proaches, where the global model is fully replicated on each participant, in Split Learn-

ing, all the learners share the neural network deeper layers hosted by the central entity, 

hence the training process is sequential, albeit distributed. In fact, each participant re-

trieves the current state of the model either in a peer-to-peer mode, downloading it from 

the last training participant, or in a centralized mode, downloading it from the central 

entity, and runs the distributed training using her private dataset. Then, the process is 

repeated with a different participant, collectively learning a joint model without sharing 

private raw data. 

Although splitNN has demonstrated to reduce computation burden and bandwidth 

utilization with respect to baseline FL (considering 100 and 500 learners), it has been 

explicitly designed to allow entities to train deep learning models without sharing pa-

tient’s raw data in the health domain [47], hence considering a less populous federation 

of learners with respect to our previously defined federated setting. Furthermore, FL 

and GL allow on-device inference of the model by design, while this is not true for 

splitNN that requires a distributed inference unless the complete trained model is pro-

vided to the participants. It is worth noting that a less responsive inference determined 

by the partitioning of the neural network can be considered acceptable in offline health 

management applications, but not in interactive applications (such as emoji prediction). 
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To conclude this concise overview of the Decentralized Learning approaches that 

we are considering as the basis for the IoTwins activities, we emphasize that, as far as 

we know, there are no examples of Decentralized Learning frameworks explicitly de-

signed to cope with IIoT. In this sense, we highlight the suitability — and the growing 

appeal — of Agent-Based Computing (ABC) to enable cooperation inside IIoT ecosys-

tems as well as to model and simulate those federations of edge devices [48].  

Table 1. Our original taxonomy for Decentralized Learning approaches. 

 
Optimiza-

tion Setting 

Data 

Parallel 

Model 

Parti-

tion 

Network 

Topology 

Update 

Mode 

Exchanged Parameters 

download upload 

DSSGD [17] Geodistrib. YES NO Star-shaped Asynch model params* gradients* 

FL [22] Federated YES NO Star-shaped Synch model parameters 

FD [42] Federated YES NO Star-shaped Synch 
model output/ 

labels 

model output/ 

labels 

GL [43] Federated YES NO Peer-to-peer Asynch model parameters 

splitNN [46] Geodistrib. NO YES 

Star-shaped 

Peer-to-

peer** 

 model parameters* 

* means a fraction of (e.g., a fraction of the model parameters). 
** In Split Learning there is a centralization entity by design, but we emphasize how the current global 

state is distributed among participants (i.e., star-shaped topology vs peer-to-peer). 

5 Conclusive Remarks and Open Challenges for Future Re-

search on Decentralized Learning  

This paper had the ambition to present, through the notable example of the research and 

development activities planned in the just started IoTwins project, how and why De-

centralized Learning based on edge cloud computing could be a suitable solution for 

IIoT applications where there is the need to consider central requirements such as wide 

decentralization, high scalability, limited latency, locality-specific optimizations, and 

sovereignty on manufacturing process data. In addition to presenting the general solu-

tion guidelines and high-level architecture adopted uniformly in all the IoTwins 

testbeds, from predictive maintenance applications to latency-critical quality control for 

production processes, the paper provided the community with an original contribution 

in terms of categorization of the emerging Decentralized Learning approaches, in par-

ticular for the solutions that target medium-scale deployment environments for the fed-

erated setting, such as in most usual industrial scenarios nowadays. This taxonomy is 

guiding our architectural and design choices in IoTwins and we hope that could be 

useful to the whole community of researchers in the field by shedding new light on the 

possible liberty degrees available (and their associated differentiated suitability to 

achieve different application domain or deployment requirements) in the development 

of Decentralized Learning solutions for the IIoT. 

In addition, this initial promising work has already highlighted some primary direc-

tions of major interest and associated technical challenges that short/medium-term re-

search activities in the field will have to deal with.  

First, we claim that fog-aware and edge-aware Decentralized Learning solutions 

have already demonstrated to be very promising to scale the training cooperation, e.g., 
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to further reduce the traffic headed to the cloud taking advantage of intermediate up-

date-aggregator entities, but their industrial exploitation call for significant additional 

efforts towards more mature and standard-compliant platforms for edge/fog-based dis-

tributed AI for IIoT. For example, the hierarchical FL presented in [49] adopts the MEC 

standard specification [50]: edge servers aggregate updates from their localities and 

forward partial aggregations to the cloud to contribute to the global model; to increase 

openness and interoperability, these edge servers expose a MEC-compliant API that 

should help in integrating them in full 5G infrastructures. But several aspects ae still 

uncovered, as mobility management support and container-oriented management and 

orchestration, just to name a few. A similar solution [51], specifically targeting IoT 

devices, leverages the fog layer [52] to lighten resource-constrained devices and to pre-

vent computation/communication bottlenecks. Fog nodes gather transformed data (i.e., 

the original data projected to a lower-dimensional space) from IoT devices and compute 

differentially private updates (i.e., clipped gradients perturbed with Gaussian noise), 

before heading them to the cloud. This communication-efficient solution also offers 

enhanced privacy (lowering the dimensionality of raw data contributes to limit possible 

information leakage, still remaining useful for learning), as well as it enables computa-

tionally constrained IoT devices to participate to learning tasks. Furthermore, fog nodes 

can be queried in place of the cloud, resulting in a trade-off between the low on-device 

inference time and the high inference time of cloud-based ML.  

Second, it is worth noting that the Decentralized Learning frameworks introduced 

so far have been developed and validated with the goal of supervised learning in mind, 

i.e., assuming that the training examples gathered from edge devices are always la-

belled. This assumption does not hold in all the different reifications of federated set-

tings in IIoT application domains of practical interest. Indeed, while data generated by 

the interaction of users with smartphones or IoT devices can be easily labeled (e.g., the 

choices of users with respect to a range of suggested emojis in intelligent keyboards, as 

in Google-supported solutions in this research area), the data harvested from the mon-

itoring of industrial manufacturing processes may not be automatically labeled and may 

require non-trivial classification steps, which could be part of the functionality offered 

by distributed hybrid twins. Related technical challenges, e.g., how to combine input 

from in-the-field monitoring with automated labelling and Decentralized Learning in 

distributed and lazily coordinated edge nodes, are still largely unexplored and will prob-

ably gain similar relevance as the other main technical issues currently associated with 

Decentralized Learning in federated settings (heterogeneity, privacy, communication-

efficiency, and scalability). 
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