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Abstract. Opinion diffusion is studied on social graphs where agents
hold opinions and where social pressure leads them to conform to the
opinion manifested by the majority of their neighbors. Within this set-
ting, questions related to which extent a minority/majority can spread
the opinion it supports to the other agents are considered. It is shown
that if there are only two available opinions, no matter of the underlying
social graph G = (N,E), there is always a group formed by a half of
the agents that can annihilate the opposite opinion. A polynomial-time
algorithm to compute a group of agents enjoying these properties is also
devised and analyzed. The result marks the boundary of tractability,
since the influence power of minorities is shown to depend on certain
features of the underlying graphs, which are NP-hard to be identified.
Finally, for more than two opinions we show that even the simpler prob-
lem of deciding whether there exists a sequence of updates leading to
consensus is NP-hard.
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1 Introduction

Consider the following prototypical scenario. The members of a department are
organizing a social dinner, and they have to decide whether to go to a restaurant
or to a pizzeria. Initially, each of them holds an opinion on her ideal choice. At
a certain point, they will exchange their viewpoints and each of them will be
affected by a social pressure leading to adapt her opinion to the one manifested
by the majority of her friends. So, we ask: Would be they capable to reach
a consensus for some/all profiles of their initial opinions? Can a minority have
enough social “power” to influence all other agents? Is it any easier for a majority
to guide convergence towards consensus? Can they reach an equilibrium different
from a consensus?

Our goal is to analyze the above kinds of questions under the lens of algo-
rithm design and computational complexity, by focusing on a setting where social
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relationships are encoded as the edges of a social graph G = (N,E) whose nodes
correspond to the agents. In particular, by starting from an initial configuration
where agents hold some innate opinions, we consider a model of opinion diffusion
over the underlying graph where each agent is stable if, and only if, her current
opinion agrees with the opinion held by a (non-strict) majority of her neighbors.
Hence, at any time step of the dynamics, agents that are not stable can change
their opinion asynchronously, thereby leading to a non-deterministic evolution
where the final configuration may depend on the specific order in which updates
have been performed.

In fact, the study of opinion diffusion constitutes nowadays an active area of
research in the computer science literature (e.g., [15, 1, 3]). However, few results
are known for the following fundamental consensus problem: Given a rational
number α with 0 ≤ α ≤ 1, is there any set S ⊆ N of agents with |S| ≤
dα|N |e that is able to influence all the other agents? It is known to be NP-
hard [9]: However, we missed so far a finer-grained analysis of the complexity
of consensus which charts its frontier of tractability w.r.t. the ranges of the
possible values of α, the classes of social graphs being considered, the number
of available alternatives.

In the paper1, we fill this gap and we provide the following contributions.
First, we analyze the consensus problem on arbitrary social graphs, but focus-
ing on scenarios with only two available opinions, and for which the fraction α
of the agents that already agree on the opinion to be propagated is such that
α ≥ 1

2 . We show that, in this case, consensus is tractable and in particular a
majority of d|N |/2e agents always exists (and can be efficiently computed) which
is capable of annihilating the opposite opinion. Second, we show that the value
α = 1

2 defines a sharp boundary for the consensus problem when there are
only two available opinions. Indeed, we show that a minority (i.e., α < 1

2 ) that
can spread its opinion to all the agents exists only in certain graphs. In fact, a
result of this kind holds for the problem of assessing the existence of a minority
that can become a majority [2, 4, 5]. However, in that case the graphs enjoying
the desired property admit a computationally simple characterization, while in
our case a characterization of these graphs is NP-hard. Third, we consider the
case that there are more than two available opinions. We show that the scenario
radically changes with respect to the binary case. Indeed, we show that it is
NP-hard even to verify if there is a sequence of updates leading from a given set
of initial opinions to consensus.

2 The Model

Let G = (N,E) be a social graph, that is, an undirected connected graph en-
coding the interactions of a set N of agents. Moreover, a set O of opinions are

1 Some of the results appeared in the 27th International Joint Conference on Artificial
Intelligence [8] (Distinguished Paper) and in the 18th International Conference on
Autonomous Agents and MultiAgent Systems [7].
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Fig. 1. Greedy dynamics do not maximizes op when there are three available opinions.

available to the agents. Accordingly, we model a configuration for G as a func-
tion c : N → O; its intended meaning is that agent x ∈ N with c(x) = o holds
opinion o. For any set S ⊆ N of agents, we define So/c (shortly So, if the con-
figuration c is clearly understood) as the set of all agents in S with opinion o.
For each agent x ∈ N , the set {y | {x, y} ∈ E} of her neighbors is denoted by
δ(x). Agent x ∈ N is stable in c if her opinion agrees with the opinion held by
a (non-strict) majority of her neighbors. A configuration c is stable if all agents
in N are stable. We consider an asynchronous and non-deterministic model of
opinion diffusion where, at each time instant, some arbitrarily chosen agents that
are not stable change their opinion. More formally, a dynamics for G is modeled
throughout the paper as a sequence of configurations c0, ..., ck such that ch+1,
for each h ∈ {0, ..., k − 1}, is obtained from ch by changing the opinions of a
non-empty subset of agents that are not stable in ch.

A kind of dynamics that will play a prominent role in this paper is the greedy
dynamics for a given opinion op ∈ O. It works as follows: As long as there are
agents that are not stable and for which op is a majority in the neighborhood,
change their opinion to op; otherwise change the opinion of some other non-
stable nodes. Greedy dynamics turn out to be crucial in the case that only two
opinions are available, i.e. O = {0, 1}. Indeed, in this case the following property
holds [9]: Given a configuration c for a graph G, the greedy dynamics converges
to a stable configuration maxop(c) and, for each dynamics c = c0, ..., ck such that
ck is a stable configuration, it holds that |Nop/maxop(c)| ≥ |Nop/ck |.

In the light of the above result, when we consider that only two opinions are
available, we can focus our analysis, w.l.o.g., on greedy dynamics. Unfortunately,
this result does not extend to the case in which there at least three available
opinions. Consider indeed that O = {white, black, gray} and the graph is as
in Figure 1.(a). Let c be the initial configuration where each agent holds the
opinion corresponding to the coloring of the nodes in the figure. Consider the
(non-greedy) dynamics, illustrated in Figure 1.(b): First, c adopts opinion gray ;
then, all agents adopt opinion white in the following order: b, d, c, h1,...,hn−1,
hn. Eventually, an opinion profile is reached where all agents hold opinion white.
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On the other hand, observe that a greedy dynamics must start with agent d
changing her opinion to white, since in the profile c this is the only agent in-
terested in adopting opinion white. Let c′ be the configuration obtained after
this change, which is graphically illustrated in Figure 1.(c). From this configura-
tion, no other agent is interested in changing her opinion to white. Rather, agent
a will eventually adopt opinion black (possibly after that some of the agents
in {h1, ..., hn} changed her opinion to black or gray. Hence, we have that the
maximum number of whites in a stable configuration reachable from c via the
dynamics c maxwhite(c) is only 3.

3 Our Results

Define ∀op as the configuration where all agents hold opinion op, and consider
the consensus problem: Given an undirected graph G = (N,E), a rational
number α such that 0 < α < 1, compute a configuration c for G such that (i)
|Nop/c| ≤ dα|N |e, (ii) maxop(c) = ∀op, or check that there is no configuration
enjoying (i), (ii). We start by considering that O = {0, 1} and we study the
complexity of the consensus problem by assuming, w.l.o.g., that op = 1.

From Majority to Consensus. We start our study by showing that, for each
undirected graph G, whenever the fraction α covers at least a majority of the
agents, in particular, even if α = 1

2 , a configuration c with |N1/c| ≤ dα|N |e and
max1(c) = ∀1 always exist and can be computed in polynomial-time.

To establish the results, we explore the space of the binary partitions P of
the agent set N , that is, of the pairs P = (A,B) where A and B are non-
empty sets such that A ∪ B = N . Given a partition P = (A,B) of N , we write
X ∈ P to denote that a set X ⊆ N belongs to {A,B}; moreover, we define
X̄ = N \ X. For any agent x ∈ N , let Px (resp., P̄x) denote the set of P to
which x belongs (resp., does not belong), and let us define the utility of x in
P as the value u(x,P) = |δ(x) ∩ Px| − |δ(x) ∩ P̄x|. Moreover, for each “side”
X ∈ P, we denote by G[X] the subgraph of G induced by X, and we define
Zc(X,P) as the set of all connected components of G[X] such that u(y,P) = 0
for each component C ∈ Zc(X,P) and each agent y of C. Elements in Zc(X,P)
are called zero components. Finally, for any two disjoint sets of agents A′ and
B′, not necessarily forming a partition, let E(A′, B′) be the set of edges e ∈ E
such that e has one endpoint in A′ and the other in B′.

A partition P is called nice if it has a nice side X ∈ P such that: (i) u(x,P)+
u(y,P) ≤ −2|E({x}, {y})|, for each pair of agents x ∈ X and y ∈ X̄; (ii) either
there is an agent x? ∈ X with u(x?,P) > 0, or u(x,P) ≤ 0 holds for each x ∈ X̄
and Zc(X̄,P) = ∅. We have that consensus can be reached from a configuration
that can be easily computed when a nice partition is given at hand.

Lemma 1. Let P be a nice partition, X its nice side, and c̄(P) be the configu-
ration that assigns opinion 1 only to agents in X. Then, max1(c̄(P)) = ∀1.

The question is now whether we can efficiently single out a nice partition. To
answer positively this question, we individuate the obstructions to a partition
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P to be nice. These are pairs of agents {x, y}, which we call critical, lying on
distinct sides of P, and such that P ′ = (P̄x∪{x}\{y},Px∪{y}\{x}), either has
less edges across its two sides than P , or has less zero components than P , or
the maximum distance between two zero components, each on a different side,
is smaller than in P . The following result links critical pairs and nice partitions.

Lemma 2. Assume that no critical pair exists in a partition P. Then, P is nice.

We can now state the main results of this section. Indeed, it turns out that
a nice partition can be computed by iteratively swapping agents belonging to
some critical pairs, as long as one exists.

Theorem 1. Given any graph G = (N,E), a configuration c for G can be com-
puted in polynomial time such that |N1/c| ≤

⌈
1
2 |N |

⌉
, max1(c) = ∀1.

From Minority to Consensus. So far, we have analyzed the consensus prob-
lem by focusing on instances where the opinion 1 to be propagated to all the
agents is initially already supported by some majority. In the following, we com-
plete the picture of this analysis by considering the consensus problem re-
stricted first to instances such that α < 1

2 . Our results will show that Theorem 1
essentially charts the frontier of tractability for the consensus problem.

Inspired by similar results in earlier literature [16, 11], we show that con-
sensus is NP-hard for α < 1

2 by exhibiting a reduction from the well-known
vertex cover problem [14].

Theorem 2. On the class of instances where α is such that 0 < α < 1
2 , con-

sensus is NP-hard.

Multiple Opinions. Consider now the case that |O| > 2. As discussed above,
we cannot assume that the dynamics leading to consensus, if there is any, is the
greedy dynamics. Hence, before that the consensus problem would be address-
able, we need to consider the simpler complete-spread problem: to decide if
there is a sequence of updates leading from the given configuration c to a con-
sensus. We can show that even this problem is intractable, through a reduction
from the NP-hard problem one-in-three positive 3-SAT [14], that consists
in deciding whether there is a truth assignment σ such that, for each clause cj ,
precisely one variable in cj evaluates to true.

Theorem 3. If |O| > 2, then the complete-spread problem is NP-complete.

4 Conclusion

We addressed a number of questions related to whether consensus can be achieved
in settings where opinions of the agents are affected by social influence.

Our results pave the way for further investigations. For instance, it would be
interesting to analyze the extent at which consensus can be reached and kept if
the social graph is dynamic, in order to model the evolving relationships among
agents. Whereas some results of this kind are known for different dynamics, see,
e.g., [13, 17, 10, 12, 6], the behavior of the majority dynamics in this setting is
nowadays still obscure.
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