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Abstract. We present an improvement of the Bellman-Ford algorithm
for the single-source shortest-path (SSSP) problem in directed graphs.
Our algorithm exploits a potential-based heuristic for selecting the nodes
to be scanned next. More specifically, for each node, we use as potential
the difference between the current distance estimate and the distance
estimate at the time the node was last scanned. A nice feature of our
proposed heuristic is that it precisely yields Dijkstra’s algorithm when
applied to graphs with no negative edges. Extensive experimentations
have been conducted for comparing our algorithm on various families of
weighted graphs against the most efficient practical algorithms for the
SSSP problem with negative weights, such as Pallottino’s two-queue algo-
rithm, D’Esopo-Pape deque algorithm, the threshold algorithm by Glover
et al., and Goldberg-Radzik’s algorithm. Results are very promising and
show that our algorithm is competitive with the above-mentioned algo-
rithms, especially when graphs are not nearly acyclic.

Keywords: Single-source shortest path problem, Bellman-Ford algo-
rithm, Potential-based heuristic.

1 Introduction

The single-source shortest-path (SSSP, for short) problem consists in finding the
shortest paths from a given source to any other node in a weighted directed
graph (or digraph).

When a digraph G = (V,E) is subject to no particular restriction, the
Bellman-Ford algorithm [Bel58,For56] solves the problem in O(V E) time. For
graphs with no negative weight edges, an asymptotically better solution is pro-
vided by Dijkstra’s algorithm [Dij59], which achieves a O(E + V log V ) time
worst-case complexity when the service priority queue is implemented with Fi-
bonacci min-heaps [FT87]. Asymptotically faster algorithms than the Bellman-
Ford and Dijkstra’s algorithms can be implemented depending on the topology
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of the input graph. For instance, if the graph is acyclic, by simply scanning
the nodes according to any topological order of the underlying graph, it is pos-
sible to achieve a O(V + E)-time complexity. Also, on nearly acyclic graphs,
the Saunders-Takaoka algorithm [ST01] retains a complexity of O(|E|+ r log r),
where r is the number of trigger nodes,1 which is usually small in nearly acyclic
graphs. When negative edges are not allowed to belong to cycles, the Two-Levels-
Greedy algorithm [CF04] has the same time complexity as Dijkstra’s algorithm,
and shows a linear behaviour in practice. Finally, for graphs with ‘few’ desti-
nations of negative weight edges, the Cantone-Faro hybrid algorithm [CF14] is
asymptotically faster than the Bellman-Ford algorithm.

Although no algorithm with an o(V E) worst-case time complexity for the
general SSSP problem is currently known, several heuristic improvements have
been proposed over the years, which outperform the Bellman-Ford algorithm
in practice. Among them, we mention the Goldberg-Radzik’s algorithm [GR93]
that retains a worst-case complexity of O(V E), whereas the two-queue algorithm
of Pallottino [Pal84] and the threshold algorithm by Glover et al. [GGK86] take
Ω(V 2E) time in the worst case. In some practical cases, the D’Esopo-Pape al-
gorithm [Pap74] can be much faster of the above-mentioned algorithms, though
there are graphs on which it takes exponential time.

In this paper, we present a new heuristic, and also a variant to that heuris-
tic, that yields an algorithm whose performance is competitive with the afore-
mentioned algorithms, and which additionally yields Dijkstra’s algorithm when
negative-weight edges are not present in the input graph.

The paper is organized as follows. In Section 2, we recall the notation used
in the paper, and also give a brief overview of the most common heuristic SSSP
algorithms. Then, in Section 3, we present our heuristic and its related algorithm,
and prove some of its properties. Next, in Section 4, we compare our proposed
algorithm with the most efficient practical algorithms for the SSSP problem, also
commenting on the results obtained. Finally we close the paper with some final
remarks in Section 5.

2 Preliminaries

The single-source shortest-path problem is the problem of finding the shortest
paths from a designated source node s ∈ V to all the nodes of a given weighted
directed graph (G,w), where G = (V,E), with V a finite set of nodes and
E ⊆ V ×V a set of edges, and where w : E → R is a real-valued weight function.
We shall assume that E contains no self-loops, i.e., edges of the form (v, v).

A path in G = (V,E) (from node v1 to vk) is any finite sequence of nodes
(v1, . . . , vk) such that (vi, vi+1) ∈ E, for i = 1, . . . , k−1; when there is a path from
v1 to vk, we say that the node vk is reachable from v1 in G. A path (v1, . . . , vk)
such that v1 = vk is a cycle. The weight function can naturally be extended over

1 Trigger nodes are the roots of the trees that result when the graph is decomposed
into trees.
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paths by putting w(v1, . . . , vk) :=
∑k−1
i=1 w(vi, vi+1). A shortest path from u to v

is any path from u to v whose weight is minimum among all paths from u to v in
G. Given two nodes u, v ∈ V , provided that v is reachable from u and that there
is no path from u to v containing a negative-weight cycle, the shortest path from
u to v always exists. In such a case, we denote its weight by δG,w(u, v). If a node
v is not reachable from u in G, we put δG,w(u, v) := +∞. In addition, if there is
a path from u to v containing a negative-weight cycle, we put δG,w(u, v) := −∞.
The function δG,w : V × V → R∪ {+∞,−∞} is the distance function of (G,w).

When the weighted graph (G,w) is understood, we simply write δ in place
of δG,w. In addition, for any given source node s ∈ V , we shall write δs for the
unary distance function defined by δs(u) := δ(s, u), for u ∈ V .

A common technique for solving the SSSP problem is the so-called label-
correcting method, which makes use of the following functions:

- a distance estimate function d : V → R ∪ {+∞},
- a predecessor function π : V → V ∪ {nil}, and
- a status function S : V → {unreached, labeled, scanned}.

On a graph (G,w) with source s ∈ V , a generic algorithm based on the label-
correcting method works as follows (see the Generic-SSSP Algorithm 1). At
start, the functions d, π, and S are so initialized, by the procedure Initialize-
Single-Source: d(v) := +∞, π(v) := nil, and S(v) := unreached, for every
node v ∈ V \{s}, and d(s) := 0, π(s) := nil and S(s) := labeled, for the source
node s. Then the Scan procedure is run on any labeled node until none is left,
namely until all nodes are either scanned or unreached. If no negative-weight
cycle is reachable from the source node s, the halting condition is eventually
attained: in this case, it turns out that d = δs holds and, for each node v ∈ V ,

- π(v) is the node preceding v in a shortest path from s to v, if v 6= s and v is
reachable from s,

- π(v) = nil, otherwise,

so that the predecessor function allows one to reconstruct a shortest path to each
node reachable from the source.

Otherwise, if some negative-weight cycle is reachable from s, the halting
condition is never attained and execution never stops, since a scanned node
becomes labeled when its distance estimates strictly decreases.

2.1 Label-correcting algorithms

Depending on the strategy used to select the node to be scanned next, different
algorithms can be obtained from the Generic-SSSP algorithm.

The Bellman-Ford algorithm [Bel58,For56] maintains a FIFO queue of la-
beled nodes. A node that becomes labeled is added to the tail of the queue,
while the node to be scanned next is extracted from the queue’s head.

In the D’Esopo-Pape’s algorithm [Pap74], labeled nodes are maintained in a
deque (i.e., a queue that allows insertions at either ends). When a node becomes
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Algorithm 1 Generic-SSSP
1: procedure Initialize-Single-Source(V, s);
2: for all v ∈ V do
3: d(v) := +∞;
4: π(v) := nil;
5: S(v) := unreached;

6: d(s) := 0;
7: S(s) := labeled;

8: procedure Scan(u,E,w)
9: for all (u, v) ∈ E do
10: if d(u) + w(u, v) < d(v) then
11: d(v) := d(u) + w(u, v);
12: S(v) := labeled;
13: π(v) := u;

14: S(u) := scanned;

15: Generic-SSSP Algorithm(G,w, s)
16: - let V and E be the set of nodes and the set of edges of G, respectively;
17: Initialize-Single-Source(V, s);
18: while there is some labeled node in V do
19: - let u ∈ V be any labeled node;
20: Scan(u,E,w);

21: return d, π;

labeled, if it is labeled for the first time, it is added at the deque’s tail,
otherwise it is added at the deque’s head. As in the Bellman-Ford algorithm, at
each iteration the node to be scanned next is extracted from the deque’s head.

Pallottino’s algorithm [Pal84] uses two FIFO queues to store the set of labeled
nodes, a high-priority and a low-priority queue. When a node becomes labeled,
if it is labeled for the first time, it is added to the low-priority queue, otherwise
it is added to the high-priority queue. The node to be scanned next is extracted
from the head of the high-priority queue, if non-empty, otherwise is extracted
from the low-priority queue.

The threshold algorithm by Glover et al. [GGK86] arranges the set of labeled
nodes into two FIFO queues, respectively next and now. A threshold parameter
t, which is equal to a weighted average of the minimum and the average distance
estimates of the nodes in next, is also maintained. At the beginning of each
iteration, every node v ∈ next such that d(v) ≤ t is moved to the queue now,
which is initially empty at each pass. Nodes belonging to the queue now are
scanned, until the queue next becomes empty at the end of an iteration.

The Goldberg-Radzik’s algorithm [GR93] maintains the labeled nodes of
a given weighted digraph (G,w), with G = (V,E), into two sets, A and B. At
any instant, each node can only belong to one of such sets. When a node be-
comes labeled, it is added to B. To compute the set A, a reduced cost function
wd(u, v) = w(u, v) + d(u) − d(v) is defined on edges, together with the corre-
sponding admissible graph Gd = (V, {e ∈ E : wd(e) < 0}). At the beginning
of each iteration, nodes with no outgoing edges and negative reduced cost are
removed from B, and A is the set of nodes reachable from B in Gd. The node
to be scanned next is extracted from A, following a topological order of Gd.

Finally, Dijkstra’s algorithm [Dij59] maintains the labeled nodes in a min-
queue, and selects the node with lowest priority as the node to be scanned next.
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In the next section, we present a new heuristic, based on a suitable potential
function, for selecting the node to be scanned next by the Generic-SSSP algo-
rithm. The resulting procedure, to be called Potential algorithm, turns out to be
very fast in practice, and in most cases very competitive with the aforementioned
heuristic algorithms for the SSSP problem. In particular, when run on digraphs
with no negative edges, the Potential algorithm reduces just to Dijkstra’s algo-
rithm.

3 The Potential algorithm

The potential heuristic. Central to our heuristic is the following notion of
potential function over the set of nodes of a weighted digraph. Consider any
execution of the Generic-SSSP algorithm on a weighted digraph (G,w), with
G = (V,E), from a designated source s ∈ V . At any computation step (namely
just prior to the execution of any Scan operation), the potential U(u) of any
node u ∈ V that has already been scanned is the difference between its current
distance estimate and its distance estimate when u was last scanned. For each
of the remaining nodes u ∈ V that have not yet been scanned, letting d : V → R
be the current distance estimate function, we found it more convenient to define
the current potential by setting U(u) := d(u), when the node u has already been
discovered (namely if d(u) 6= +∞), and U(u) := 0, otherwise.

The intuition behind our heuristic is that the smaller is the potential value of
a node u, the closer is the distance estimate of u to the actual distance of u from
the source node, and therefore the higher is the chance that the call Scan(u)
may result in conspicuous improvements to the distance estimates of the nodes
adjacent to u. As a consequence, the distance estimates function is expected to
converge faster to the distance function from the source node, especially in the
case of graphs whose edge weights are uniformly randomly distributed. As will be
discussed in Section 4, there is indeed experimental evidence that, for labeled
nodes u, v ∈ V such that U(u) < U(v), scanning u before v leads in general to a
faster convergence of the distance estimate function to the distance function δs
from a given source node s.

The above remarks lead naturally to our potential heuristic, consisting in
selecting at each iteration of the Generic-SSSP algorithm a labeled node
with the lowest potential as the node to be scanned next.

The Potential algorithm. The Potential algorithm (see Algorithm 2) makes
use of the variants P-Initialize-Single-Source and P-Scan of Initialize-
Single-Source and Scan, respectively, specifically adapted to handle the po-
tential function.

The potential function U is initialized to the null function at line 4. After
initialization, the execution of the Potential algorithm progresses through a se-
quence of iterations of the inner while-loop at lines 29–31 of Algorithm 2. Every
iteration, but the first one, starts with a min-priority queue Q formed by the
nodes with a negative potential and having as priority the potential function.
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Instead, the first iteration starts with the queue Q initialized to the singleton of
the source node.

For simplicity, in what follows we shall tacitly assume that no cycle with
negative weight is reachable from the designated source node of the graphs under
consideration. Thus the number of iterations of the inner while-loop at lines
29–31 will never exceed |V | − 1.

Each iteration consists of a sequence of Scan operations on the nodes ex-
tracted from the queue Q, in accordance with their potential, until no node is
left in Q, at which point the queue Q is restored for the next iteration with the
nodes, if any, having a negative potential. The algorithm stops when, at the end
of an iteration, no node has a negative potential.

During the execution of any iteration, as soon as a node v is marked labeled
by the P-Scan procedure (at line 18), if the node v has not entered yet the queue
Q in the current iteration, then it is readily inserted into Q, in accordance with
its potential. The set Q0 in procedure P-Scan keeps track of the nodes that
have entered the queue in the current iteration.

In addition, the procedure P-Scan maintains the potential function. Letting
dA and dB be the distance estimate functions just after and before a P-Scan
operation on a node u, respectively, we plainly have dA(v) − dB(v) ≤ 0, for
every node v ∈ V such that dB(v) 6= +∞. Denoting by UA and UB the potential
functions on V just after and before the execution of the given P-Scan operation
on node u, respectively, we have UA(u) = 0 and, for v ∈ V \ {u},

UA(v) =



UB(v) + dA(v)− dB(v) if dB(v) 6= +∞ and dA(v)− dB(v) < 0
(line 14 in Algorithm 2)

dA(v) if dB(v) = +∞ and dA(v) 6= +∞
(line 16 in Algorithm 2)

UB(v) otherwise.

The following lemmas, whose proofs are omitted for lack of space, state that
the Potential algorithm is correct and that it behaves just as Dijkstra’s algorithm
on digraphs with non-negative weights.

Lemma 1. The Potential algorithm is correct.

Lemma 2. On a digraph G = (V,E) with a non-negative weight function w : E →
R+

0 , the Potential algorithm stops at the end of the first iteration of its inner
while-loop at lines 29–31, behaving just like Dijkstra’s algorithm.

Complexity issues. As remarked, the inner while-loop at lines 29–31 can
be iterated at most |V | − 1 times (when no negative weight cycle is reachable
from the source node). In addition, each such iteration involves at most O(V )
Insert and Extract-Min operations and O(E) Decrease-Key operations
(as a consequence of the updates made by the instruction at line 17). Hence,
if the service min-priority queue is implemented as a Fibonacci heap [FT87],
each iteration takes O(E+V log V ) time, for an overall O(V E+V 2 log V )-time
complexity in the worst-case. Summing up, we have:

Lemma 3. The Potential algorithm runs in O(V E+V 2 log V ) worst-case time.
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Algorithm 2 Potential algorithm
1: procedure P-Initialize-Single-Source(V, s);
2: for all v ∈ V do
3: d(v) := +∞;
4: U(v) := 0;
5: π(v) := nil;
6: S(v) := unreached;

7: d(s) := 0;
8: S(s) := labeled;

9: procedure P-Scan(u,E,w,Q,Q0);
10: for all (u, v) ∈ E do
11: if d(u) + w(u, v) < d(v) then
12: d′(v) := d(u) + w(u, v);
13: if d(v) 6= +∞ then
14: U(v) := U(v) + d′(v)− d(v);
15: else
16: U(v) := d′(v);

17: d(v) := d′(v);
18: S(v) := labeled;
19: π(v) := u;
20: if v /∈ Q0 then
21: Insert(Q, v);
22: Q0 := Q0 ∪ {v};
23: U(u) := 0;
24: S(u) := scanned;

25: Potential Algorithm(G,w, s)
26: P-Initialize-Single-Source(V, s);
27: Q0 := Q := {s};
28: while Q 6= ∅ do
29: while Q 6= ∅ do
30: u := Extract-Min(Q,U);
31: P-Scan(u,E,w,Q,Q0);

32: Q0 := Q := {u ∈ V | U(u) < 0};
33: return d, π;

3.1 A variant of the Potential algorithm

We have seen that, when the weight function is non-negative, the best node to
be scanned next is the one with the minimum potential, as this corresponds to
the node with the minimum distance estimate (as in Dijkstra’s algorithm). On
the other hand, when negative edge costs are allowed, this approach leads to
a worst-case time bound worse than the Bellman-Ford algorithm’s one, since
the Potential algorithm maintains a priority queue. By relaxing our heuristic as
explained next, we can obtain a O(V E) algorithm in the worst-case. However,
on graphs with no negative weight edges, the resulting algorithm will no longer
behave as Dijkstra’s algorithm.

At each step, the node to be scanned next is not necessarily the one with the
minimum value of the cumulative potential function, rather it is extracted from
a deque Q according to the following strategy. When a node u must be added
to Q, its potential is preliminarily compared with that of the first node of the
queue, head(Q): if U(u) < U(head(Q)), the node u is added to the front of
the queue, otherwise it is added to the back. The same strategy is used during
the initialization of the set Q, at the end of each iteration. The pseudocode of
such a variant of the Potential algorithm is reported in Algorithm 3. As we shall
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see in the next section, this variant achieves the best performances with random
graphs, when negative edge costs are allowed.

Algorithm 3 Relaxed Potential algorithm (deque variant)
1: procedure P-Scan-Deque(u)
2: for all (u, v) ∈ E do
3: if d(u) + w(u, v) < d(v) then
4: d′(v) := d(u) + w(u, v);
5: if d(v) 6= +∞ then
6: U(v) := U(v) + d′(v)− d(v);
7: else
8: U(v) := d′(v);

9: d(v) := d′(v);
10: S(v) := labeled;
11: π(v) := u;
12: if v 6∈ Q and entered-Q(v) = false then
13: if Q = ∅ or U(v) < U(head(Q)) then
14: push-front(Q, v)
15: else
16: push-back(Q, v)

17: entered-Q(v) := true;

18: U(u) := 0;
19: S(u) := scanned;

20: procedure Initialize-Deque(Q)
21: Q := ∅;
22: for v ∈ V do
23: if U(v) < 0 then
24: if Q = ∅ or U(v) < U(head(Q)) then
25: push-front(Q, v);
26: else
27: push-back(Q, v);

28: entered-Q(v) := true
29: else
30: entered-Q(v) := false

31: Potential1 Algorithm(G,w, s)
32: P-Initialize-Single-Source(V, s)
33: Q← {s};
34: while Q 6= ∅ do
35: while Q 6= ∅ do
36: v ← Pop-Front(Q);
37: P-Scan-Deque(v);

38: Initialize-Deque(Q);

39: return d, π;

4 Experimental Results

In this section we compare the experimental behaviour of our proposed algo-
rithms with some of the well-known SSSP algorithms. We shall refer to each
algorithm with the following acronyms:

- “BFP” is the parent-checking variant of the Bellman-Ford algorithm,
- “PAPE” is the Pape-Levi algorithm,
- “TWO Q” is the Pallottino’s two queues algorithm,
- “THRESH” is the threshold algorithm by Glover et al.,
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- “GOR” and “GOR1” are the Goldberg-Radzik’s algorithm and its variant with
distance updates, respectively,

- “DIKH” is the Dijkstra algorithm implemented using a k-ary heap,
- “POT” and “POT1” are the Potential algorithm and its variant described in Sec-

tion 3.1, respectively.

A very extensive investigation of the practical performances of the various
SSSP algorithms has been carried out over the years, pointing out how graph
properties may (strongly) affect performances. We therefore performed our tests
on the families that turned out to be the most complex ones in each of the
standard graph classes used in such analyses (see [CGR96] for more details).
More specifically, for our experiments, we considered the following graph families:

- SPGRID :
Grid-NHard (hard problems with mixed edge length),

- SPRAND :
Rand-1:4 (random Hamiltonian graphs with density 4),
Rand-P (random Hamiltonian graphs with potential transformation),

- SPACYC :
Acyc-Neq (acyclic graphs with negative edge lengths),
Acyc-P2N (acyclic graphs with variable fraction of negative edges).

All tests have been performed on a PC with a 3.40 GHz Intel Quad Core i5-
4670 processor, with 6144 KB cache memory, and running Linux Ubuntu 19.04.
Running times have been measured with a hardware cycle counter, available
on modern CPUs and have been reported in milliseconds. Each table entry has
been obtained as the average over five runs, on problems produced with the same
generator parameters except for the pseudorandom generator seed.

4.1 Results for SPGRID class

In SPGRID graphs, nodes correspond to points on the plane with integer coor-
dinates [x, y], where 1 ≤ x ≤ X and 0 ≤ y ≤ Y , for given X,Y ≥ 1. Each node
is connected

- forward, by edges of the form ([x, y], [x+ 1, y]), 1 ≤ x < X, 0 ≤ y ≤ Y,
- up, by edges of the form ([x, y], [x, (y + 1 mod Y )]), 1 ≤ x ≤ X, 0 ≤ y < Y,
- down, by edges of the form ([x, y], [x, (y−1 mod Y )]), 1 ≤ x ≤ X, 0 ≤ y < Y.

For any fixed value x ∈ {1, . . . , X}, the nodes [x, y] form a doubly connected
cycle called a layer. Finally, the source node is connected to all the nodes in the
first layer.

In particular, in our experiments we considered the family Grid-NHard of
SPGRID graphs. In Grid-NHard graphs, the weight of the edges inside a layer
is small and non-negative. In addition to the edges that connect one layer with
the next one, there are also edges that connect lower to higher numbered layers,
all the inter-layer edges having a non-positive weight. Weights were generated
uniformly at random. A significant property of Grid-NHard graphs is that a path
between two nodes with many edges is more likely to have smaller weight than
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nodes/edges POT POT1 BFP TWO Q THRESH PAPE
8193/63808 22.39 43.36 108.36 305.02 248.41 2995.80

16385/129344 62.69 164.48 446.17 645.69 1064.58 5208.70
32769/260416 181.10 666.98 1870.08 1348.39 4739.12 9889.34
65537/522560 480.93 3031.38 9567.19 2710.32 24015.21 18302.97

131073/1046848 1306.93 14495.88 48213.83 5456.46 121938.01 36521.89

GOR GOR1
4.74 3.03
10.42 6.56
23.26 14.68
53.90 35.90
120.77 78.19

Table 1. Experimental execution time in milliseconds for some Grid-NHard families

a path with fewer edges. This makes it difficult to formulate an optimal choice
on a local information basis only.

Table 1 shows the results of an experimental session for the Grid-NHard
family (Dijkstra’s algorithm was not tested for this family since negative weight
edges were present). The Goldberg-Radzik’s algorithms are the most efficient
ones for this family. Interestingly, they show a linear behaviour even when the
Grid-NHard graphs are not acyclic, while all the remaining algorithms show a
quadratic behaviour. However, among the remaining algorithms, our Potential
algorithm turns out to be the fastest.

4.2 Results for SPRAND class

SPRAND graphs are constructed by creating a Hamiltonian cycle and then
adding edges with distinct random end points. In our experiments, we set the
weight of the edges in the cycle to 1. Two families of graphs were chosen from
this class for our experiments, Rand-Len and Rand-P.

In Rand-Len graphs, the weight of the edges outside the cycles is chosen at
random in an interval [0, U ]. During the first test, all the edges had a weight of
1. Then, at each test, the value of U was incremented.

In the Rand-P family, a potential value p in the interval [0, P ], is assigned to
each node, and then the weight function w is computed in the same way as for
Rand-Len graphs. Finally, a reduced weight function wp is computed by setting
wp(u, v) := w(u, v) + p(u)− p(v), and wp is used as weight function in the test.
Notice that while w is non-negative, wp may take negative values.

The Rand-Len family is the only family of graphs with non-negative weights.
Hence, it was possible to test on it also Dijkstra’s algorithm. Since Rand-Len
graphs are not acyclic, the runtimes of the Goldberg-Radzik’s algorithms are
comparable with those of the remaining algorithms. With this family, our Po-
tential algorithm and its variant are very fast and, as shown in Table 2, the
Potential algorithm’s timings are very close to those of Dijkstra’s ones, giving
evidence in support of the property proved in Lemma 2.

The family Rand-P is very similar to the family Rand-Len, with the main
difference that Rand-P graphs admit negative weight edges. The Potential algo-
rithm and its variant are faster than the remaining algorithms, as reported in
Table 3.
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[L,U ] POT POT1 BFP GOR GOR1 TWO Q THRESH PAPE DIKH
[1, 1] 23.96 11.71 10.90 17.39 58.95 10.66 18.95 10.64 21.01
[0, 10] 28.47 25.17 34.91 40.97 73.50 27.63 20.08 28.04 25.14
[0, 100] 29.69 36.15 76.21 73.38 88.65 64.24 35.47 63.96 25.47

[0, 10000] 31.64 55.71 171.49 123.08 119.46 169.27 120.49 160.25 26.94
[0, 1000000] 30.31 72.80 220.93 159.42 69.69 250.48 177.29 244.91 26.85

Table 2. Experimental execution time in milliseconds for some Rand-Len family; all
graphs have 131072 nodes and 524288 edges.

P POT POT1 BFP GOR GOR1 TWO Q THRESH PAPE
0 30.67 59.12 159.77 129.74 125.35 165.17 118.81 160.6

1000 51.20 69.47 155.21 121.16 121.34 165.12 114.97 160.21
5000 90.27 77.82 154.25 123.56 122.00 163.33 118.83 161.49
10000 117.24 83.02 156.26 125.98 123.14 162.39 128.64 163.15
100000 183.29 97.82 161.40 130.55 119.72 164.70 326.36 163.79
1000000 218.53 100.03 164.02 135.03 121.63 162.92 412.45 164.66

Table 3. Experimental execution time in milliseconds for some Rand-P families; all
graphs have 131072 nodes and 524288 edges.

4.3 Results for SPACYC class

The graphs in the SPACYC class are generated by first numbering all the nodes
from 1 to n and then building a path by adding the path edges (i, i + 1), for
1 ≤ i < n. Additional edges are added subsequently by picking pairs of nodes at
random and connecting the lower node to the higher numbered one and assigning
to them weights chosen uniformly at random in an interval [L,U ]. Specifically,
for our tests we used the Acyc-Neg and Acyc-P2N families of graphs.

For Acyc-Neg graphs, the weight of path edges are all set to −1, while L is
set to −10000 and U to 0. Note that all weights are non-positive and chosen
uniformly at random in the interval [L,U ]. Such configuration may show up in
practical situations such as in the problem of finding the longest path in acyclic
graphs, where a common solution is to change the sign of all the weights and
then find the shortest path in the resulting graph. For the Acyc-P2N family, the
number of edges and nodes was fixed, while the values L and U changed at each
test. The fraction f of negative edges is then computed from L and U .

The graphs in the SPACYC class are all acyclic. The Goldberg-Radzik’s al-
gorithms turned out to be the fastest, since, thanks to their use of topological
sorting, their running time is in practice linear on acyclic graphs. We mention
that our Potential algorithm was significantly faster than the remaining algo-
rithms, as shown in Tables 4 and 5.

Interestingly enough, in the case of Acyc-P2N graphs with a low percentage
of negative weight edges all algorithms showed a very similar behavior.
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nodes/edges POT POT1 BFP TWO Q THRESH PAPE
8193/63808 22.90 25.46 127.86 845.57 404.42 1017.32

16385/129344 60.530 76.75 522.25 3936.48 1737.12 4610.27
32769/260416 155.92 260.46 2589.59 17815.66 7967.76 28055.02
65537/522560 118.81 924.27 13295.41 93352.41 39584.39 109143.61

131073/1046848 1177.61 3293.57 66871.14 375492.12 218589.70 /

GOR GOR1
0.69 0.83
1.79 2.04
4.43 4.92
10.19 11.23
26.07 28.11

Table 4. Experimental execution time in milliseconds for some Acyc-Neg families

f(%) POT POT1 BFP TWO Q THRESH PAPE
0 3.20 2.04 2.03 2.07 2.13 2.05
10 3.49 2.45 2.57 2.59 2.31 2.54
20 6.60 4.81 6.06 6.90 6.88 7.00
30 12.68 13.94 21.08 30.79 30.74 30.90
40 27.47 42.04 114.18 282.77 225.11 337.11
50 60.79 90.47 662.63 3777.12 1779.03 4124.36
60 110.27 154.10 1250.98 7504.86 3680.62 7302.66
100 131.11 187.48 1403.05 3809.14 4502.53 7655.65

GOR GOR1
3.30 2.28
3.32 2.37
5.71 2.55
9.84 2.53
16.36 2.23
23.82 2.01
25.49 1.97
1.79 1.98

Table 5. Experimental execution time in milliseconds for some Acyc-P2N families; all
graphs have 16384 nodes and 262144 edges.

5 Conclusions

We have presented a new heuristic for the Bellman-Ford algorithm for the SSSP
path problem, based on a potential heuristic for selecting the nodes to be scanned
next. More specifically, for each node, we use as potential the difference between
the current distance estimate and the distance estimate at the time the node
was last scanned. It turns out that, on graphs with no negative weight edges,
our potential heuristic yields Dijkstra’s algorithm. Though in the worst case
the resulting Potential algorithm has an O(V E + V 2 log V )-time complexity, in
practice it is very competitive with the most efficient algorithms for the SSSP
problem.

We also proposed an O(V E)-time variant of the Potential algorithm that
achieves the best performances on random graphs where negative weights are
allowed.

In view of the very promising practical performances exhibited by our Poten-
tial algorithm and its variant, we shall attempt to adapt the potential heuristic
also to the all-pairs shortest-path problem. We also intend to investigate the
topological properties of input graphs that suit well to our potential heuristic.
Finally, in preparation for a more comprehensive analysis, we plan to analyze
probabilistically the behaviour of our potential heuristic in the case of graphs
with very few negative arcs.
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