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1 Introduction

We discuss an asynchronous game on Petri nets, modelling the interaction be-
tween one or more users and an environment in a partially controllable and
partially observable distributed system. By partially controllable we mean that
each user controls a subset of the transitions, while some transitions are part
of the environment, and their occurrences can not be directly prevented by the
users; by partially observable we mean that each user can observe directly only
some elements of the system. We assume that each choice in the behaviour is
local, namely under the control of either one user or the environment.

Through the game, we investigate properties of the system, checking if the
user, controlling just a part of it, is able to impose a specified behavior on
the system. The decisions of the user are formalized with a strategy, a function
associating a subset of controllable choices to the system’s configurations.

We introduce the game in a very general setting, so that, defining proper
strategies, we can adapt the same model for the verification of different properties
by imposing different conditions on the systems.

The idea behind this definition was firstly addressed to solve the problem
of weak observable liveness, as defined in [5]. The first solution proposed was
a synchronous game on the case graph ([3]). This has disadvantages: it hides
the concurrency of the system and suffers from state explosion. To overcome
these issues, an asynchronous game played on the unfolding was developed in
[4]. This game was used to check properties of systems respecting some specified
restrictions in [4] and [2].

Games are well suitable models to analyse interactions between autonomuos
agents. For this reason, in the last decades, many different models have been
developed. We provide here a non-exhaustive historical overview of the works
dealing with models of distributed systems and asynchronous games.

In 1999, Samson Abramsky and Paul-André Melliès in [1] defined a game
that they called concurrent. In their work, the game is a domain of positions
on partial orders, a strategy is a closure operator on it, and the idea is applied
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to semantics of Linear Logic. In 2007, Melliès and Samuel Mimram developed
this idea in [9], defining an asynchronous game played on a partial order of
events, where strategies are sets of plays. In the last years other authors, among
which Julian Gutierrez ([8]) and Glynn Winskel ([11]) generalized these previous
contributions defining asynchronous games on event structures.

Closer to the game we are going to present, Bernd Finkbeiner and Ernst-
Rüdiger Olderog developed in [7] a game on Petri nets, where plays are runs on
the unfolding, players are tokens on the net and exchange information through
synchronizations. The aim of their game is the verification of a safety property;
specifically, they aim to verify if the so called system players are always able
to avoid a target place to be marked in the system. The information is carried
by tokens; every token knows only his past until it exchanges information with
other tokens through synchronizations.

2 General Definitions

In this section we describe in some detail the general idea of the game, and
suggest some specific cases of it. In the following we assume the basic definitions
of Petri net theory such as elementary net systems and their unfoldings ([10],
[6]).

Let Σ=(P, T, F,m0) be an elementary net system and unf(Σ)=(B,E, F, µ)
its unfolding. Let K ⊆ T be the set of controllable transitions, and Ek ⊆ E
the set of controllable events in the unfolding (occurrences of controllable tran-
sitions).

A run is a prefix of unf(Σ) ρ = (Bρ, Eρ, Fρ, µρ) describing a particular
history, in which conflicts have been solved. A configuration is a set of elements
of unf(Σ), down-closed (if x belongs to a configuration, then all the elements in
its past are contained in the configuration), and conflict-free. By FRuns(Σ) we
mean the set of runs which are weakly fair with respect to uncontrollable events.

A play in the game is essentially a run in FRuns(Σ). The run is paired by
a sequence of configurations representing global states, as might be observed
by some external observer. From one configuration to the next in the sequence,
several events occur, corresponding to concurrent or causally dependent moves
of the players and of the environment.

Definition 1. A play is a pair (ρ,Π), where ρ is a run in FRuns(Σ) and Π is
a sequence of configurations δ1 ⊂ ... ⊂ δn ⊂ ... with δi ⊂ Bρ ∪ Eρ for all i.

Definition 2. A winning condition is a subset W ⊂ FRuns(Σ),

In order to deal with the notion of partial observability, we suppose that a set of
observable configurations is defined. In a simple case, an observable configuration
can be the projection of a configuration onto a given set of observable events, or
of observable places, but other notions are possible.

A strategy is then defined as a map from the set of observable configurations
to the set of controllable events. More precisely, we allow for an equivalence



relation on observable configurations, to deal with cases in which two different
observable configurations might be indistinguishable by a player, and define a
strategy as a map on equivalence classes of it.

The set of all observable configurations on unf(Σ) is denoted by OC(Σ).

Definition 3. Let ∼⊆ OC(Σ) × OC(Σ) be an equivalence relation. A strategy
is a function α : OC(Σ)/ ∼→ 2K .

A play complies with a strategy if every controllable event occurring in the play is
the result of applying the strategy to an observable configuration visited during
the play, and no enabled choice of the strategy is indefinitely postponed.

Definition 4. A play (ρ,Π) complies with α if

– for all e ∈ EK ∩ ρ there is δi ∈ Π such that λ(e) ∈ α(obs(δi)) and e ∈ δi+1

– for all e ∈ EK , e is not finally eligible and finally postponed in (ρ,Π).

A strategy is winning if all plays complying with it are elements of the winning
condition.

Fig. 1. Black transitions are controllable by the user, white ones are observable, and
grey ones unobservable. The transitions’ observability on the system (on the left) is
inherited by the unfolding (on the right).

Example 1. Suppose that the goal of the user is to fire once a target transition.
Coherently, we define the winning condition for the user as the set of runs con-
taining the target. We assume that the user observes a subset of transitions of
the system, hence, letting ρ be a run on unf(Σ) and δ one of its prefixes, obs(δ)
is the set of events in δ such that the associated transition is observable in the
system. Finally, we define the relation ∼ as the identity relation.



Let us consider the system in Figure 1, and let us assume that t7 is the target
transition. A winning strategy for the user is: α({t11}) = {t8}, α({t12}) = {t9},
α({t11, t18}) = α({t12, t19}) = {t7}. For all other observable configurations, the
strategy should decide for the empty set. Notice that before every occurrence of
t7 there must be an occurrence of t3 or t4, but they are not in any observable
configuration because they are unobservable by the user. In this situation, ob-
servability does not change the user’s chances of winning, but this is not always
the case. For example, if in the system in Figure 1 the transitions t1 and t2 had
been unobservable, the user would not have had a winning strategy. Actually,
the user could not distinguish between the situations in which t1 or t2 already
fired and the one in which nothing happened, but this is crucial in order to take
the winning decisions, since the two reachable markings {p3, p6} and {p4, p5} are
deadlocks for this system.

3 Contributions

In [4] and [2], the game described in Section 2, where some constraints are im-
posed, is used for the analysis of two different properties. In [4] the authors
analyse the weak observable liveness of a target transition in systems with full
observability. They prove the equivalence between weak observable liveness of a
target transition on the sequences of the system, and the existence of a winning
strategy in a game on the unfolding, where the goal of the user is having for every
play infinite occurrences of the target. Studying the game on the unfolding rather
than analysing the property directly on the system can be useful in developing
methods and techniques for verification. Keeping track of the different evolutions
of the system can help in understanding when all the different behaviours have
been explored. In addition, the concurrent structure is preserved, hopefully re-
ducing the complexity of the method; indeed, complexity is the main drawback
of algorithms studying infinite games on finite graphs representing concurrent
structures, as the one introduced in [3].

In [2] an algorithm is proposed for determining if there is a winning strat-
egy for controlled reachability of a target transition. The algorithm works on
distributed net systems with full observability, i.e.: on elementary net systems
where concurrency is present only between transitions of the user and of the
environment, and where all choices are local either to the user or to the envi-
ronment. The idea behind the algorithm is that the user increases the chances
of winning by observing as much as possible the decisions of the environment.
Determining the complexity of the algorithm is still an open problem.

4 Ongoing work and future developments

We are generalizing the results mentioned in the previous section mainly in
two directions: on one side we consider systems with partial observability, i.e.:
systems in which some transitions are not observable, and where there is no
restriction on concurrency between transitions; on the other side we intend to



study when strategies can be implemented by adding new elements to the system
model, in such a way that the desired property is satisfied.

For what concerns the first direction, the following example can give the idea
of how the definition of a game on unfolding may allow to define a winning
strategy for the user, whereas this would be not possible by considering a game
based on interleaving semantics.

Example 2. Let us consider the net system given in the upper part of Figure 2,
and let us assume that t is the target transition, and that the game is played on
the system unfolding as given in the lower part of the same figure.

A winning strategy for the user is: α({a, b1}) = {x1}, α({a, b2}) = {y2}. For
all other observable configurations, the strategy should decide for the empty set.

More explicitly, if the user observes with the event corresponding to transition
a the event b1, corresponding to transition b, then, in order not to reach a
deadlock, he has to choose the event corresponding to transition x, whereas if
he observes the event b2, he has to choose the event corresponding to transition
y. This means that, by observing the events on the unfolding, the user is able
to infer which unobservable transition occurred before b. This inference would
have not be possible in the case of a game based on interleaving; in fact, just by
observing sequences, a user would not have a winning strategy: after observing
the sequence ab, he would have no strategy to choose between x and y.

Fig. 2. A net system (above) and its unfolding (below).
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