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Abstract. We describe a Java-like calculus which supports cyclic data structures,
and offers a mechanism of flexible regular corecursion for their manipulation.
The calculus enhances an earlier proposal by a more sophisticated reduction se-
mantics, which filters out, by an additional check, some spurious results which
were obtained in the previous model.
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1 Introduction

Recently, several approaches to support non-well-founded data structures and their ma-
nipulation have been proposed in all main programming paradigms: logic [12,1,4],
functional [11] and object-oriented [5,6].

Notably, COFJ [5,6] is an extension of Featherweight Java (FJ) [9], the reference
calculus for Java-like languages, where it is possible to define cyclic objects, and meth-
ods are equipped with a mechanism of flexible regular corecursion for manipulating
such objects.

However, the operational semantics provided in [5,6] failed to model the intuitively
expected behaviour in some problematic cases. Here, we provide a more sophisticated
reduction semantics, where they are correctly handled. More precisely, the revised se-
mantics filters out spurious results by an additional check.

This paper presents ongoing work. In a forthcoming full version, we plan to for-
mally state and prove the relation of the revised semantics with a more abstract seman-
tics provided by generalized inference systems [3,8], as detailed in Section 6.

In this section we briefly recall COFJ by some simple examples, and informally
illustrate its semantics. In Section 2 we report the (original) formal definition of COFJ,
and in Section 3 we discuss problematic examples. In Section 4 we provide the revised
semantics. Finally, in Section 6 we outline related and further work.

The COFJ calculus is purely functional like FJ, but, differently from FJ, it is possi-
ble to manipulate cyclic objects, since values can take an equational shape; for instance,
X=new C (X ) is an instance of class C whose unique field contains the object itself.
Furthermore, methods are regularly corecursive. This means that execution keeps trace
of the pending method calls, so that, when a call, say, v .m(v1, . . . , vn), is encountered
the second time, this is detected, avoiding non-termination as it would happen with ordi-
nary recursion. This mechanism mimics what happens in co-SLD resolution [12,13,4],
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where already encountered goals, called (dynamic) coinductive hypotheses, are consid-
ered successful. However, in COFJ regular corecursion is flexible since the behaviour of
the method when a cycle is detected can be specified by the programmer. To this end,
a method body is a pair of two expressions: the standard (inductive) definition, and an
additional codefinition.

Consider as a first example the following class declarations:1

class List extends Object { }
class EmptyList extends List { }
class NonEmptyList extends List { int head; List tail; }
class ListFactory extends Object {

NonEmptyList repeat(int n) {
new NonEmptyList(n,this.repeat(n)) }

NonEmptyList zeroOne() {
new NonEmptyList(0,this.oneZero()) }

NonEmptyList oneZero() {
new NonEmptyList(1,this.zeroOne()) }

}

Finite lists are constructed as in FJ, e.g., new NonEmptyList(2,new EmptyList()).
However, in COFJ it is also possible to construct cyclic lists, by invoking lf.repeat(0)
with lf =new ListFactory(); such a call would not terminate with the standard FJ
(and Java) semantics, whereas it returns a well-defined value in COFJ, that is, the cyclic
object L=new NonEmptyList(0,L), thanks to regular corecursion. Indeed, the oper-
ational semantics presented in Section 2 keeps trace of pending calls, each one uniquely
identified by a fresh label. In this way, if the label, say, L, is generated for the initial
call lf.repeat(0), when the same call is encountered the second time, L is returned
as result, hence the result of the original call is L=new NonEmptyList(0,L).

Similarly, zeroOne(), and oneZero() return the cyclic lists
L01 = new NonEmptyList(0,new NonEmptyList(1,L01)) and
L10 = new NonEmptyList(1,new NonEmptyList(0,L10)), respectively.

Consider now the method allPos which returns true iff all the elements of the list
are positive. The following definition works correctly for both non cyclic and cyclic
lists.

class EmptyList extends List {
boolean allPos() { true }

}
class NonEmptyList extends List { ...

boolean allPos() {
if(this.el <= 0) false else this.tail.allPos() }

corec { true } // codefinition

If the list is finite, then no regular corecursion is involved, since the same call cannot
occur more than once; the same if the list is cyclic, but contains a non positive element,
hence the method invocation returns false. The only case requiring regular corecur-
sion is when the method is invoked on a cyclic list with all positive elements. In this

1 In the examples we will use additional standard language features not considered in the for-
malization.
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case, the approach based on the call trace described above would lead to the result R=R,
that is, undetermined (in other words, both true and false are solutions of the equa-
tion corresponding to the method call). Instead, the codefinition specifies that true
should be chosen.

The pattern used for defining method member is similar, but in this case the corec
clause returns false.

class EmptyList extends List {
boolean member(int i) { false }

}
class NonEmptyList extends List { ...

boolean member(int i) {
if(this.el == i) true; else this.tail.member(i) }

corec { false }
}

We show now an example of codefinition returning an object rather than a primitive
value: the method noRep which, invoked on a list, returns the finite (non cyclic) list
with no repeated elements.

class EmptyList extends List {
EmptyList noRep() { new EmptyList() }

}
class NonEmptyList extends List { ...

List noRep() {
let l = this.tail.noRep() in

if (l.member(this.el)) l
else new NonEmptyList(this.el,l) }

corec { new EmptyList() }
}

For brevity we have used the let in construct, with the standard obvious semantics.
Note that, in case noRep is invoked on the cyclic list L = new NonEmptyList(0,L),
if there was no corec clause, the result of this.tail.noRep() would be undeter-
mined, hence l.member(this.el) could not be computed.

2 Calculus

In this section we report COFJ syntax (Figure 1) and operational semantics (Figure 2)
from [5,6]. Notations and conventions follow those of FJ. We assume infinite sets of
class names C , including the special class name Object, field names f , method names
m , variables x , including the special variables this and any, and labels X . We write
cd as a shorthand for a possibly empty sequence cd1 . . . cdn, and analogously for other
sequences. For simplicity, the codefinition e ′ is statically restricted to avoid recursive
(even indirect) calls to the same method, and can use the special variable any. A method
declaration C m(C x ) {e} is an abbreviation for C m(C x ) {e} corec {any}.

Values and objects (class instances) coincide in FJ, and have shape new C (v). Here,
values are generalized to the form X1= . . . Xn=new C (v), abbreviated X = new C (v)
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p ::= cd e program
cd ::= class C extends C ′ { fd md } class declaration
fd ::= C f ; field declaration
md ::= C m(C x ) {e} corec {e ′} method declaration
e ::= x | e.f | new C (e) | e.m(e) expression

v ::= new C (v) | X=v | X value (object)
c ::= v .m(v) call

Fig. 1. COFJ syntax

with our convention, so that cyclic objects can be represented. Values which, intuitively,
represent the same cyclic object, as, for instance, the following:

new C(Y=X=new C(new C(X)))
Y=new C(X=new C(Y))
Z=new C(Z)

are considered equal. Moreover, values of shape X1= . . . Xn=Xi, with i ∈ 1..n, are all
representations of “undetermined”.

Note that values representing cyclic objects are not expressions, since, to keep the
language minimal, they can only be obtained as result of a method invocation, as shown
in the examples of previous section. Values which are not objects (notably, representa-
tions of “undetermined” and labels) cannot be safely used as receivers in field accesses
and method invocations.

In the following, a call c is a method invocation where receiver and arguments have
been evaluated, that is, of shape v .m(v).

The big-step semantics e, τ ⇓v returns the result v , if any, of evaluating an expres-
sion e in the context of a call trace τ keeping track of pending calls. Formally, τ is a
map from calls to labels X . We prefer a big-step style since small-step semantics would
require to explicitly handle stacks of call traces.

The reduction rules are given in Figure 2. We omit technical details which are as in
FJ, notably, the formal definitions of parallel substitution and auxiliary functions fields
and mbody . The function co-mbody is the analogous of mbody for codefinitions.

We use the following notations for maps (e.g., call traces): we write maps as se-
quences of pairs of shape v .m(v):X , and τ{τ ′} denotes the map which is τ ′ where it is
defined, τ elsewhere. Finally, we sometimes use the wildcard when the corresponding
meta-variable is not relevant.

Rule (FIELD) models field access. Recall that, with the FJ convention, f stands for
f1 . . . fn. The result of the receiver expression is expected to be an object. If the se-
lected field is actually a field of its class, then the corresponding value is returned as
result. Note that this value could contain references to the enclosing receiver object,
which must be unfolded. For instance, given class C extends Object { C f; },
if v = X=new C(Y=new C(X)), then v .f is reduced to (Y=new C(X))[v/X] ≡
Y=new C(X=new C(Y=new C(X))).
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(VAL)
v , τ ⇓v

(FIELD)
e, τ ⇓v

e.f , τ ⇓vi[v/X ]

v = X = new C (v)

fields(C ) = f
f = fi, i ∈ 1..n

(NEW)
e, τ ⇓v

new C (e), τ ⇓new C (v)
fields(C ) = f

(INVK)
e0, τ ⇓v0 e, τ ⇓v e[v0/this][v/x ], τ{c:X }⇓v

e0.m(e), τ ⇓X=v

v0 = X = new C ( )
mbody(C ,m) = (x , e)
c ≡ v .m(v) 6∈ dom(τ)
X 6∈ img(τ)

(COREC)
e0, τ ⇓v0 e, τ ⇓v e ′[v0/this][v/x ][X /any], τ ⇓vco

e0.m(e), τ ⇓vco

v0 = X = new C ( )
co-mbody(C ,m) = (x , e ′)
τ(v .m(v)) = X

Fig. 2. Original COFJ semantics

Rule (NEW) is the standard rule for constructor invocation. Note that with the FJ
convention f stands for f1 . . . fn and v stands for v1 . . . vn, hence the side condition
ensures that the constructor is invoked with the appropriate number of arguments.

There are two rules for method invocation. In both, the receiver and argument ex-
pressions are evaluated first to obtain the call c ≡ v .m(v), the result v of the receiver
expression is expected to be an object, and method look-up is performed, starting from
its class, by the standard function mbody . Then, the behavior is different depending
whether such call has been already encountered.

If this is not the case, then the method invocation is handled as usual by rule (INVK):
the result is obtained by evaluating the left expression e in the body (definition) where
the receiver object replaces this and the arguments replace the parameters. Evaluation
of e is performed in the call trace τ updated with the call c, associated with a fresh
label X . Finally, when the evaluation of e is completed, references to the label X in
the resulting value, possibly occurring in case of termination by regular corecursion of
the method invocation, see rule (COREC), are bound. In this way a cyclic object can be
obtained as result.

Rule (COREC) is applied when an already encountered call is detected; in this case,
the right expression e ′ in the body (codefinition) is evaluated where the receiver object
replaces this, the arguments replace the parameters, and, moreover, the label X found
in the call trace replaces any.

We conclude this section by showing an example of reduction. Consider the method
allPos() defined in Section 1. Set 1ω the cyclic list L = new NonEmptyList(1,L),
and a the method call 1ω.allPos(). The proof tree for the judgment a, ∅ ⇓ true is
shown in Figure 3. To save space, in proof trees we use abbreviated names.
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(INVK)

. . . (IF-FALSE)

(<)
. . .

1ω.hd < 0, a:X ⇓false
(COREC)

(FIELD)

(VAL)
1ω, a:X ⇓1ω

1ω.tl, a:X ⇓1ω
(VAL)

true, a:X ⇓true
1ω.tl.allPos(), a:X ⇓true

if . . . , a:X ⇓true
a, ∅⇓true

Fig. 3. Reduction of 1ω.allPos()

3 Problematic examples

In this section we show some examples that, according to the semantics presented in
Section 2, can lead to spurious results.

In the first example, our aim is to write a method that, given a list of integers,
returns the sum of all its elements. As first attempt, one could write the following COFJ
definition.

class EmptyList extends List {
int sum() { 0 }

}
class NonEmptyList extends List { ...

int sum() { this.head + this.tail.sum() }
corec { 0 }

}

This definition works well for the lists where the sum can actually be computed, that
is, finite lists or cyclic lists where the cycle has sum 0. However, for cyclic lists where
the cycle has sum different from 0, hence the result should be undefined, a spurious
result is returned.

For instance, set 1ω the cyclic list L = new NonEmptyList(1,L), and s the method
call 1ω.sum(), it is possible to build a proof tree for the judgment s, ∅ ⇓ 1. The proof
tree is shown in Figure 4.

(INVK)

(VAL)
1ω, ∅⇓1ω

(SUM)

(FIELD)

(VAL)
1ω, s:X ⇓1ω

1ω.hd, s:X ⇓1
(COREC)

(FIELD)

(VAL)
1ω, s:X ⇓1ω

1ω.tl, s:X ⇓1ω
(VAL)

0, s:X ⇓0

1ω.tl.sum(), s:X ⇓0

1ω.hd+ 1ω.tl.sum(), s:X ⇓1

s, ∅⇓1

Fig. 4. Reduction of 1ω.sum()

Note that in any case 1 cannot be accepted as result since it is not a solution of the
equation R = 1 +R generated by the method call 1ω.sum().

As a second problematic example, we consider the method remNeg() that re-
moves negative elements. A possible COFJ definition could be:

class EmptyList extends List {
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EmptyList remNeg() { new EmptyList() }
}
class NonEmptyList extends List { ...

List remNeg() {
if(this.head < 0) this.tail.remNeg()
else new NonEmptyList(this.head,this.tail.remNeg())}

corec { new EmptyList() }

Also this definition fails to achieve the desired behaviour. Indeed, set r the method
call 1ω.remNeg(), and [1] the list new NonEmptyList(1,new EmptyList()), it is
possible to build a proof tree for the judgment r , ∅⇓ [1], which is intuitively wrong since
1ω.remNeg() should be reduced, instead, to 1ω . The proof tree is shown in Figure 5.
Again, the result [1] is not a solution of the equationR = new NonEmptyList(1, R)
generated by the method call 1ω.remNeg().

(INVK)

. . . (IF-FALSE)

. . . (NEW)

. . . (COREC)

(FIELD)

(VAL)
1ω, r :X ⇓1ω

1ω.tl, r :X ⇓1ω
(NEW)

new EList(), r :X ⇓new EList()

1ω.tl.rN(), r :X ⇓new EList()

new NEList(1ω.hd, 1ω.tl.rN()), r :X ⇓ [1]

if . . . , r :X ⇓ [1]

r , ∅⇓ [1]

Fig. 5. Reduction of 1ω.remNeg()

Note that in the first example the equation generated by the call has no solution,
whereas in the second it has exactly one solution which, however, is different from
the result obtained using the codefinition. Both examples suggest that the semantics
presented in Section 2 should be refined by a check that the result v obtained for a
method call using the codefinition is actually a solution of the corresponding equation.
That is, assuming v as result of the (recursive) call, we get v in turn as result. This check
is performed by the revised semantics presented in Section 4.

4 Revised calculus

The basic idea of the revised semantics is that the rule for method invocation (INVK) in
Figure 2 should be refined, adding a check that the obtained result X=v is a solution of
the equation corresponding to the call c ≡ v .m(v). That is, the definition in the method
body, evaluated assuming X=v as result of (recursive) calls c, should in turn give X=v
as result. Note that this is necessary only when the result X=v has been obtained by
regular corecursion (that is, the same call c has been encountered and the codefinition
for c has been evaluated), otherwise the result (which can be written as v in this case)
has been obtained by standard recursion and no check is needed.

To this end, in the revised semantics, the judgment has shape e, τ, ρ ⇓ v , S. In addi-
tion to the call trace τ , which plays the same role as before, there are two other auxiliary
components: a map ρ from calls into values, and a set of labels S. The fact that a call c
has an associated value v in ρ means that the evaluation of e is performed assuming v
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as result of such (recursive) call. On the other hand, a label X belongs to S if the result
of corresponding call has been obtained by regular corecursion, hence the additional
check described above needs to be performed. Hence, every time a codefinition is eval-
uated, the label X corresponding to the call is added in S, see rule (COREC). Then, in
rule (INVK-CHECK), if S contains X then the check is performed.

The rules of the revised semantics are given in Figure 6.

(VAL)
v , τ, ρ ⇓ v , ∅ (FIELD)

e, τ, ρ ⇓ v , S

e.f , τ, ρ ⇓ vi[v/X ], S

v = X = new C (v)

fields(C ) = f
f = fi, i ∈ 1..n

(NEW)
ei, τ, ρ ⇓ vi, Si ∀i ∈ 1..n

new C (e), τ, ρ ⇓ new C (v),
⋃

i∈0..n Si
fields(C ) = f1 . . . fn

(INVK-OK)

ei, τ, ρ ⇓ vi, Si ∀i ∈ 0..n
e[v0/this][v/x ], τ{c:X }, ρ ⇓ v , S

e0.m(e), τ, ρ ⇓ v ,
⋃

i∈0..n Si∪S

v0 = X = new C ( )
mbody(C ,m) = (x , e)
c ≡ v0.m(v) 6∈ dom(τ)∪dom(ρ)
X 6∈ img(τ)
X /∈ S

(INVK-CHECK)

ei, τ, ρ ⇓ vi, Si ∀i ∈ 0..n
e[v0/this][v/x ], τ{c:X }, ρ ⇓ v , S
e[v0/this][v/x ], τ, (ρ{c:X=v})[X=v/X ] ⇓ X=v , S′

e0.m(e), τ, ρ ⇓ X=v , (
⋃

i∈0..n Si∪S)\{X}

v0 = X = new C ( )
mbody(C ,m) = (x , e)
c ≡ v0.m(v) 6∈ dom(τ)∪dom(ρ)
X 6∈ img(τ)
X ∈ S

(COREC)

ei, τ, ρ ⇓ vi, Si ∀i ∈ 0..n
e ′[v0/this][v/x ][X /any], τ, ρ ⇓ vco, ∅

e0.m(e), τ, ρ ⇓ vco,
⋃

i∈0..n Si∪{X }

v0 = X = new C ( )
co-mbody(C ,m) = (x , e ′)
τ(v0.m(v)) = X

(LOOK-UP)
ei, τ, ρ ⇓ vi, Si ∀i ∈ 0..n

e0.m(e), τ, ρ ⇓ v ,
⋃

i∈0..n Si

v0 = X = new C ( )
ρ(v0.m(v)) = v

Fig. 6. COFJ revised semantics

Rules (VAL), (FIELD) and (NEW) are as before, apart from the fact that the result-
ing set of labels is the union of those obtained by evaluating subterms. Instead, there
are now four rules for method invocation. In all of them, the receiver and argument
expressions are evaluated, obtaining the call c ≡ v .m(v).

Rules (INVK-OK) and (INVK-CHECK) are two different versions of the previous rule
(INVK) handling a call c which is encountered the first time, as expressed by the side
condition c 6∈ dom(τ)∪dom(ρ). In both, the definition e , where the receiver object
replaces this and the arguments replace the parameters, is evaluated. Such evaluation
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is performed in the call trace τ updated with the call c, associated to an unused label
X , and produces a set of labels S. Then there are two cases, depending on the condition
X ∈ S.

If X 6∈ S, then the evaluation of the definition for c has been performed without
evaluating the codefinition. That is, no recursive call c has been encountered, hence
the result of the evaluation has been obtained by standard recursion, and no additional
check is needed.

If X ∈ S, instead, then the evaluation of the definition for c has required to evaluate
the codefinition. In this case, e[v0/this][v/x ] is evaluated once more updating ρ with
the assumption that X=v is the result of c. The result obtained in this way must be in
turn X=v . In case this does not happen, rule (INVK-CHECK) cannot be applied since the
last premise does not hold. For simplicity, we assume the result of c to be undefined
in this case; an additional rule could be added raising a runtime error in case the result
obtained by the third premise is different from the expected one, as should be done in
an implementation.

In both cases, the resulting set of labels is the union of those obtained by evaluating
the subterms and the definition for the call. The only difference is that in rule (INVK-
CHECK), since the call associated with X has been checked, the label X is removed
from the resulting set of labels. Moreover, labels obtained during the additional check
step are not relevant.

The remaining two rules handle a call which has already been encountered, that is,
the corresponding label X is either in dom(τ) or in dom(ρ).

In the former case, rule (COREC) works as in the previous semantics, that is, evalu-
ates the codefinition where the receiver object replaces this, the arguments replace the
parameters, and, moreover, the label X found in the call trace replaces any. In addition,
the label associated with the call is added in S.

The latter case, instead, is introduced in the revised semantics to perform the addi-
tonal check step. To this end, rule (LOOK-UP) simply returns the associated value for a
call which is present in the result table.

5 Examples

Let us consider again the examples discussed in Section 3. We show that, with the new
semantics, there exists no proof tree for the judgment s, ∅, ∅ ⇓ 1, ∅. Recall that 1ω is
an abbreviation for the cyclic list L = new NonEmptyList(1,L), and s for the call
1ω.sum(). The “tentative” proof tree is shown in Figure 7.

Comparing with the proof tree in Figure 4, note that:

– Rule (COREC) adds to the set S the label X (corresponding to the call s).
– Rule (INVK-CHECK) has the additional premise 1ω.hd+1ω.tl.sum(), ∅, s:1 ⇓ 1, ∅,

whose tentative proof tree T is separately shown.
– In T , there is no way to prove the third premise of rule (SUM), where the result of

the method invocation should be 0. Indeed, since s:1 is in the result table, the only
applicable rule for the method invocation is (LOOK-UP), but applying this rule we
get 1 as result.
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(INVK-CHECK)

. . . (SUM)

. . . (COREC)

(FIELD)

(VAL)
1ω, s:X , ∅ ⇓ 1ω, ∅

1ω.tl, s:X , ∅ ⇓ 1ω, ∅ (VAL)
0, s:X , ∅ ⇓ 0, ∅

1ω.tl.sum(), s:X , ∅ ⇓ 0, ∅ ∪X

1ω.hd+ 1ω.tl.sum(), s:X , ∅ ⇓ 1, {X } T

s, ∅, ∅ ⇓ 1, ∅

T = (SUM)

(FIELD)

(VAL)
1ω, ∅, ∅ ⇓ 1ω, ∅

1ω.hd, ∅, ∅ ⇓ 1, ∅ (???)

(FIELD)

(VAL)
1ω, ∅, ∅ ⇓ 1ω, ∅

1ω.tl, ∅, ∅ ⇓ 1ω, ∅
1ω.tl.sum(), ∅, s:1 ⇓ 0, ∅

NO RULE TO APPLY

1ω.hd+ 1ω.tl.sum(), ∅, s:1 ⇓ 1, ∅

Fig. 7. Tentative reduction of 1ω.sum()

For what concerns the remNeg() method, set r the call 1ω.rN(), [1] the list
new NonEmptyList(1,new EmptyList()) and [ ] the list new EmptyList(). In
Figure 8 we show the ”tentative” proof tree for the judgment r , ∅, ∅ ⇓ [1], ∅.

(INVK-CHECK)

. . . (IF-FALSE)

. . . (NEW)

. . . (COREC)

(FIELD)

(VAL)
1ω, r :X , ∅ ⇓ 1ω, ∅

1ω.tl, r :X , ∅ ⇓ 1ω, ∅
(VAL)

[ ], r :X , ∅ ⇓ [ ], ∅
1ω.tl.rN(), r :X , ∅ ⇓ [ ], ∅ ∪ X

new NEList(1ω.hd, 1ω.tl.rN()), r :X , ∅ ⇓ [1], {X}
if . . . , r :X , ∅ ⇓ [1], {X}

T

r , ∅, ∅ ⇓ [1], ∅

T = (IF-FALSE)

. . . (NEW)

(FIELD)

(VAL)
1ω, ∅, ∅ ⇓ 1ω, ∅

1ω.hd, ∅, ∅ ⇓ 1, ∅
(???)

(FIELD)

(VAL)
1ω, ∅, ∅ ⇓ 1ω, ∅

1ω.tl, ∅, ∅ ⇓ 1ω, ∅
NO RULE TO APPLY

1ω.tl.rN(), ∅, r :[1] ⇓ [ ], ∅
new NEList(1ω.hd, 1ω.tl.rN()), ∅, r :[1] ⇓ [1], ∅

if . . . , ∅, r :[1] ⇓ [1], ∅

Fig. 8. Tentative reduction of 1ω.rN()

Again, the judgment has no proof tree because the check performed by rule (INVK-
CHECK) fails.

As last example, we show a case where the check succeeds, considering sum as
in Section 3. We set 0ω the cyclic list L = new NonEmptyList(0,L), and t the call
0ω.sum(). The proof tree for the judgment t , ∅, ∅ ⇓ 0, ∅ is shown in Figure 9.

Note that the sum method, interpreted with the revised semantics, returns the desired
result: the sum of the elements if the list is either finite or terminating with a cycle of
sum 0, undefined otherwise. The remNeg method, instead, if the list has a cycle with
non negative elements, returns undefined (a runtime error in an implementation) rather
than a wrong result as it was in the original semantics. That is, the programmer is alerted
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(INVK-CHECK)

(VAL)
0ω, ∅, ∅ ⇓ 0ω, ∅

(SUM)

. . . (COREC)

(FIELD)

(VAL)
0ω, t:X , ∅ ⇓ 0ω, ∅

0ω.tl, t:X , ∅ ⇓ 0ω, ∅
(VAL)

0, t:X , ∅ ⇓ 0, ∅
0ω.tl.sum(), t:X , ∅ ⇓ 0, ∅ ∪ X

0ω.hd+ 0ω.tl.sum(), t:X , ∅ ⇓ 0, {X}
T

t, ∅, ∅ ⇓ 0, ∅

T = (SUM)

(FIELD)

(VAL)
0ω, ∅, ∅ ⇓ 0ω, ∅

0ω.hd, ∅, ∅ ⇓ 0, ∅
(LOOK-UP)

(FIELD)

(VAL)
0ω, ∅, ∅ ⇓ 0ω, ∅

0ω.tl, ∅, ∅ ⇓ 0ω, ∅
0ω.tl.sum(), ∅, t:0 ⇓ 0, ∅

0ω.hd+ 0ω.tl.sum(), ∅, t:0 ⇓ 0, ∅

Fig. 9. Reduction of 0ω.sum()

that there is something to be corrected. A remNeg definition which returns the desired
result also in this case is the following:

class EmptyList extends List {
boolean allNeg() {true}
EmptyList remNeg() { new EmptyList() }

}
class NonEmptyList extends List { ...

boolean allNeg() { this.head < 0 && this.tail.allNeg() }
corec { true }
List remNeg() {

if(this.head < 0) this.tail.remNeg()
else new NonEmptyList(this.head,this.tail.remNeg())}

corec { if (this.allNeg()) new EmptyList() else any }
}

The COFJ (revised) operational semantics is an extension of the FJ semantics. That
is, evaluation in the COFJ operational semantics of FJ programs gives exactly the same
results of FJ evaluation, as formally stated below.

Theorem 1 (Conservativity). Given an FJ class table, for e expression in FJ, e ⇓FJ
v ⇐⇒ e, ∅, ∅ ⇓ v , ∅.

6 Conclusion

The Java-like calculus presented in this paper promotes a novel programming style,
which smoothly incorporates support for cyclic data structures and coinductive rea-
soning in the object-oriented paradigm. The calculus enhances an earlier proposal by
filtering out, by an additional runtime check, results of a (cyclic) call which are not
acceptable since they are not solutions of the corresponding equation.

This paper presents ongoing work. In a forthcoming full version, we plan to for-
mally state and prove the relation of the revised semantics with the more abstract se-
mantics provided by generalized inference systems [3,8], a recently proposed formalism
allowing definition of relations by mixing induction and coinduction. Besides standard
rules, generalized inference systems are enriched by corules which play a special role.



12 P. Barbieri et al.

The semantics of flexible regular corecursion presented in this paper is expected to be
the operational counterpart of that obtained by considering recursive functions as rela-
tions, and recursive definitions (with codefinition) as inference systems (with corules).
Of course the latter semantics is more abstract, notably relations can involve not only
cyclic data structures (such as the 1ω example) but arbitrary non-well-founded struc-
tures (such as the list of natural numbers). We plan to make this correspondence precise,
proving that the operational semantics in this paper is sound with respect to the inter-
pretation based on generalized inference systems, and investigating restrictions which
guarantee completeness as well.

As already mentioned, the idea of regular corecursion (keeping trace of pending
method calls, so to detect cyclic calls), originates from co-SLD resolution [12,13,4].
Making regular corecursion flexible means that the programmer can specify the be-
haviour in case a cycle is detected. Language constructs to achieve such flexibility have
been proposed in the logic [1,2], object-oriented [5,6] and functional [11] paradigm.
In the logic paradigm, the programmer can write special clauses corresponding to the
corules mentioned above, so that, when a goal G is encountered the second time, stan-
dard SLD resolution of G is triggered in the program enriched by the corules. Simi-
larly, in the COFJ calculus introduced in [5,6] and refined in this paper, the programmer
can write a codefinition which is evaluated when a cycle is detected. In the functional
paradigm, there exists a fully-fledged proposal, CoCaml (www.cs.cornell.edu/
Projects/CoCaml), a variant of Caml supporting non-well-founded data types and
corecursive methods. In CoCaml, flexibility is achieved by a different mechanism:
roughly, the equation corresponding to a (recursive) call is generated, and then a so-
lution is found through a solver which can be predefined or written by the programmer.

There are several other directions for further research, both on the foundational and
applicative side.

First of all, we plan to investigate different approaches to the model of values, pos-
sibly relying on the capsule notion proposed in [10].

A challenging long-term goal is to overcome the restriction to cyclic data structures
mentioned above by extending equations X=v , denoting regular terms, considered in
this paper, to algebraic equations [7]. The approach obtained in this way should nicely
combine the advantages of lazy evaluation with those of regular corecursion. With
lazy evaluation, arbitrary non-well-founded data structures can be represented, e.g., in
Haskell we can write from n = n : from(n+1). However, we cannot compute re-
sults which need to explore the whole structure, whereas, with regular corecursion, this
becomes possible for cyclic structures: for instance we can compute allPos ones,
which diverges in Haskell.

On the more practical side, we plan to implement the calculus presented in this
paper. This could be done directly, or through a translation in logic programming relying
on a meta-interpreter supporting corules[2]. Moreover, we could possibly apply the
work done on toy languages to develop an extension of a real language.
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