
An abstract distributed middleware for
transactions over heterogeneous stores

Luca Geatti, Federico Igne, and Marino Miculan?

Department of Mathematics, Computer Science and Physics, University of Udine
luca.geatti@gmail.com, federico.igne@cs.ox.ac.uk, marino.miculan@uniud.it

Abstract We present an abstract middleware, called Acidify, for the co-
ordination of transactions between distributed processes accessing shared
heterogeneous (possibly remote) storage services. Processes can specify
transactions by means of a specific abstract language; each transaction
is then executed atomically and in isolation, following an “optimistic”
strategy. To ensure scalability and reliability, Acidify is peer-to-peer,
without relying on any centralized service. Moreover, it is abstract, in
the sense that the transaction language is independent from the under-
lying storage services, and it can be readily ported to any storage service.
We provide a formal model of Acidify as a set of interacting automata;
this allows us to prove soundness and termination of the algorithms, and
to estimate the overhead in terms of exchanged messages and delays.
Finally, we provide an implementation of Acidify as an Erlang behaviour,
together with the bindings for Riak KV and Amazon S3.

1 Introduction
Nowadays, many applications keep their data “in the cloud”, i.e. on remotely ac-
cessible storage services; this offers virtually unlimited storage space, high reliab-
ility, low maintenance costs, and the possibility to share data between processes
running on different platforms. However, concurrent access to shared data easily
leads to wrong interactions and race conditions. Since there is no general way
to handle these conflicts, most storage services offer little o no support to pro-
grammers, who have to implement the right solution for each specific situation.
Traditionally, this is done by means of various lock-based abstractions (e.g., sem-
aphores and monitors) but it is well known that these mechanisms are deadlock-
prone, inefficient, not composable and not scalable. To overcome these issues,
Software Transactional Memory (STM) has been proposed as a more effective
abstraction for concurrent programming [1, 8, 9, 13]. In this approach, code
blocks marked as “atomic” are executed guaranteeing the usual atomicity, con-
sistency, isolation properties. Transactions ensure automatic roll-back on excep-
tions and timeouts, greater parallelizability and, when implemented with optim-
istic strategies, absence of deadlocks (although they may suffer from livelocks).
? Partially supported by UniUD project PRID 2017 ENCASE and MIUR project PRIN
2017FTXR7S IT-MaTTerS (Methods and Tools for Trustworthy Smart Systems).
Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2 Luca Geatti, Federico Igne, and Marino Miculan

However, when we try to apply the STM approach in cloud-based applica-
tions, new important issues arise. First, these applications often access several
heterogeneous storage services at once, ranging from RAM to files on local file
system, from “buckets in the cloud” (i.e. on remote servers) to key-value dis-
tributed hash tables in P2P networks. Different services offer different access
primitives, which are not easy to integrate and abstract from. Secondly, in a
local STM implementation concurrent threads and processes ultimately rely on
the same runtime support (or operating system) for the transaction coordination
and executions, but this cannot be achieved in a distributed setting: a centralized
coordinator of transactions would be a single point of failure and a bottleneck,
hindering reliability and scalability of the solution.

In this paper, we propose to solve these issues by means of an abstract dis-
tributed middleware, called Acidify. This middleware allows the programmer to
describe transactions using a specifically designed language, independent from
the underlying storage systems where objects are actually saved. These code
blocks are then executed by Acidify, ensuring atomicity and isolation. Acidify is
abstract in the sense that it can be used with virtually any storage service, as
long as it allows to implement a very simple set of binding functions (essentially
for reading and writing data). Thus, we can operate over different (even het-
erogeneous) storage services at once; moreover, we can replace a storage service
with a different one, without modifying the application. The middleware is dis-
tributed since it does not rely on any centralized service for the coordination:
nodes will negotiate their right to execute their transaction, peer-to-peer. The
absence of central coordinators ensures greater scalability and reliability.

A critical part of each node is the Transaction Engine, which is deputed to
correctly execute transactions following an optimistic strategy with backward
validation. Transaction Engines at different nodes will coordinate their actions
by exchanging messages in a peer-to-peer fashion. In order to prove properties of
these Engines, we introduce a formal model of distributed transaction machines
based on a version of communicating Mealy automata, called Acid machines
and Acid systems. Using this model we are able to prove the correctness of the
Engine and protocols, a liveness property, and also that the delay introduced at
each commit is constant and equal to 3 round trip time.

After having proved the soundness of this model, we provide an implement-
ation as an Erlang behaviour1. Using this behaviour, a programmer can readily
implement abstract transactions over heterogeneous shared memories. As ex-
amples of storage services, we provide the bindings for Riak KV and Amazon S3.

The rest of this paper is organized as follows. In Section 2 we give a high
level view of the system. In Section 3 we focus on the formal model of Acidify
transaction engines, i.e. Acid machine and Acid systems, and their soundness,
liveness and consistency properties. Then, in Section 4 we present the imple-
mentation of these automata as an Erlang behaviour, and the API offered to the
user such as the language for describing transactions. Finally, some conclusions
and directions for future work are given in Section 5.

1 https://github.com/lucageatti/Acidify

https://github.com/lucageatti/Acidify

An abstract distributed middleware for transactions 3

Figure 1. Overview of Acidify architecture.

2 Acidify requirements and architecture

We aim to design a distributed middleware for the execution of atomic trans-
action over heterogeneous storages. The resulting system will provide location
transparency (i.e. the user does not know where the data is actually stored)
and crucially concurrency transparency and consistency : the user does not know
whether other users might be working concurrently over the same data, and if a
transaction commits then its changes do not depend on any uncommitted data.

Moreover, Acidify should comply the following main design requirements:

peer-to-peer architecture: the coordination between different concurrent pro-
cesses has to be carried out in a completely decentralized environment, re-
moving any central authority (single point of failures), thus increasing the
fault tolerance of the system;

modularity: we require our middleware to be modular and agnostic when it
comes to the variety of storage services it can access. Extending the middle-
ware to include a new storage service only requires the implementation of a
small set of binding functions.

abstraction: the API offered to the middleware user (i.e. programmer) should
be uniform and independent from the underlying storage services.
In order to achieve the aims above, the Acidify system is designed as in

Figure 1. Each Acidify node contains the following main logical modules: the
API, the Manager, the Transaction Engine(s), and the Driver(s).

The API module implements the interface to the user applications. The user
(programmer) describes transactions using a domain specific language, abstract
with respect to the storage services (see Section 4.1 for an example language).

4 Luca Geatti, Federico Igne, and Marino Miculan

These transactions are submitted to the API module, then parsed and translated
into a sequence of transactional operations handed to the Manager.

The Manager coordinates the creation (and deletion) of Transaction Engines,
and establishes the necessary connections with other nodes working on the same
stores. Moreover, the Manager is in charge to keep updated the local view of the
peer-to-peer network, discovering new nodes and removing old ones.

The Engines execute the transactions, ensuring atomicity, consistency and
isolation. To this end, each Engine keeps a change log and communicates with
peer Engines in order to coordinate and exchange the needed data (e.g. the work-
ing sets). Each Engine uses one or more Drivers to communicate with storage
services. Drivers offer a uniform interface to different storage services, abstracting
from their differences. In order to use a storage service with Acidify, it suffices to
instantiate a Driver by implementing a small set of callback functions describing
how to read and write data on the storage service of interest.

3 Formal model of Transaction Engines
As we have seen above, Transaction Engines have to guarantee the correct execu-
tion of transactions. In order to correctly design and implement this module, in
this section we briefly discuss the working principles and the algorithms imple-
mented in Acidify, and formalize its behaviour using communicating automata.

3.1 Conflict detection

In order to detect conflicts between transactions, we have adopted the backward
validation algorithm [6], a kind of “optimistic” concurrency control. Differently
from lock-based techniques, optimistic concurrency mechanisms allow transac-
tions to work concurrently, and before committing any change a validation al-
gorithm is executed to check for conflicts. In particular, the transaction execution
is divided into three main phases:

Working phase: during this phase, the transaction is executed locally to the
Engine; read operations are executed against the shared memory, while write
operations are executed on a local log, which is a local partial view of the
shared memory. The use of a log allows the Engine to abort without any
effect on the memory. In the log we also keep track of how the transactional
variables have been accessed: read-only, write-only or read-write. For a trans-
action T , we define its read set RS(T) and write set WS(T) as the sets of
transactional variables it reads and (over)writes, respectively.

Validation phase: the Engine enters this phase at the end of a transaction,
when the commit is requested. Before data is committed to the storage,
the local log of a transactions is validated against any other overlapping2

transaction log, looking for conflicts. In order to detect conflicts it suffices
to compare the read and write sets of the current transaction under valida-
tion with those of the overlapping transactions. If a conflict is detected, the
transaction under validation is aborted and its log discarded.

2 Two transactions are overlapping if at some point in time both are being executed.

An abstract distributed middleware for transactions 5

Commit phase: if the validation phase is successful, the transaction enters the
commit phase, where all the local changes in the log are made permanent and
committed to the shared memory. Since our transactions involve distributed
processes, atomicity is achieved with a two-phase commit protocol [2]. After
committing, the read set is discarded and the write set is kept in order to
answer to any request from nodes with overlapping transactions.3

We now describe briefly the backward validation algorithm adopted in Acidify;
we refer to [4] for more details. When it enters its validation phase, each trans-
action is given a unique integer value called transaction number (TN). TNs can
be assigned using Birman’s total ordering distributed algorithm [3], to compute
a total ordering between transactions without a dedicated reliable third party.
Given Ti, Tj transactions whose TN are i and j respectively, it holds that:

i < j ⇐⇒ the transaction Ti terminated its working phase before Tj

Let startTNc be the biggest transaction number assigned to some committed
transaction at the time when Tc enters its working phase, and let finishTNc

be the biggest transaction number assigned at the time when Tc entered the
validation phase. We say that Ti is overlapping with Tc if startTNc < TNi <
finishTNc and that Tc and Ti are in conflict if (WS(Ti)∩RS(Tc))∪ (RS(Ti)∩
WS(Tc)) 6= ∅. The following pseudocode describes the backward validation al-
gorithm for transaction Tc, detecting the transactions in conflict with Tc among
all the overlapping ones:

1 for (int i = startTn +1; i < finishTn; i++)
2 if (RS(Tc) intersects WS(Ti))
3 return false;
4 return true;

3.2 Finite state machine model

To correctly design and implement the algorithms in Acidify, the Engine of a
node can be formally defined as a particular type of Mealy machine, with a fixed
set of states and transitions. This will allows us to model an Acidify system as a
network of automata, and to prove the relevant properties. Let us define:

– Σuser = {atomicRequest(T)} as the set of messages the user can communic-
ate to the Acidify manager, where the message atomicRequest is parametrized
by the transaction T;

– Σnet = {committedTNrequest, committedTN(n), proposedTN(n),
newCurrentTN(n), requestTNWS,TNWS(n,S),wake, error(M)} as the set of mes-
sages that different Engines can communicate through the network;

3 A memory-saving solution would require some mechanism for disposing of useless working
sets, e.g. by means of a distributed auction system (running asynchronously) to find the
most recent transaction which is not overlapping with any other current transaction, and
discard any transaction with a lower TN.

6 Luca Geatti, Federico Igne, and Marino Miculan

Figure 2. Acid machine. Each transition is labelled with a message it reads (over
the arrow) and the corresponding message it issues (under the arrow).

– Σint = {startTNcomputed, startExecution, ok, retry, abort, discardRWsets,
discardRset,TNcomputation, validationFailed, validationSucceded,
commitToMemory} as the set of internal messages (i.e. “signals”) that a ma-
chine reads or issues to change its internal phase;

– Σmem = {commitSucceded, error(M)} as the set of messages that the manager
uses to communicate with the shared memory.

Definition 1 (Acid machine). An Acid machine A = (Q, q0, ΣI , Σ0, T,G) is
a Mealy machine such that:

– Q = {idle, startTNcomputation,working,wait,TNcomputation, validation,
commit} is the set of states;

– q0 = idle is the initial state;
– ΣI = Σuser ∪Σint ∪Σnet is the input alphabet;
– ΣO = Σmem ∪Σint ∪Σnet is the output alphabet;
– T : Q×ΣI → Q is the transition relation depicted in Figure 2;
– G : Q×ΣI → ΣO is the output function depicted in Figure 2.

In Figure 2, we depict the transition graph of an Acid machine. We briefly
describe the semantics of each of its states:

An abstract distributed middleware for transactions 7

idle: represents the initial state of the Acid machine. If the user issues the
execution of a transaction through the manager by means of a message
atomicRequest(T), the engine broadcasts a committedTNrequest message and
moves to the next state;

startTNcomputation: represents the initial phase of the backward validation
algorithm. It waits for the committedTN(n) message from each engine and
computes the maximum, which is the startTN value associated with the
transaction. When reading the internal message startTNcomputed, the ma-
chine proceeds to its next phase, issuing the message startExecution;

working: corresponds to the execution phase of the backward validation al-
gorithm. The engine will handle the local execution of the transaction. This
may have three different outcomes: if the execution succeeds (reading ok)
the Acid machine moves to the TNcomputation state, broadcasting the mes-
sage proposedTNrequest; if it stops (reading retry) the Acid machine moves
to the wait state; if the execution aborts (reading abort), the Acid machine
will report an error and move back to the idle state;

wait: is reached in case of an explicit retry from the transaction, issuing the
internal message discardRWsets. The log is discarded and the engine will
wait until any of the variables involved in the transaction is updated, i.e. the
event wake. Restarting a computation will restart the backward validation
algorithm and compute a new startTN value;

TNcomputation: if the transactions ends successful, the engine executes total
ordering algorithm to compute its TN (transaction number), reading all the
messages proposedTN(n) from the network and broadcasting newCurrentTN(n)
to communicate its own new TN. There is no need to compute finishTN ,
since by definition it is equal to TN − 1. 1 Once the TN is computed (read-
ing TNcomputed), the machine enters in the validation phase, broadcasting
requestTNWS ∈ over the network, i.e. asking for all write sets of transactions
associated with a transaction number t such that startTN < t < TN;

validation: corresponds to execution of the backward validation algorithm. It
receives the messages TNWS(n,S) from the network and it validates its own
read set with respect to the write sets received. If the validation fails (read-
ing validationFailed), the Acid machine restarts the backward validation al-
gorithm, otherwise (it reads validationSucceded) it proceeds to the commit
state, issuing the message commitToMemory;

commit is the state when the engine commits all the changes in its log to the
shared memory; the backward validation algorithm ensures that it is indeed
the only engine in its commit phase4. After all changes have committed
(reading commitSucceded), the execution is completed: the Acid machine
discards its read set (but keeps the write set in order to answer to any request
from nodes with overlapping transactions), and moves to the idle state.

4 This might result in a bottleneck, since only one node at a time is allowed to enter this
phase. A possible solution is to preemptively send the writes to the store engine during the
validation stage and possibly discard them in case an inconsistent state is reached. However,
this approach will generate more network traffic and needs the store engine to implement
staging, rollback and commit capabilities.

8 Luca Geatti, Federico Igne, and Marino Miculan

An Acid machine can also receive asynchronous inputs, i.e. committedTNre-
quest, proposedTNrequest, newCurrentTN(n), requestTNWS, and emit the corres-
ponding outputs committedTN(n), proposedTN(n), TNWS(n,S) in order to take
part in the computation of the TN or in the backward validation process of
other engines in the network. Similarly, it can always asynchronously receive the
message error(M), either from the network (e.g. the multicast fails) or from the
memory (e.g. the 2PC process fails), and go a sink state stop. For the sake of sim-
plicity, in the diagram we have omitted these communications and the stop state.

A complete scenario of n engines concurrently accessing the same shared
resource can be formalized by the definition of an Acid system.

Definition 2 (Acid system). An Acid system S = {A1, . . . ,An} is a network
of Acid machines, where each Ai can asynchronously communicate with any
other Aj either via unicast or multicast, and only sharing messages in Σnet.

For an Acid system, we can prove the following results.

Proposition 1. Given an Acid system S = {A1, . . . ,An}, it holds that:

(soundness) let Ai,Aj ∈ S for i 6= j; then, it is never the case that both Ai

and Aj are at the same time into their own commit state, when executing
transactions Ti and Tj that are in conflict.

(liveness) if a timeout t < +∞ is set for the execution of a transaction on Ai,
then Ai eventually issues either the commitSucceded or the abort message;

(consistency) if Ai issues the commitSucceded message, then the data it has
committed does not depend on data which has not been committed.

Proof. (sketch) (soundness) Follows from the correctness of the total ordering
algorithm and backward validation algorithm (we refer to [2, 3] for more details).

(liveness) Follows from the finite state machine behaviour (Figure 2): in par-
ticular, it always happens that, if the timeout expires and the algorithm is on a
state different from idle, then any transaction results into an abort.

(consistency) The data committed by the machine Ai depend on the read
set RS(Ti), which has no intersection with uncommitted write sets, because the
backward validation algorithm has concluded successfully. ut

It is important to analyse the cost of the algorithm of backward validation, in
order to evaluate the overhead it introduces. As usual in distributed algorithms,
the cost is given in terms of exchanged messages and communication rounds. For
each execution attempt of a transaction, the message traffic introduced by Acidify
is linear in the number of transactions it overlaps, and the delay is constant.

Proposition 2 (Cost). Let {A1, . . . ,An} be an Acid system. When Ai reaches
either the commit or the stop phase or issues the validationFailed message, then

– the number of exchanged messages is at most 7n;
– the delay introduced is constant and equal to 3 round trip time.

An abstract distributed middleware for transactions 9

Proof. The exchanged messages are 4n for the backward validation algorithm (n
issued committedTNrequest, n received committedTN(n), n issued requestTNWS
and n received TNWS(n,S)), plus 3n for the total ordering (Birman’s) algorithm
(n issued proposedTNrequest, n received proposedTN(n) and n issued newCur-
rentTN(n)), for a total of 7n messages. These messages are exchanged in three
rounds: for calculating startTN, for calculating TN and for collecting the write
sets from overlapping transactions. Each round follows a “multicast request/par-
allel unicast answer” pattern and hence takes a single round trip time. ut

It is worth noting that all the exchanged messages but one are fixed-size. The only
variable-size message is the representation of the working set, which nevertheless
can be encoded efficiently, e.g. by means of a map of dirty bits.

4 Implementation

The Acid machine model described in Section 3 has been implemented as an open
source Erlang behaviour, called gen_acid, and available at https://github.
com/lucageatti/Acidify. The implementation strictly follows the definition
of Acid machine, thanks to Erlang’s finite state machine behaviour5. Using the
gen_acid behaviour, the user will be able to implement engines for the atomic
execution of transactions over a shared memory.

In the rest of this section we will briefly describe the interfaces offered to the
programmer for submitting and executing transactions and for adding support
for other storage services; finally we give some simple examples.

4.1 A simple language for defining transaction

Acidify’s API accepts transactions encoded as strings, akin SQL queries to DBMSs.
These strings are actually programs written in a domain specific language for
describing transactions. This language should be storage-independent, that is, it
should abstract from the differences between access methods offered by different
storage services. In this section, we present a simple but expressive language
which can be used to this end, whose grammar is given in Figure 3.

We use transactional variables (tvar()) to refer to data in the shared memory.
Transactional variables are identified with an @ symbol followed by (a tuple of)
atoms or strings (i.e. @num42, @{foo,bar} or @<<"lorem ipsum">>). Exprs are
expressions containing integers, booleans and transactional variables, with sup-
port for a standard set of arithmetic and logic operators.

Basic operators. The first three operators allow to read and write data on the
shared memory, and they involve a direct call to the Driver. The GET operator
reads the value of a transactional variable and stores it in the local memory of
the engine. The NEW and PUT operators store the value of the expression Expr in
a transactional variable (respectively a fresh or an existing one).

5 http://erlang.org/documentation/doc-8.0-rc1/doc/design_principles/fsm.html

https://github.com/lucageatti/Acidify
https://github.com/lucageatti/Acidify
http://erlang.org/documentation/doc-8.0-rc1/doc/design_principles/fsm.html

10 Luca Geatti, Federico Igne, and Marino Miculan

1 Transaction := Cmds
2

3 Block := { } | Cmd | { Cmds }
4

5 Cmds := Cmd | Cmd Cmds
6

7 ExBlock := { }
8 | ExCmd
9 | { ExCmds }

10

11 ExCmds := ExCmd
12 | ExCmd ExCmds

13 Cmd := NEW tvar() Expr
14 | GET tvar()
15 | PUT tvar() Expr
16 | RETRY
17 | THROW atom()
18 | TRY Block CATCH ExBlock
19 | IF (Expr) THEN Block
20 ELSE Block
21 | WHILE (Expr) Block
22 | OR Block ELSE Block
23

24 ExCmd := atom() : Block

Figure 3. Grammar for the transaction language.

Blocking transactions. Following a lock-free approach, we provide a way for the
transaction to explicitly wait for resources. Using the operator RETRY, the user
forces the transaction to discard local changes and restart the computation. It is
worth noting that re-executing the transaction as soon as the retry occurs is not
efficient; instead, the transaction will wait until at least one variable involved in
the computation has been updated by another engine [7].

Control flow and composition. Besides the standard IF-THEN-ELSE, WHILE, THROW
and TRY-CATCH operators, we introduce an alternative transaction composition
in the language by means of a OR-ELSE operator as in [7]. The semantics is the
following: the first block of operations is executed; if it explicitly retries, the
block (and its local execution) is discarded and the second block of operations
is executed. If this one retries as well, the whole operation retries. In a sense,
OR-ELSE gives the user the opportunity to choose whether to execute a blocking
transaction or to provide an alternative outcome [7].

4.2 Callbacks for Drivers

In order to define the Driver used to connect and communicate with the storage
service (see Figure 1), the user is only required to provide a small set of callback
functions, listed in Figure 4:

– connect/1 is used by the engine to establish a connection to the remote
storage system. It takes a generic term, containing the information for the
connection process (e.g. IP address and port of a remote server, user cre-
dentials, . . .), thus allowing the user to adapt the system to virtually any
memory. A successful connect/1 call returns a connection handle, keeping
track of the information on how to communicate with the memory; this
parameter will be passed as input to all the other functions in the module;

– disconnect/1 is the inverse of connect/1 and allows the engine to gracefully
disconnect from the memory;

– raw_new, raw_get, raw_put are the basic operations used by the engine to
declare, read and update values on the storage service. These operations are

An abstract distributed middleware for transactions 11

1 connect(ConnectArgs :: term ())
2 -> {ok , ConnectInfo :: term()} | {error , Reason :: term()}.
3

4 disconnect(ConnectInfo :: term ())
5 -> ok | {error , Reason :: term()}.
6

7 raw_new(ConnectInfo :: term(), V :: tvar(), Val :: term ())
8 -> {ok , Val :: term()} | {error , Reason :: term()}.
9

10 raw_get(ConnectInfo :: term(), V :: tvar ())
11 -> {ok , Val :: term()} | {error , Reason :: term()}.
12

13 raw_put(ConnectInfo :: term(), V :: tvar(), Val :: term ())
14 -> {ok , Val :: term()} | {error , Reason :: term()}.

Figure 4. Driver callbacks of gen_acid.

supposed to be synchronous. Alongside the name of the remote variable and
possibly the assigned value, these functions take the connection handle from
the connect/1 call.

The gen_acid behaviour has a simple but open interface; the user will be
able to write their own clients rather quickly, still having the ability to implement
tool-specific features on top of that (e.g. type checker). The gen_acid repository
provides example drivers for the NoSQL distributed database Riak KV and the
Object Storage Service Amazon S3, along with some examples of transactions.

4.3 An example transaction

We show how a programmer can use the gen_acid behaviour to implement and
execute a simple transaction. After having implemented the callbacks described
above for the specific store of interest, the programmer can call the function
spawn_engine/3 of the Manager in order to spawn a new engine:

1 spawn_engine(Name :: atom(), Mod :: module(),
2 Workspace :: atom(), Args :: term ())
3 -> ok | {error , Reason :: term()}

The function takes a unique Name (local to the node) to identify the engine, a
module Mod implementing the gen_acid behaviour, a workspace (which allow
transactions to work independently even on the same shared memory) and any
argument needed to connect to the storage service.

As an example, we show a simple transaction featuring new, get and put
operators, as well as retry and orelse ones. The pseudocode of this transaction
is shown in Figure 5(left), while its formalization in our DSL on the right.

Issuing the execution of a transaction can be achieved via atomic/3.
1 atomic(Engine :: atom(), T :: string(), Timeout :: timeout ())
2 -> {ok , Result :: term()} | {error , Reason :: term()}.

The transaction T is executed by the engine; it is worth noting that, since
atomic/3 is a blocking call, timeout should be specified.

12 Luca Geatti, Federico Igne, and Marino Miculan

1 % Lock the mutex
2 GET @Sem
3 IF (@Sem > 0)
4 THEN PUT @Sem @Sem -1
5 ELSE RETRY
6

7 % Release the mutex
8 GET @Sem
9 PUT @Sem @Sem+1

1 % Lock the mutex
2 [gen_acid:get(Sem)
3 , gen_acid:if_else(
4 fun(X) -> X>0 end , [Sem],
5 [gen_acid:put(Sem ,
6 fun(X) -> X-1 end , [Sem])
7],
8 [gen_acid:retry ()])
9]

10

11 % Release the mutex
12 [gen_acid:get(Sem)
13 , gen_acid:put(Sem ,
14 fun(X)->X+1 end , [Sem])
15]

Figure 5. Simple transaction implementing a mutex: transaction language (left),
internal Erlang representation (right).

5 Conclusions and future work

In this paper we have considered the problem of realizing the Software Trans-
actional Memory model in network-centered applications, whose data may be
stored on (possibly remote, “in the cloud”) storage services and concurrently ac-
cessed by processes running on different hosts across the Internet. To address
this problem, we have provided the following main contributions:

1. we have introduced Acidify, a modular architecture for the implementation
of the STM model in a distributed, peer-to-peer setting (i.e. without any
centralized coordinator), over heterogeneous storage services;

2. we have defined a formal model of the Transaction Engine of Acidify, based
on communicating Finite State Machines (similar to Mealy machines). This
model uses optimistic concurrency technique, along with a total ordering
among transactions, to ensures the atomic execution of transactions;

3. using this model, we have proved the correctness of the Engine and provided
an estimation of the overhead introduced by Acidify;

4. we have also defined a simple language which can be used by applications
to submit transactions to the system. These descriptions are translated on-
the-fly to an internal representation and then executed by nodes;

5. finally, we have provided an implementation of Acidify as Erlang behaviour,
and of the bindings for Amazon S3 and Riak KV. The system is built with
a generic interface and can be adapted to virtually any storage service.

A possible future work is to port Acidify to other actor-based languages, such
as Scala; in particular we could take advantage of its flexible and powerful type
system to guarantee relevant properties of the transaction programs (e.g. effect-
freeness), like in Concurrent Haskell [7]. Another interesting extension is to allow
transactions to communicate during their executions, by means of “retractable
messages”, along the lines of [10, 12].

An abstract distributed middleware for transactions 13

Finally, we plan to formally verify the properties of Proposition 1 using suit-
able formal tools. One possibility could be to adopt parameterized model checking
techniques [5]; however the problem is far from trivial because it requires to verify
a property for an unlimited number of systems, and decidability of the model
checking problem may be not even guaranteed. Alternatively, we can resort to a
formalization in an interactive proof assistant such as Coq, leveraging existing
formalizations of modal-temporal logics [11].

Acknowledgments The authors wish to thank the referees for their useful remarks
about the preliminary version of this paper.

Bibliography

[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional
memory and automatic mutual exclusion. ACM Trans. Program. Lang.
Syst., 33(1):2, 2011.

[2] Y. J. Al-Houmaily and G. Samaras. Two-phase commit. In Encyclopedia
of Database Systems, pages 3204–3209. Springer, 2009.

[3] K. P. Birman and T. A. Joseph. Reliable communication in the presence of
failures. ACM Transactions on Computer Systems, 5(1):47–76, 1987.

[4] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed Systems:
Concepts and Design. Addison-Wesley, 5th ed., 2011.

[5] A. Gmeiner, I. Konnov, U. Schmid, H. Veith, and J. Widder. Tutorial
on parameterized model checking of fault-tolerant distributed algorithms.
In International School on Formal Methods for the Design of Computer,
Communication and Software Systems, pages 122–171. Springer, 2014.

[6] T. Härder. Observations on optimistic concurrency control schemes. In-
formation Systems, 9(2):111–120, 1984.

[7] T. Harris, S. Marlow, S. L. Peyton Jones, and M. Herlihy. Composable
memory transactions. In Proc. PPOPP, pages 48–60, 2005.

[8] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support
for lock-free data structures. In Proc. 20th International Symposium on
Computer Architecture, pages 289–300. ACM, 1993.

[9] M. Herlihy and N. Shavit. Transactional memory: beyond the first two
decades. SIGACT News, 43(4):101–103, 2012.

[10] M. Lesani and J. Palsberg. Communicating memory transactions. ACM
SIGPLAN Notices, 46(8):157–168, 2011.

[11] M. Miculan. On the formalization of the modal µ-calculus in the Calculus
of Inductive Constructions. Inf. Comput., 164(1):199–231, 2001.

[12] M. Miculan, M. Peressotti, and A. Toneguzzo. Open transactions on shared
memory. In Proc. COORDINATION 2015, volume 9037 of Lecture Notes
in Computer Science, pages 213–229. Springer, 2015.

[13] N. Shavit and D. Touitou. Software transactional memory. Distributed
Computing, 10(2):99–116, 1997.

	An abstract distributed middleware for transactions over heterogeneous stores

