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Abstract. We present a type and effect system for tracing and prevent-
ing sharing and mutation in imperative languages. That is, on one hand,
the type system traces sharing possibly introduced by the evaluation of
an expression, so that uniqueness and immutability properties can be eas-
ily detected. On the other hand, sharing and mutation can be prevented
by type qualifiers which forbid some actions. Sharing is directly repre-
sented at the syntactic level as a relation among free variables, thanks
to the fact that in the underlying calculus memory is encoded in terms.
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1 Introduction

The last few decades have seen considerable interest in type systems for control-
ling sharing and interference, to make programs easier to maintain and under-
stand. A simple and widely used technique is to enrich the type of an expression
evaluating to a reference x by type qualifiers [29,18,25,10] or by capabilities [5,7].
Depending on the qualifier of x , restrictions are imposed and assumptions can
be made on the (reachable) object graph of x . In this paper, we consider a small
yet powerful set of qualifiers with the meaning described below.

If x is mutable (mut), then no restrictions are imposed and no assumptions
can be made. Restrictions are imposed by the following modifiers:

– If x is read-only, then fields cannot be modified (x .f =e is not legal).
– If x is lent [28,14,17], also called borrowed in literature [4,25], then the object

graph of x can be manipulated, but not shared, by a client.
– The two modifiers can be combined so that neither modification nor shar-

ing are permitted. That is, both the read-only and the lent restriction are
imposed; this modifier was called readable in [17].
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In the following formalization, these three qualifiers will be denoted read, mutlent,
and readlent, respectively. Note that they do not allow any assumption on the
object graph. For instance, the object graph of a read reference could be mod-
ified through other references, and connections could be added to the object
graph of a mutlent reference through other references.

To be able to make assumptions on the object graph of a reference, the
key notion is expressed by the caps qualifier. If x is caps, then a client can
assume that this subgraph is an isolated portion of store, that is, all its (non
immutable) nodes can be reached only through this reference. We use the name
capsule for this property, to avoid confusion with many variants in literature
[9,1,27,19,11,18]. If x is caps, and, moreover, is read, then it is immutable (imm).
That is, x .f =e is not legal, and, moreover, we can assume that the object graph
of x will not be modified through any other reference.

(Variants of) such qualifiers have appeared in previous literature, and, in
particular, they are all smoothly integrated in [17]. However, in [17] the capsule
and immutability property were detected by a rather complex type system, based
on the recovery technique, firstly introduced in [18,10]. In this paper, instead,
such properties are naturally detected by a type and effect system which traces
sharing : that is, given an expression e with free variables, computes a sharing
relation S on such free variables, plus a distinguished variable res denoting the
result. The fact that two variables, say x and y , are in the same equivalence class
in S, means that the evaluation of e can possibly introduce sharing between x
and y , that is, connect their object graphs, so that a modification of (a subobject
of) x could affect y as well, and conversely.

For instance, given the expression x.f =y;z.f , its evaluation introduces con-
nections between x and y , and between res (the result) and z . In this way, an
expression is a capsule if its result will be disjoint from any free variable (formally,
res is a singleton in S). For instance, the expression x.f =y;new C(new D()).f
is a capsule, whereas the previous expression is not.

Tracing sharing has been firstly used in [13] to detect capsule and in [15] also
immutability properties. In this paper, this technique is smoothly integrated
with qualifiers which prevent sharing and mutation, providing a very expressive
type system.

We adopt an execution model [26,6,28] where memory is encoded in the lan-
guage itself, making possible to express uniqueness and immutability properties
in a simple and direct way. In this paper, for lack of space, the calculus is only
informally presented.

The rest of the paper is organized as follows: in Sect.2 we informally present
the type system and illustrate its expressive power by examples. In Sect.3 we
formalize the type and effect system, and in Sect.4 we state some of its properties.
Finally, in Sect.5 we discuss related and further work. A formal presentation of
the operational semantics on which the results of Sect.4 rely can be found in a
companion technical report [16].
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2 Language and examples

The type system is presented on top of a toy language with an object-oriented
flavour, inspired by Featherweight Java [20].

We assume sets of variables x , y , z , class names C ,D , field names f , and
method names m. We adopt the convention that a metavariable which ends by
s is implicitly defined as a (possibly empty) sequence, for example, ds is defined
by ds ::= ε | d ds, where ε denotes the empty string. The syntax of the language
is given below.

cd ::= class C {fds mds} class declaration
fd ::= immC f ; | mutC f ; | readC f ; field declaration
md ::= T m (qτ ,T1 x1, . . . ,Tn xn) {e} method declaration
e ::= x | e.f | e.f =e ′ | new C(es) | {ds e} | e.m(es) expression
d ::= T x=e; declaration
T ::= qτC type
q ::= mut | read | imm | caps qualifier
τ ::= ε | lent (optional) lent tag

In method declarations there is an additional component, the type qualifier
for this, written as first element of the parameter list.

As in FJ, we assume for each class a canonical constructor whose parameter
list exactly corresponds to the class fields, and we assume no multiple declara-
tions of classes in a class table, fields and methods in a class declaration.

An expression can be a variable (including the special variable this denoting
the receiver in a method body), a field access, a field assignment, a constructor
invocation, a block consisting of a sequence of local declarations and a body, or a
method invocation. A declaration specifies a type, a variable and an initialization
expression. We assume no multiple declarations of variables in a block. A type
consists of a class name and a qualifier.

As sketched in the Introduction, depending on the qualifier of a reference x ,
restrictions are imposed and assumptions can be made on the object graph of x .
If x is mutable (mut), then no restrictions are imposed and no assumptions can
be made.
If x is readonly (read), then fields cannot be modified (x .f =e is not legal).
If x is immutable (imm), then it is read, that is, x .f =e is not legal, and, moreover,
we can assume that the object graph of x will not be modified through any other
reference. As a consequence, an immutable reference can be safely shared in a
multithreaded environment.
If x is capsule (caps), then we can assume that the object graph of x is an
isolated portion of store, that is, all its (non immutable) nodes can be reached
only through this reference. Capsule expressions can initialize both mutable and
immutable references. If a capsule is assigned to a mutable reference y , then y can
rely on the fact that no part of this subgraph can be updated through another
reference. This allows programmers (and static analysis) to identify mutable
state that can be safely handled by a thread. To preserve the capsule property,
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we need an affinity constraint which, in our case, can be simply expressed as a
syntactic well-formedness condition, rather than by context rules, as in linear
logic-style type systems: in well-formed expressions capsule references can occur
at most once in their scope.
Qualifiers can be optionally tagged lent. This imposes the additional constraint
that the object graph cannot be shared by a client. That is, the object graph
of x cannot be stored in a previously disjoint object graph. In particular x .f =x
is allowed, whereas z .f =x is not. This tag makes sense only for mut and read

qualifiers, since imm references can be freely shared and and caps references are
temporary. According to the substitution principle we have that the subtyping
relation is the reflexive and transitive relation on types induced by:

caps ≤ mut ≤ read caps ≤ imm ≤ read ε ≤ lent

Examples We illustrate now the use of the qualifiers by some examples and
show how they can express several ownership properties, see [8]. We assume
mut as default qualifier and, for sake of readability, we use a Java-like syntax
with additional constructs, such static methods, private fields, etc. Consider the
following example in conventional Java, modelling a graph with a list of nodes,
and a constructor taking in input such list

class Graph{

private final NodeList nodes;

private Graph(NodeList nodes){this.nodes=nodes;}

static Graph factory(NodeList nodes){

return new Graph(nodes.deepClone());

}

}

and assume that we want to ensure that the list of nodes of a graph is not referred
from the external environment (that is, the graph is the owner of its list of nodes).
Without a type system for aliasing control, as shown, the factory method should
deeply clone the argument. This solution, called defensive cloning [3], is very
popular in the Java community, but inefficient, since it requires to duplicate the
object graph of the parameter, until immutable nodes are reached.

With our type system, instead, we may require the parameter of the factory

method to be a caps:

class Graph{ ...

static Graph factory(caps NodeList nodes){

return new Graph(nodes);

}

In this way, the factory method moves an isolated portion of store as local store of
the newly created object. Cloning, if needed, becomes responsibility of the client
which provides the list of nodes to the graph. In other words, the capsule notion
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models an efficient ownership transfer4. That is, in classical ownership systems
the property that y is “owned” by x holds forever, whereas the capsule notion
is more dynamic: a capsule can be “opened”, that is, assigned to a standard
reference and modified, and then we can recover the original capsule guarantee
(in the example, new Graph(nodes) is a capsule).

Depending on how we expose the owned data, we can finely tune the way
they can be manipulated by clients. Different options, and their combinations,
may be appropriate in different circumstances. Consider the following ways in
which we can access the NodeList of a Graph.

class Graph{ ...

read NodeList readNodes(read){return this.nodes;}//(1)

mutlent NodeList borrowNodes(mutlent){return this.nodes;}//(2)

readlent NodeList getNodes(readlent){return this.nodes;}//(3)

caps NodeList copyNodes(readlent){return nodes.deepClone();}//(4)

}

(1) If the list of nodes is returned read, then the client code is allowed to get a
permanent reference to the internal data, and to track such data changing over
time. However, it is prevented to mutate the data, so multi-object invariants on
such data should be safe. This closely model the owners-as-modifiers pattern.
(2) If the list of nodes is returned mutlent, then client code is allowed to get
a temporary reference to the internal data, and mutate it. However, the client
cannot store such data, and local reasoning can be used to track the lifetime of
the temporary reference. For example (ROG stands for “reachable object graph”):

EvilCode evil=new EvilCode();

...

Graph g=Graph.factory(...);

//g has control of its ROG here

evil.attack(g.borrowNodes());

//g has again control of its ROG

//ROG(g) and ROG(evil) are disjoint

(3) This is the most conservative and efficient option: The user can read the
data, and the lifetime of such readlent references can be tracked.
In our opinion, in most cases it would be a good software development practice
to use this qualifier for getters over mutable data.
(4) This solution models the owners-as-dominators pattern. In the class NodeList
the method deepClone could have the following declaration:

caps NodeList deepClone(readlent){ ... }

4 Other work in literature supports ownership transfer, for example [24,9]. However,
it is generally applied to uniquess/external uniqueness, thus not the whole object
graph is transferred.
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In this way, the client has no access to the internal data. This requires duplica-
tion, but, with respect to conventional ownership, it is more efficient when the
result is used to initialize a new graph:

Graph.factory(oldGraph.copyNodes())

calls a single deep clone operation in our approach, while the equivalent plain
Java approach would require to clone the ROG twice.

In our approach all properties are deep, that is, propagate to the whole object
graph. Instead, most ownership approaches allows one to distinguish subparts of
the object graph that are referred but not logically owned. This choice has some
advantages, for example the Rust language5 leverages on ownership to control
object deallocation without a garbage collector [21]. However, in most ownership
based approaches it is not trivial to encode the concept of full encapsulation,
while supporting (open) subtyping and avoiding defensive cloning.

3 Type system

We introduce now the type and effect system for the language.
A sharing relation S is an equivalence relation on variables. As usual [x ]S

denotes the equivalence class of x in S. We will call connections the elements
〈x , y〉 of a sharing relation, and say that x and y are connected. The intuitive
meaning is that, if x and y are connected, then their object graphs in the store
are possibly shared (that is, not disjoint), hence a modification of the object
graph of x could affect y as well, and conversely.

The typing judgment has shape
Γ ` e : C | S

where Γ is a type environment, that is, an assignment of types to variables,
written x1:T1, .., x1:Tn, and S is a sharing relation on the (non immutable) free
variables in e, plus a distinguished variable res denoting the result of e. The
intuitive meaning is that S represents the connections possibly introduced by
the evaluation of e, and, in particular, the variables in [res]S are the ones that
will be possibly connected to the result of the expression.

We write capsule(S) if [res]S is a singleton ([res]S = {res}.) In this case,
the expression e denotes a capsule, that is, reduces to a portion of store which
is isolated, except for immutable references.

The class table is abstractly modelled by the following functions:

– fields(C ) gives, for each declared class C , the sequence of its field declarations
T1 f1;..Tn fn;.

– meth(C ,m) gives, for each method m declared in class C , the tuple
〈T | S, qτ ,T1 x1, . . . ,Tn xn, e〉 consisting of its return type T and sharing
effects S, qualifier for this, parameters, and body.

We assume a well-typed class table, that is, method bodies are expected to be
well-typed with respect to method types. Formally,
if meth(C ,m) = 〈T | S, qτ ,T1 x1..Tn xn, e〉, then

5 rust-lang.org
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– Γ ` e : T | S, with Γ = this:qτC , x1:T1, .., xn:Tn.

The typing rules are given in Fig.1. For sharing relations we use the following
notations where X denotes a set of variables.

– A sequence of mutually disjoint subsets of X , say X1 · · ·Xn, represents the
smallest equivalence relation on X containing the connections 〈x , y〉, for x
and y belonging to the same Xi. So, ε represents the identity relation on any
set of variables. Note that this representation is deliberately ambiguous as
to the domain of the defined equivalence.

– S1 + S2 is the smallest equivalence relation containing S1 and S2. It is easy
to show that sum is commutative and associative.

– S\X is obtained by “removing” the variables in X from S, that is, is the
smallest equivalence relation containing the connections 〈x , y〉, for all 〈x , y〉 ∈
S, such that x 6∈ X and y 6∈ X .

– S\res coincides with S except for res which is no longer connected to any
variable, that is, it contains all 〈x , y〉 such that either x = y = res or
〈x , y〉 ∈ S and x 6= res and y 6= res.

– S[y/x ] is obtained by “replacing” x by y in S, that is, is the smallest equiv-
alence relation containing the connections:
〈z , z ′〉, for all 〈z , z ′〉 ∈ S, z 6= x , z ′ 6= x
〈y , z 〉, for all 〈x , z 〉 ∈ S.

– S1 has less (or equal) sharing effects than S2, dubbed S1 v S2, if, for all x ,
[x ]S1 ⊆ [x ]S2 .

In rule (t-var), the evaluation of a (not immutable nor capsule) variable con-
nects the result of the expression with the variable itself. Note that, given our
notation, {x , res} represents a sharing relation in which the only non trivial
connections is between x and res. In rule (t-imm-var), the evaluation of an im-
mutable or capsule variable does not introduce any connection, so the resulting
sharing relation is the identity relation.

Rule (t-sub) is the usual subsumption.
In rule (t-field-access), in case the field is mut, the qualifier of the receiver is

propagated to the field. For instance, mutable fields referred through an imm

reference are imm as well. If the field is read, and the tag of the receiver is lent,
then it is propagated to the field. Otherwise, the expression has the field type,
regardless of the receiver type. Note that, if the field is read and the receiver
is imm, the field access can be typed imm as well by promotion. The connections
introduced by a field access are those introduced by the evaluation e. Since
[res]S contains all the references that could be in the object graph of the result
of e, it also contains all the references that could be in the object graph of e.f .
However, in case the field has a imm qualifier, since the imm property is deep,
then the result of the expression is not connected to any mutable or readable
reference.

In rule (t-field-assign), the receiver should be mutable, and the right-hand side
should have the field type. The sharing effects of a field assignment are (the sum
of) those of the two expressions (S1 and S2). Moreover, if the receiver is lent,
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(t-var)
Γ ` x : qτC | {x , res}

Γ (x) = qτC
q 6≤ imm

(t-imm-var)
Γ ` x : q C | ε

Γ (x) = qC
q ≤ imm

(t-sub)
Γ ` e : qτC | S
Γ ` e : q ′τ ′C | S

q ≤ q′

τ ≤ τ ′ (t-field-access)
Γ ` e : qτC | S

Γ ` e.fi : q ′τ ′Ci | S ′

fields(C )=T1 f1; . . .Tn fn;
i ∈ 1..n,Ti = qiCi

q′τ′ ,S′ =


qτ ,S if qi = mut

qτi ,S if qi = read

qi,S\res if qi = imm

(t-field-assign)
Γ ` e1 : mutτ1C | S1 Γ ` e2 : qτ2i Ci | S2

Γ ` e1.fi=e2 : qτi Ci | S ′

fields(C )=T1 f1; . . .Tn fn;
i ∈ 1..n,Ti = qiCi
〈τ,S〉 = 〈τ1,S1〉+ 〈τ2,S2〉

S′ =

{
S\res if qi = imm

S otherwise

(t-new)
Γ ` ei : qτii Ci | Si ∀i ∈ 1..n

Γ ` new C(e1, . . . , en) : mutτC | S
fields(C )=q1C1 f1; . . . qnCn fn;

〈τ,S〉 =
n∑
i=1
〈τi,Si〉

(t-block)

Γ [Γ ′] ` ei : Ti | Si 1≤i≤n
Γ [Γ ′] ` e : T | S ′

Γ ` {T1 x1=e1;..Tn xn=en; e} : T | S\dom(Γ ′)

Γ ′ = x1:T1, .., xn:Tn
S′
i = Si[xi/res]

S =
n∑
i=1
S′
i + S

′

(t-invk)
Γ ` ei : Ti | Si ∀i ∈ 0..n

Γ ` e0.m(e1, .., en) : T | S\{this, x1, .., xn}

T0 = qτC
meth(C ,m)=〈T | S′, qτ ,T1 x1, . . . ,Tn xn, e〉
S′
0 = S0[this/res] S′

i = Si[xi/res]

S =
n∑
i=0
S′
i + S

′

(t-caps)
Γ ` e : mutC | S
Γ ` e : capsC | S

capsule(S) (t-imm)
Γ ` e : readτC | S
Γ ` e : immC | S

capsule(S)

Fig. 1. Type system

then the constraint holds that its connections cannot be augmented, hence the
equivalence class of the result of the right-hand side ([res]S2) should be included
in the one of the receiver ([res]S1). The converse holds if the right-hand side is
lent (hence if both are lent then [res]S1 = [res]S2). In either case, the result
of the assignment is lent as well. Formally, here and in rule (t-new), the notation

〈τ,S〉 =
n∑
i=1

〈τi,Si〉 is defined as follows:

– for each i ∈ 1..n, if τi = lent, then it must be [res]Sj ⊆ [res]Si , for all
j ∈ 1..n

– if this condition is violated for some i ∈ 1..n, then the notation is undefined;

otherwise, S =
n∑
i=1

Si, and τ = lent if τi = lent for some i ∈ 1..n.

An assignment expression will reduce to the value of the expression on its right-
side, therefore the connections of its result are as for rule (t-field-access). Note
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that, immutable or read-only fields can be assigned, since the qualifier asserts
the immutability or read-only property of the object referred to not of the field
itself.

In rule (t-new), an object is created with no restrictions, that is, as mut.
The sharing effects of a constructor invocation are (the sum of) those of the
arguments. Note that the equivalence class of res in the sum of the sharing
relations is the union of the equivalence classes of res in the summed sharing
relations. Indeed the object created is connected to its fields. However, since we
can prove that the sharing relation S associated to expression having the imm

qualifier is such that [res]S = {res}, imm fields are not connected to the result
of the constructor. Moreover, analogously to rule (t-field-assign), if one argument
is lent, then its sharing effects cannot be augmented, and the created object is
lent as well.

In rule (t-block), the initialization expressions and the body of the block are
typechecked in the current type environment, enriched by the association to local
variables of their declaration types. We denote by Γ [Γ ′] the type environment
which is equal to Γ ′ on the variables where Γ ′ is defined, to Γ otherwise. The
connections introduced by a block are obtained modifying those introduced by
the evaluation of the initialization expressions (Si, 1≤i≤n) plus those introduced
by the evaluation of the body S ′. More precisely, for each declared variable,
the connections of the result of the initialization expression are transformed in
connections to the variable itself. Finally, we remove from the resulting sharing
relation the local variables.

In rule (t-invk), the typing of e0.m(e1, .., en) is similar to the typing of the
block {T0 this=e0;T1 x1=e1;..Tn xn=en; e} However, while in a block local vari-
able declarations can refer to each other, the receiver e0 and the arguments ei
(1≤i≤n) do not refer to this and the formal parameters, hence the sharing
effects among them are only those caused by the method body e.

In some cases it is possible to move the type of an expression against the
subtype hierarchy, that is, to promote an expression. A mut expression can be
promoted to caps, rule (t-caps), when its result will not be connected to external
non immutable references. For example, consider the following example, where
we use integers but any immutable reference could be used instead

mut D y=new D(0); capsule C z={mut D x=new D(y.f); new C(x,x)};

The initialization expression for z can be given type capsule by using rule (t-caps)

since the result of the block is not connected to any external variable and the
block has type mut C. Note that in rule (t-caps), expression e cannot be tagged
lent. Consider the following variation of the previous example

mut D y=new D(0); ??? C z={mutlent D x=new D(y.f); new C(x,x)};

Also in this case the result of the block is not connected to any external variable.
However, the block has type mutlentC. If we could use rule (t-caps) to promote to
type caps by subtyping the block expression would have type mut and so ???

could be mut, which is not correct.
A read expression can be promoted to imm, rule (t-imm), when its result will not
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be connected to external non immutable references. In this case the expression
could be tagged lent. For example

mut D y=new D(0); imm C z={mutlent D x=new D(y.f); new C(x,x)};

is typable by deriving type mutlentC for the block, applying the subtyping to get
readlentC and then using rule (t-imm). So we can correctly derive type imm C for
the block.

4 Results
In this section we present the main formal results on our calculus.
We start by stating that if a variable is declared with the lent modifier, then the
evaluation of the expressions in its scope do not increase its connections.

Theorem 1 (Typing Lent). Let Γ ` {T1 x1=e1;..Tn xn=en; e} : T | S\dom(Γ ′)
where Γ ′ = x1:T1, .., xn:Tn, Γ [Γ ′] ` ei : Ti | Si, Γ [Γ ′] ` e : T | S ′, S ′i =

Si[xi/res] and S =
n∑
i=1

S ′i + S ′. Then, Ti = qlentC implies [xi]S = [xi]S′
i
.

The other results state properties of the type system with respect to the oper-
ational semantics, which is reported in a companion technical report [16]. Here
we provide a minimal presentation, in order to make the results understandable.

In the operational semantics we use variable declarations to directly represent
the store. That is, a declared (non capsule) variable is not replaced by its value,
as in standard let, but the association is kept and used when necessary, as it
happens, with different aims and technical problems, in cyclic lambda calculi
[2,22]. Semantics is defined by a congruence relation, which captures structural
equivalence, and a reduction relation, −→ ,which models actual computation,
similarly to what happens, e.g., in π-calculus [23].

A value is the result of the reduction of an expression, and is either a variable
(a reference to an object), or a block where the declarations are evaluated (hence,
correspond to a local store) and the body is in turn a value, or a constructor call
where argument are evaluated. A sequence dvs of evaluated declarations plays
the role of the store in conventional models of imperative languages, that is,
each dv can be seen as an association of a right-value to a reference. Capsule
references are not part of the store. They are used as a temporary reference ini-
tialized with an isolated portion of store to be“moved” to another location in the
store, without introducing sharing. In the operational semantic, a declaration of
a variable x whose type has the caps qualifier, when the initialisation expression
is reduced to a value, is eliminated by substituting the occurrence of the variable
with its value.

v ::= x | new C(vs) | {dvs x} | {dvs new C(vs)} value
dv ::= qτC x=rv; q 6= caps evaluated declaration
rv ::= new C(xs) | {dvs x} | {dvs new C(xs)} right-value

The soundness of the type system for the operational semantics says that in addi-
tion to preserving the type of expressions reduction also produces an expression
that has less sharing.

Theorem 2 (Subject reduction). If Γ ` e : T | S and e −→ e ′, then Γ ` e ′ :
T ′ | S ′ where T ′ ≤ T and S ′ v S.
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In the following with ` e we mean that ` e : T | S for some T and S and since
in this case e is closed S can only be the identity sharing relation.

The following expresses the standard progress property.

Theorem 3 (Progress). ` e and e not a value implies e −→ e ′ for some e ′.

In addition to preserving the type of expressions, reduction also preserves the
immutable and capsule properties of subexpressions.

To trace the expression associated to a variable x in a store we assume that
there is no shadowing and define contexts that have a hole on the right-hand-side
of the (unique) declaration of x by:
Dx ::= {ds T x=[ ]; ds ′ e} | {ds T y=Dx; ds ′ e} | {ds Dx} | Dx.f

| Dx.f =e | e.f =Dx | new C(es Dx es ′) | Dx.m(es) | e.m(es Dx es ′)
We use the notations Dqx to refer to a declaration with a specific qualifier and
type(y ,Dx ) = T if T y=e;, for some e, is a declaration in one of the blocks
enclosing the hole of Dx .

We can now state that the promotion rules for capsule and immutable are
sound w.r.t. the operational semantics, i.e., once their initialisation expression is
evaluated, variables declared with caps modifier refers to isolated portion of the
store and variables declared with imm modifier are not modified by execution of
expressions in their scope. To formulate the isolation property for capsule, given
a right value rv consider gc(rv) to be obtained by rv removing in blocks the
declarations which are not reachable from the body.

Theorem 4 (Capsule and Immutable). If ` Dqx [e] and Dqx [e] −→? D′qx [rv ]
with q = caps or q = imm, then:

– for all y ∈ FV(gc(rv)) type(y ,D′qx ) = q ′ C where q ′ = caps or q ′ = imm

and
– if q = imm and D′qx [rv ] −→? D′′qx [rv ′] then rv = rv ′.

We now turn to the property of lent references, i.e., if an expression e refers to a
portion of memory only through lent references, then the evaluation of e cannot
introduce sharing between such portion of memory and external references.

To express this theorem we consider contexts, Ex , in which the declarations
preceding the hole are all evaluated. So they represent the store for the expression
in the hole.

Ex ::= {dvs T x=[ ]; ds e} | {dvs T y=Ex; ds e} | {dvs Ex} | Ex.f
| Ex.f =e | v.f =Ex | new C(vsExes) | Ex.m(es) | e.m(vsExes)

The store associate to Ex , dubbed store(Ex ), is :
- store({dvs T x=[ ]; ds e}) = dvs,
- store({dvs Ex}) = store({dvs T y=Ex; ds e}) = dvs store(Ex ) and
- store(Ex.f ) = · · · = store(e.m(vsExes)) = store(Ex )
Given a store dvs we can define the sharing relation induced by the store, dubbed
Sh(dvs), by considering the connections due to the rv associate to the declared
(mutable) variables, as follows:

Sh(qτ11 C1 x1=rv1; · · · qτnn Cn xn=rvn;) =
∑

1≤i≤n ∧ qi 6=imm{xi} ∪ FV(rv i).
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In the following dvs(x ) = dv is dv = T x=rv; ∈ dvs for some T and rv . More-
over, the set of variables declared in the store associated to Ex is denoted by
Dcl(Ex ). We can now state the property of lent references as follows.

Theorem 5 (Lent). Let ` Ex [e] and for all y ∈ FV(e) we have store(Ex )(y) =
qlentC y=rv;, for some q and C . If Ex [e] −→? E ′x [e ′], then

Sh(store(E ′x ))\(Dcl(E ′x )− Dcl(Ex )) v Sh(store(Ex )).

Consider the following simple examples of use of a lent reference. Let
Ex = {mut y=new C(y); mutlentC z=new C(y); T x=[ ]; e}

and e1 be z.f =z . We can show that ` Ex [e1] and Ex [e1] −→ E ′x [z ] where
E ′x = {mut y=new C(y); mutlentC z=new C(z); T x=[ ]; e}.

Since Sh(store(Ex )) = {z , y} and Sh(store(E ′x )) = {z}{y} (with our notation we
could use ε instead of {z}{y}) we have that store(E ′x ) v store(Ex ).
Let e2 be z.f =y . We have that 6` Ex [e2] and 6` E ′x [e2]. Indeed, letting Γ = y :
mutC , z : mutlentC , Γ ` z : mutlentC | {z , res} and Γ ` y : mutC | {y , res}.
However, to type z.f =y rule (T-Field-Assign) requires {z , res} ⊆ {y , res}, which
is false.

5 Conclusion and further work

We have presented a type system which combines tracing sharing effects possi-
bly introduced by the evaluation of an expression with preventing sharing and
mutation by type qualifiers which forbid some actions. Sharing is directly repre-
sented at the syntactic level as a relation among free variables, thanks to the fact
that in the underlying calculus memory is encoded in terms. As shown by the
examples of Sect.2, this type system is very powerful. Notably, it discriminates
between well-typed and ill-typed terms in situations where type systems only
based on declaring qualifiers are either too restrictive or require rather tricky
rules [18,17,29].

This paper extends recent work on inference of sharing effects, see [13,15],
to include lent constraints. In [13] we proved soundness of the type system,
and theorems expressing that references declared to be capsule have the ex-
pected behaviour. Here we are adapting the theorems and extending them to
the immutable qualifier. We also stated theorems saying that the type system
prevents expressions using lent references from introducing new connections for
those references. In this way expressions referring to a portion of memory only
through lent references cannot introduce sharing between such portion of mem-
ory and external references. In a forthcoming extended version of the paper we
are planning to
- provide a bidirectional type system, [12], that would allow us to to infer the
sharing produced by the execution of an expression given the sharing of its con-
text and
- give an operational semantics in which sharing is explicitly represented.
This should allow us to make more direct statements and proofs of the results,
in particular for the ones for lent references.
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