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Abstract. Most real world networks are dynamic, in the sense that
nodes are added/deleted over time and connections among them evolve as
well. Modeling the node degree distribution of such networks is very im-
portant, as it allows to characterize their resilience in terms of probability
of node isolation. Unfortunately, in most cases this is highly challenging.
In this paper, we propose an analytical framework for modeling the node
degree distribution while taking into account node lifetime statistics. We
provide exact solutions for two special cases of networks with prefer-
ential attachment, and we present simulation results that confirm the
analytical ones.
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1 Introduction

The study of evolving networks has attracted a large amount of attention from
different research communities, such as the physics one and the ICT one [1, 6,
13, 10, 19, 7, 20]. In particular, there is a widely known body of work on prefer-
ential attachment models [8, 1, 14, 15]. Modeling the node degree distribution of
dynamic networks is very important, as it allows to characterize their resilience
in terms of probability of node isolation.

Moore et al. [12] have proposed a remarkable model for characterizing the
general process in which a network grows, or stabilizes, or shrinks, by the addition
and removal of vertices and edges. The authors show that a class of such processes
can be characterized exactly for the node degree distributions they generate,
by solving differential equations that govern the generating functions for those
distributions.

In this paper, we extend the model proposed by Moore et al. [12], in order
to take into account the node lifetime distribution. We provide exact solutions
for two special cases of preferential attachment, namely min-age and max-age.
These cases are particularly interesting in the context of unstructured peer-to-
peer (P2P) networks, for the reasons discussed below.
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In general, P2P networks are highly decentralized systems, where each partic-
ipant node (peer) contributes to the global operation by sharing local resources
— CPU cycles, storage space, data, bandwidth. P2P networks are inherently
robust against churns, i.e., random departures and arrivals of nodes [11]. A P2P
network is unstructured if links among peers (being them actual or potential
connections) can be represented through a proper statistical characterization,
whose parameters are usually unknown to the peers. Being able to character-
ize and shape the node degree distributions of such networks is important to
improve message routing, load balancing and resilience.

The paper is organized as follows. In Section 2, we discuss related work. In
Section 3, we illustrate the proposed model and its application to the considered
special cases of networks with preferential attachment. In Section 4, we present
simulation results that validate the proposed model. In Section 5, we discuss
open problems. Finally, in Section 6, we conclude the paper.

2 Related Work

Yao et al. [18], Wang et al. [17], Leonard et al. [10] have investigated node fail-
ure and resilience of P2P networks, considering both passive and passive lifetime
models. As in the passive lifetime model failed neighbors are not replaced, the
node degree of each node decreases to 0, unless the node leaves the network be-
fore isolation. The passive lifetime model, instead, considers distributed recovery
algorithms in which failed neighbors are dynamically replaced with nodes that
are still alive. In their frameworks, the aforementioned authors make two as-
sumptions. The first one is that links are directed, i.e., the creation of a link
from node n1 to node n2 does not imply the creation of a link from n2 to n1.
The second assumption is that every node alternates ON and OFF periods —
hence, they study networks in equilibrium, i.e., for t→∞.

With respect to [18, 17, 10], which are important references for us, in this
paper we consider only the passive model, with i) bidirectional links among peers
and ii) nodes that join, stay ON for a while, then leave. The first assumption
makes the passive model more challenging to investigate, as the node degree
may also increase over time. The second assumption does not allow to study the
networks in equilibrium. Furthermore, we consider different initial connection
strategies — either non-preferential or preferential. Leonard et al. only consider
non-preferential strategies, as they assume that, when a new node v joins the P2P
network, it randomly selects m initial neighbors. In practice, other attachment
strategies are possible. For example, Yao et al. [19] have studied node isolation
in unstructured P2P networks, considering the active lifetime model and two
preferential attachment strategies (max-age and age-proportional).

Ferretti [7] has proposed a protocol for managing unstructured P2P over-
lays and reacting to node faults. Thus, the dynamics of three different network
topologies, with peers relying on such a reactive protocol, have been studied by
means of active lifetime models. The proposed analytical framework exploits the
properties of generating functions to turn the infinite set of differential equa-
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tions that describe the analytical evolution of the node degree distribution into
a single differential equation, whose solution gives the node degree distribution
in steady state. However, although the proposed analytical framework works for
the considered reactive protocol, with the assumption that every peer has a de-
sired node degree j <∞ and an actual node degree i ≤ j, it does not allow one
to take into account the attachment strategies we are interested in.

More recently, Zhang et al. [20] have introduced the random birth-and-death
network (RBDN) model, in which a new node is added into the network with
edges that randomly connect to m old nodes with probability p, or an existing
node is randomly deleted from the network with probability q = 1− p. For dif-
ferent p, the authors discuss the network size and degree distributions. However,
they do not address the case of preferential attachment.

3 Proposed Model

In this section, we describe the proposed model, starting with the definition of
network and going on with some assumptions and the properties that ensue.

Definition 1 A network is an undirected graph with n nodes. The number of
links starting from a node is denoted as node degree. The fraction of nodes with
degree k, at a given time, is denoted as pk.

Like the reference model by Moore et al. [12], our model is based on the
following assumptions.

– Time is divided into epochs. In each epoch, a single node is added to the
network and r nodes are removed. Non-integer values of r are allowed. For
example, r < 1 can be interpreted as the probability that a node is removed
per epoch. The value r = 1 denotes a network of fixed size, with node
turnover but no growth. Shrinking networks are characterized by r > 1.

– All nodes, when joining the network, have the same initial degree, denoted
as m� n. In other words, each new node connects to m different nodes.

Furthermore, our model takes into account the following churn properties.

– The time interval between the addition of one node and the addition of the
next node is a continuous random variable denoted as inter-arrival time I.

– The time interval between the addition and the removal of one node is a
continuous random variable denoted as node lifetime L.

Conversely, the reference model by Moore et al. [12] assumes that removed nodes
are picked uniformly at random from the set of all existing nodes, not taking
into account I and L.

The mean degree of a node is easily derived in terms of the parameters r and
m [12]:

〈k〉 =
2m

1 + r
. (1)
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Definition 2 The attachment kernel πk is n times the probability that a given
link of a newly added node attaches to a given preexisting node of degree k.

Lemma 1. The total probability that a given link of a newly added node attaches
to any node of degree k is πkpk.

Proof. It follows from Definition 1 and Definition 2. 2

Generating functions [9] transform problems about sequences into problems
about functions. Indeed, a generating function is a way of encoding an infinite
sequence of numbers by treating them as the coefficients of a power series. The
generating functions for πkpk and pk are denoted, respectively, as follows:

f(x) =

∞∑
k=0

πkpkx
k (2)

and

g(x) =

∞∑
k=0

pkx
k. (3)

It is worth noting that g(1) = 1.

Lemma 2. (Moore et al. [12]) From the rate equation that governs the evolution
of the degree distribution pk, in the limit of large times for a given πk, we can
derive the following differential equation for g(x):

r(1− x)
dg

dx
− g(x)−m(1− x)f(x) + xm = 0. (4)

In the following, we specialize this result to study three specific networks,
namely: (i) with uniform attachment; (ii) with min-age attachment and expo-
nential lifetime; (iii) with max-age attachment and exponential lifetime. We as-
sume node turnover but no growth (r = 1), as we consider networks in steady
state, where the number of nodes is determined by I and L as n = E[I]E[L],
where E[I] is the arrival rate and E[L] is the average lifetime.

3.1 Uniform attachment

The case of uniform attachment is the most obvious specialization of the dif-
ferential equation introduced by Lemma 2. Every node that joins the network
choses its initial neighbors uniformly at random. The node degree distribution
that emerges in the long term is stated in Theorem 3.

Theorem 3. (Moore et al. [12]) Let us assume that the initial m neighbors are
chosen non-preferentially, i.e., with uniform distribution over all available nodes.
The resulting node degree distribution can be expressed as follows:

pk =

{
emm−(m+1)[Γ (m+ 1)− Γ (m+ 1,m)]Γ (k+1,m)

Γ (k+1) if k < m

emm−(m+1)Γ (m+ 1,m)
[
1− Γ (k+1,m)

Γ (k+1)

]
if k ≥ m

(5)

where Γ (m+ 1, c)
.
=
∫∞
c
yme−ydy is the incomplete gamma function.
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Proof. The complete proof was given by Moore et al. [12]. We report here the
main results as we consider this scenario to be the reference one.

Chosing the initial m neighbors with uniform probability means that πk is
constant, independent of k and L. In particular, it must be πk = 1, otherwise∑
k πkpk = 1 would not hold. As a consequence, f(x) = g(x) and Eq. (4) reduces

to (
m+

1

1− x

)
g(x)− dg

dx
=

xm

1− x
(6)

whose solution is

g(x) =
emx

1− x
m−(m+1)[Γ (m+ 1,mx)− Γ (m+ 1,m)]. (7)

2

To characterize the resilience of the network, we compute the probability
that a node gets isolated:

p0 = emm−(m+1)[Γ (m+ 1)− Γ (m+ 1,m)]
Γ (1,m)

Γ (1)
. (8)

In Fig. 1, p0 is shown as function of m. It can be observed that m > 6 guarantees
p0 < 0.001.
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Fig. 1. Probability of node isolation, for the scenario of uniform attachment and ex-
ponential lifetime.

3.2 Min-age attachment and exponential lifetime

Preferential attachment (also known as Yule process, cumulative advantage, or
“the rich gets richer”) is a widely studied process [1]. Min-age attachment is a
special case of preferential attachment, where every node that joins the network
chooses as initial neighbors those that joined just before itself.
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Theorem 4. Let us assume that node lifetime L has an exponential distribution,
with cumulative distribution function (CDF) FL(x) = 1−e−λx, x > 0. Moreover,
let us assume that every added node connects to the m most recently added nodes
of the network. The resulting node degree distribution is

pk =

{
1

2m+1 if k ∈ {0, ..., 2m}
0 if k > 2m.

(9)

Proof. A newly attached node is, by definition, the youngest. Thus, if its life is
long enough, the node can receive the connections of the next m added nodes. In
each epoch, the probability that one of the m initial neighbors is removed is m/n,
as all nodes of the network are characterized by a residual lifetime with CDF
FR(x) = FL(x), for the memoryless property of the exponential distribution.
Since m � n, it turns out that m/n ' 0. Therefore, every incoming node
connects to nodes that already have, respectively, m, m+ 1, .. ,2m−1 neighbors
with probability 1 −m/n ' 1. Therefore, the total probability that a new link
attaches to any node of degree k is

πkpk =

{
1
m if k ∈ {m, ..., 2m− 1}
0 else.

(10)

It thus follows that f(x) = 1
m

∑2m−1
k=m xk. Therefore, Eq. (4), with r = 1, can be

restated as

(1− x)
dg

dx
− g(x)−m(1− x)

1

m

2m−1∑
k=m

xk + xm = 0 (11)

that reduces to

(1− x)
dg

dx
− g(x) + x2m = 0 (12)

whose solution is

g(x) =
1

2m+ 1

2m∑
k=0

xk. (13)

2

With respect to resilience, it is worth noting that p0 = 1/(2m+ 1) for all m,
meaning that we need m = 500 to get p0 = 0.001.

3.3 Max-age attachment and exponential lifetime

Another special case of preferential attachment is max-age attachment, where
every node that joins the networks chooses as initial neighbors those that have
been into the network for the longest time.
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Theorem 5. Let us assume that node lifetime L has an exponential distribution,
with cumulative distribution function (CDF) FL(x) = 1−e−λx, x > 0. Moreover,
let us assume assume that every added node connects to the m least recently added
(i.e., oldest) nodes of the network. The resulting node degree distribution is

pk =

{
1

m+1 if k ∈ {0, ...,m}
0 if k > m.

(14)

Proof. The m oldest nodes may have k ∈ {m, ..., n − 1} connections, with high
probability. For the memoryless property of the exponential distribution, all
values of k have equal probability. Therefore, the total probability that a new
link attaches to any node of degree k is

πkpk =

{
1

n−m if k ∈ {m, ..., n− 1}
0 else.

(15)

As a consequence, f(x) = 1
n−m

∑n−1
k=m x

k. Thus, Eq. (4) can be restated as

(1− x)
dg

dx
− g(x)−m(1− x)

1

n−m

n−1∑
k=m

xk + xm = 0 (16)

Since m� n, this differential equation reduces to

(1− x)
dg

dx
− g(x) + xm = 0 (17)

whose solution is

g(x) =
1

m+ 1

m∑
k=0

xk. (18)

2

Concerning resilience, we observe that p0 = 1/(m+1) for all m, meaning that
we need m = 1000 to get p0 = 0.001. This means that min-age attachment is
better that max-age attachment, but still much worse than uniform attachment
in terms of number of required initial connections that preserve the node from
isolation.

4 Simulations

To evaluate the proposed framework, we used the general-purpose discrete event
simulation environment DEUS [4]. The main purpose of DEUS is to facilitate the
simulation of highly dynamic overlay networks with several hundred thousand
nodes, without the need to simulate also lower network layers. Therefore, it is
particularly suitable to study P2P architectures and protocols [2, 5, 3, 16].

We simulated 7 days of the life of a network, where leaf nodes have inter-
arrival time I with exponential distribution and E[I] = 50 nodes per minute.
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The lifetime L is either exponential (FL(x) = 1 − e−λx, with x > 0) or shifted
Pareto (FL(x) = 1 − (1 + x/β)−α, with x > 0, α > 1, β > 0). Assuming that
E[L] = 30 minutes — meaning that λ = 0.03 for the exponential distribution of
L, and (α = 3, β = 60) for the shifted Pareto distribution of L) — the size of
the network stabilizes to n = E[I]E[L] = 1500 nodes.

4.1 Uniform attachment

In the first simulated scenario, the uniform attachment strategy is adopted.
In Fig. 2, simulation results are reported, for m ∈ {3, 5, 7}. As expected, the
simulated node degree distribution complies with the analytical pk, given by
Theorem 3, and does not depend on the statistics of L (in this case, we considered
both exponential and shifted Pareto distributions).
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Fig. 2. Node degree distribution for uniform attachment, with m ∈ {3, 5, 7}. L is
exponential (upper plot) and Shifted Pareto (lower plot).
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4.2 Min-age attachment and exponential lifetime

In the second simulated scenario, the min-age attachment strategy is adopted,
assuming exponential lifetime L. The node degree distribution is {pk} as defined
by Theorem 4. In Fig. 3, simulation results are reported, for different values of
m. It can be observed that simulation results match with analytical ones.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  5  10  15

p
k

k

m=3 simulation

m=3 model

m=5 simulation

m=5 model

m=7 simulation

m=7 model

Fig. 3. Node degree distribution for min-age attachment (m ∈ {3, 5, 7}, L with expo-
nential distribution).

4.3 Max-age attachment and exponential lifetime

In the third simulated scenario, the max-age attachment strategy is adopted,
assuming exponential lifetime L. The node degree distribution is pk as defined
by Theorem 5. In Fig. 4, simulation results are reported, for different values of
m. Also in this case, simulation results are in accordance with analytical ones.

5 Open Problems

According to the analysis illustrated in previous sections, uniform attachment
makes the network resilient, for all distributions of L. However, uniform attach-
ment in P2P networks is not always a good choice. In file sharing applications,
long-standing nodes are frequently the most rich ones, in terms of files and/or
information for discovering files within the network.

Thus, we need to complete our analysis by addressing the case of preferential
attachment and non-exponential lifetime. Owing to the lack of the memoryless
property, it is challenging to tailor Eq. (4) for this case.

Let us consider the min-age attachment scenario. Every added node connects
to the m youngest nodes of the network. It is still true that, if its life is long
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Fig. 4. Node degree distribution for max-age attachment (m ∈ {3, 5, 7}, L with expo-
nential distribution).

enough, the node can receive the connections of the next m added nodes. How-
ever, we cannot assume that, in each epoch, the probability that one of the m
initial neighbors is removed is negligible.

Every node goes through two consecutive phases, namely youth and old age.
Because of the considered arrival and departure models, it is not possible that
a node returns to youth, once it has reached the old age. While a node is in the
youth phase, its k value can increase or decrease between m and 2m. To clarify
this concept, an example with m = 2 is proposed in Fig. 5.

We observe the dynamics of the connections of the node filled in dark blue.
When added, the dark node attaches to m = 2 nodes, which are the youngest
nodes of the network. At the end of the first time interval, an old node is removed,
which is not a neighbor of the dark node. In the following time interval, a new
node is added, which attaches to the dark node. Hereafter, in the same time
interval, one of the first neighbors of the dark node is removed. At this point,
the dark node is still in its youth phase, with m = 2. In the following time
interval, a new node is added, which attaches to the dark node. In the same
time interval, the second of the first neighbors of the dark node is removed.
Even in case that neighbor was not removed, the black node would result in
being in the old age phase. From now on, the number of neighbors of the dark
node can remain the same or shrink, but cannot increase.

Despite we know these dynamics, we still miss a sound strategy for deriving
the total probability πkpk that a new node attaches to a young node with degree
k.
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Fig. 5. Example of min-age attachment and non-exponential lifetime.

6 Conclusion

In this paper, we have proposed an analytical framework for modeling the node
degree distribution while taking into account node lifetime statistics, in evolving
networks. We have provided exact solutions for two special cases of networks with
preferential attachment, namely min-age and max-age, and we have presented
simulation results that confirm the analytical ones. In the last part of the paper,
we have discussed open problems related to the case of preferential attachment
and non-exponential lifetime.
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