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Abstract. In recent years we resumed the study of operator precedence
languages (OPL), inspired by their algebraic and parallel parsability
properties. OPL significantly generalize visibly pushdown languages in
expressive power. We have shown that OPL enjoy a characterization in
terms of monadic second order logic in the style of the traditional one for
regular languages. We are investigating a characterization of a subclass
of OPL in terms of first-order logic, retracing the literature on regular
languages. The algebraic properties of OPL naturally suggested a fur-
ther step, devoted to devising model checking techniques for them. In
this communication we briefly report on early steps already moved in
this direction and we outline a roadmap for next developments. In doing
so, we plan to exploit a distinguishing feature of OPL which allows to
manage them both as string languages and as tree-structured languages,
thus joining two traditional but different approaches to the study of
context-free languages. We expect to achieve a temporal logic-style lan-
guage that is well suited to express properties of systems in application
fields wider than those based on regular languages. We anticipate to
obtain model-checking procedures with comparable performances.

Keywords: Temporal Logic · Operator Precedence Languages · Input-
Driven Languages · Visibly Pushdown Languages · Model Checking.

1 Introduction

Formal correctness verification consists in proving, preferably automatically, that
a computer system –or precisely, a model thereof– satisfies its requirement spec-
ification. The variety of properties constituting the specification depends on the
mathematical formalisms employed to model the system, and to write the speci-
fication. Formalisms based on the limited, yet practically important, finite state
machines (FSM) have lead to completely automated verification processes. This
could not be achieved by the Turing-complete ones, due to their undecidability.

Monadic second-order logic (MSO) [11] was introduced to give a logical char-
acterization to regular languages, also suitable for requirement specification. Un-
fortunately, the verification problem for both MSO and its first-order fragment
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(MFO) is computationally intractable [19,26]. Thus, A. Pnueli, E. Clarke, E.A.
Emerson and J.H. Alpern introduced temporal logics: Linear Temporal Logic
(LTL) [27], and its branching-time counterparts, such as CTL* [15]. Model check-
ing temporal logic formulas is PSPACE complete [28], with a time complexity
bounded by a single exponential in their length, definitely more acceptable.

LTL was proved to coincide in expressive power with the first-order fragment
of regular languages. Despite being a significant assurance of expressive power,
this left room for improvement. This purpose lead to the birth of a number of
variants of temporal logics, such as timed [3] versions. Another natural path for
improvement leads upwards in the Chomsky hierarchy. Unfortunately, context-
free languages (CFL) lack closure and decidability properties necessary for model
checking. The first attempts consisted in model checking regular properties of
pushdown systems [10,16,20,17,6], without tackling, however, the problem of ver-
ification against truly context-free based specifications. After a few early works
in this direction [9,21], a significant further step has been the introduction of
the temporal logic CaRet [7], by R. Alur and P. Madhusudan. CaRet is based
on Visibly Pushdown Languages (VPL) [4], a subclass of Deterministic CFL
(DCFL) that enjoys all the properties required for model checking (they form a
Boolean algebra), but sacrificing expressive power. VPL were also characterized
in terms of MSO [5], and their first-order fragment was isolated by introducing
the temporal logic NWTL, and its model checking procedure [2].

We hereby report on our endeavors to obtain greater expressiveness by model
checking an even wider language class: Operator Precedence Languages (OPL)
[18]. OPL were originally introduced by Floyd in the context of programming
language parsing.3 Thus, despite not capturing the full class of DCFL, they
can express the word structures most typical of CFL. Their being inspired by
precedence relations between operators in arithmetic expressions allows them to
represent tree-like structures not immediately visible in words, so as string recog-
nition is not necessarily real-time. This greatly differentiates OPL form VPL,
whose nesting structure is immediately visible and determined by a partition on
the terminal alphabet, making them only a little more general than parenthesis
languages [25]. The structure of OPL, instead, is determined by the precedence
relations between pairs of terminals: OPL embrace a greater expressive power,
while not sacrificing their closure properties [14,13].

Initially, we developed their MSO characterization [23], by extending the
matching relation introduced in [22]. Then, we introduced the temporal logic
OPTL [12], an attempt at generalizing the approach introduced with NWTL
to the more complex algebraic structures allowed by OPL. Our findings in this
respect are summarized in Section 3, after an overview of OPL in Section 2.
The structure of OPL words is, however, general to a point that their tree-like
nature is predominant. We thus also consider approaches that are more common
in tree logics, such as Conditional XPath. We report on such aims in Section 4.
In Section 5 we comment on future research steps.

3 We devised efficient parallel parsers for OPL [8], but this is out of the scope of this
paper.
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Fig. 1: Parsing of arithmetic expression (right, OPM on the left). e represents
any number. The chain relation is shown with lines connecting rhs contexts.

2 Operator Precedence Languages

OPL are inspired by precedence relations among operators in arithmetic ex-
pressions. They are generated by grammars in operator form, i.e. whose rules’
right-hand sides (rhs) have no consecutive non-terminals. Three binary prece-
dence relations (PR) among terminal symbols derive from them, guiding their
parsers in recognizing and reducing grammar rhs. Given two terminals a, b, for
any non-terminals A,B,C and mixed terminal/non-terminal strings α, β, γ, we
say a yields precedence to b (al b) if there exists a rule A→ αaCβ, s.t. a string
Baγ or aγ derives from C in any number of passes; a is equal in precedence to b
(a

.
= b) if there exists a rule A → αaCbβ or A → αabβ; and a takes precedence

over b (a m b) if there is a rule a → αCbβ, s.t. γaB or γa derives from C. In
practice, a l b if b is the beginning of a rhs; a

.
= b if they belong to the same

rhs; am b if a is the end of a rhs.
If at most one PR holds between any terminal pair, once all PR are collected

into an operator precedence matrix (OPM), the abstract syntax tree (AST) of
any word on the same alphabet is fully determined. Fig. 1 shows the parsing steps
of an OPL of arithmetic expressions, with PR between consecutive terminals.
The word is delimited by #, s.t. # l a and a m # for any terminal a. We call
context the two terminals surrounding a rhs. In the OPM, we have + l×, and
× m +. So, rhs with × are reduced before +, reflecting the precedence of ×
w.r.t. + in the AST. Thus, the OPM induces a matching relation between the
contexts of the same rhs, also called the chain relation. It completely defines the
tree structure of a string [23], playing the same role as the matching relation µ in
nested words [5]. Being based on VPL, µ can only be one-to-one, and a position
cannot be both the right and left side of the relation. Both constraints are lifted
for the chain relation, making it much more general.

Nested words have been introduced with the main purpose of modeling pro-
cedural programs. OPL can model them too, with the addition of features that
cannot be captured by VPL, such as exceptions. An exception is an event that
forces the termination of multiple functions, until a handler blocks the stack
unwinding. This process can be modeled as in Fig. 2. OPM Mcall determines
the chain relation, shown by arcs connecting related positions. Every call to a
function is in relation with the return terminating it, and all instructions issued
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Fig. 2: Example of execution trace (right), according to OPM Mcall (left). Proce-
dure pa is called in pos. 1, and it installs an exception handler (han) in 2. Then,
three nested procedures are called, the innermost one (pd) throwing an exception
(thr), caught by the handler. Finally, pa returns, uninstalling the handler.

by that function are contained between them. Some invocations are, however,
terminated by an exception. Their calls are in relation with the corresponding
throw statement. The chain relation is thus many-to-one in this case.

3 Word-Based Linear Temporal Logic

This approach is inspired to logics such as NWTL, following the linear structure
of words more than their tree structure. We first explored it with the logic OPTL
in [12], where an automata-theoretic model checking procedure is also sketched.

A natural class of properties that can be expressed in OPTL are Hoare-style
pre/post-conditions. This can be achieved by means of an operator that asserts
a formula in a position in the chain relation with the current one. This operator
can refer to a single position or to a collection thereof by means of suitable quan-
tifications. In OPTL, this role is taken by the matching next #χ operator, which
considers the maximal (outermost) chain and selects the farthest position in the
chain relation with the current one. In Fig. 2, the maximal chain starting from
pos. 2 is 7, and not 6. For instance, the OPTL formula ϕ ≡ 2[ρ∧call =⇒ #χθ],
where 2 is the LTL globally operator, says that whenever precondition ρ holds
at the point of a procedure call, post-condition θ will hold at the corresponding
return or throw, extending this kind of properties to exceptions. Referring to the
C++ programming language, if θ is a class invariant asserting that an object
is in a valid state, ϕ expresses weak exception safety (i.e. the exception leaves
the object in a valid state) [1]. If ρ ≡ θ represents the whole state of the object,
then ϕ expresses strong exception safety (i.e. the exception leaves the object
untouched). Alternatively, the matching next could be replaced by an operator
that quantifies existentially on positions in the chain relation with the current
one, without choosing one of them a priori.

Both OPTL’s and NWTL’s until and since operators add to the traditional
LTL ones, named linear, the so-called summary ones which skip all positions
between a call and its matching return. In OPL words, however, jumping from
a position to a matching one can lead to different points since multiple positions
can be in the chain relation with a single one, so only one of them must be chosen.
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Thus, consistently with the previous definition of the matching next operator,
the farthest (maximal) one is chosen, but other criteria may be used.

In OPL words, PR also need to be taken into account. Paths can be better
controlled by admitting only some of the PR between subsequent positions in the
path. Admitting the l relation lets paths enter chain bodies, going downwards
in the AST; symmetrically, m exit them, going upwards in the AST. In Fig. 2,
until operators based on summary paths not allowing the m relation are limited
to the function body in which the operator is evaluated. This allows to express
function-local properties, such as “function A will never write to variable x”,
including or excluding subcalls.

4 Tree-Based Linear Temporal Logic

Another possible approach is to adapt the first-order complete tree-logic Condi-
tional XPath [24] to OPL words, by applying it to their AST, thus seeing OP
words from the point of view of their tree-like structure, rather than from that
of linear words. Since the tree structure of OPL words is given by the chain
relation, this logic evaluates its formulas on pairs of positions that are either
consecutive or in the chain relation, called contexts, instead of single positions.
A pair of until/since operators allows for “vertical” movement from a context
to those immediately contained into it. This means movement in the AST from
a non-terminal to one of its non-terminal children. Another pair of until/since
operators enables movement among consecutive contexts in the same rhs, i.e.
among the non-terminals in the same rhs.

Applying such a logic to procedural program specification (Fig. 2), it is easier
to express properties that vertically analyze stack traces, such as stack inspec-
tion, extending the capabilities of VPL-based logics to programs with exceptions.
For example, properties such as “function C should be called only when B is
on stack, with no intervening call to A”, or “if a procedure D is terminated by
an uncaught exception, B must be terminated by the same exception as well,
and A cannot occur between them” are easily expressible with a vertical since
operator. In Fig. 2, they are witnessed resp. by the context-paths (4, 6), (3, 6)
and (5, 6), (4, 6), (3, 6). A vertical until may express properties on sub-calls in
a function frame (e.g. “function A never calls B”), and horizontal operators on
instructions in the current frame only (e.g. “proc. A never writes to variable x”).

5 Conclusion

In this short paper, we reviewed our previous work on the matter of develop-
ing temporal logic and model checking on OPL, and describe the premises for
further developments. Our future efforts will be aimed at better formally defin-
ing the two possible approaches we hinted, by investigating their expressiveness,
the relationships between them, and by conceiving, implementing, and applying
practical model checking procedures.
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