
Towards a Tool for LTL Synthesis with
Bounded-Energy Constraints

Bastien Maubert1, Aniello Murano1, Pasquale Perillo1,
Sasha Rubin2, and Alessio Spasiano1

1 University of Naples Federico II, Italy
2 University of Sydney, Australia

Abstract. MCMAS is an open-source model checker specialised in log-
ics for multi-agent systems (MAS), in particular logics for strategic rea-
soning, but which at the moment can only handle qualitative objectives.
We propose a first step towards extending MCMAS to certain quanti-
tative strategic logics where the quantitative aspects have the form of
energy constraints. We show that the existence of strategies for a coali-
tion of agents for objectives given as a combination of LTL formula and
bounded energy constraint can be reduced to the same problem for pure
LTL objectives. Using this reduction, we run some experiments with
MCMAS to solve quantitative strategic problems.

1 Introduction

Multi-agent systems (MAS) are systems that involve several autonomous enti-
ties, called agents, acting in some environment [6] and trying to achieve some
individual and/or common goals against adversarial entities, possibly by cooper-
ating. One fundamental problem in the study of MAS is to decide the existence
of and synthesize strategies for coalitions of agents to achieve their goals. Several
logical formalisms have been developed to express such strategic abilities in MAS,
extending the Linear-time Temporal Logic LTL, and several tools have been de-
veloped. Among them, MCMAS (Model Checker for Multi-agent Systems) [7] can
handle a number of such formalisms, based on ATL (Alternating-time Temporal
Logic) [1] or SL (Strategy Logic) [4, 8, 9]. MCMAS can thus solve, in particular,
the strategy existence problem for LTL objectives, when we restrict attention
to memoryless agents, i.e., agents whose strategies depend only on the current
state of the system, and not on the past. LTL, though very successful as a lan-
guage to specify properties of systems’ behaviours, is purely qualitative. But in
increasingly widespread contexts such as resource-constrained environments, it
is desirable to also consider quantitative objectives. In this paper we consider
strategy synthesis for objectives combining a qualitative component expressed in
LTL, and a quantitative energy condition [3, 5], given by integer weights assigned
to agents’ actions and whose sum through time should always remain in a given
range. MCMAS can not handle such quantitative objectives, but we show how

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)

2 B. Maubert, A. Murano et al.

when the interval is bounded, the strategy problem for LTL + energy condition
can be reduced to the pure LTL case, and we can thus use MCMAS to solve it.

2 Formal setting

In this section we recall interpreted systems, LTL, energy conditions and we
finally define the strategic problem we study.

Interpreted Systems. Interpreted Systems (IS) are a classic class of models
for MAS, and are the models used in MCMAS [7]. Let Agt = {0, 1, · · · , n} be
a finite, non-empty set of agent names where agent 0 is called the environment
agent, and AP a set of atomic propositions.

Definition 1. An Interpreted System I is a tuple 〈(Li, ACTi, Pi, τi)i∈Agt, λ〉
where: Li is a finite set of local states for agent i ∈ Agt, ACTi is a finite,
non-empty set of actions that agent i can perform, Pi: Li → 2ACTi \ {∅} is the
protocol for agent i that denotes the set of actions available in each local state;
τi : Li×ACT0×ACT1× . . .×ACTn → Li is the transition function of agent i,
and λ : L0 ×L1 × . . .×Ln → 2AP is a labelling function encoding for each state
which atomic propositions are true.

S = L0×L1× . . .×Ln is the set of global states and Dc = ACT0× . . .×ACTn
is the set of possible joint actions, representing a choice of action for each agent.
Each agent’s transition function τi maps joint actions and local states to resulting
local states after execution of the joint action. We let li(s) be the local state of
agent i in the global state s ∈ S and we define the global transition function
τ : S ×Dc→ S as τ(s, α) = s′ where li(s

′) = τi(li(s), α) for each i ∈ Agt.
A computation is an infinite sequence s1α1s2α2 . . . that alternates between

global states and joint actions such that τ(sk, αk) = sk+1 for every k ≥ 1. The
k-th state of a computation c with k ∈ N∗ is denoted by ck and the suffix of a
computation starting from k ∈ N∗ is denoted by c≥k.

Linear-time Temporal Logic. We briefly recall the syntax and semantics of
LTL. Formulas are built according to the grammar ϕ ::= p |ϕ∨ϕ|¬ϕ |Xϕ |ϕU ϕ,
where p ∈ AP . Other classic operators can be defined in the usual way, e.g., true
> (defined as p ∨ ¬p), finally F (Fϕ stands for >Uϕ) and globally G (Gϕ
stands for ¬F¬ϕ). The semantics of a LTL formula ϕ on an infinite sequence
u = u1u2 . . . ∈ (2AP)ω of valuations over AP is defined as follows: boolean cases
are as usual, u |= Xϕ if u≥2 |= ϕ, and u |= ϕ1 U ϕ2 if there exists k ≥ 1 such
that u≥k |= ϕ2 and u≥j |= ϕ1 for all 1 ≤ j < k.

For an Interpreted System I, a computation c = s1α1s2α2 . . . over I and a
LTL formula ϕ, we write I, c |= ϕ to mean that λ(s1)λ(s2) . . . |= ϕ.

Energy Constraints. An energy condition (over an IS I) is a triple e =
〈w , εinit, [a, b]〉 where w : Dc→ Z is a weight function, εinit ∈ [a, b] is the initial
energy level and [a, b] is its energy bound, with a, b ∈ Z and a ≤ b. Given a
computation c = s1α1s2α2 · · ·, the energy values ε induced by c is the following
infinite sequence of integers: ε1 = εinit, and for k > 1, εk = εk−1 + w(αk−1).

Towards a Tool for LTL Synthesis with Bounded-Energy Constraints 3

A computation c over an IS I satisfies an energy condition e = 〈w , εinit, [a, b]〉
if the energy values ε induced by c with weight assignment w and ε1 = εinit are
such that εk ∈ [a, b] for k > 1. In this case, we write I, c |= e.

Remark 1. In [5], which we take inspiration from, the weight function depends
on global states and joint actions. Here it only depends on joint actions, which
is also reasonable. We make this choice to make it possible to simulate energy
thanks to an energy agent (see next section). Indeed, in interpreted systems
agents can see joint actions but not other agents’s local states.

Problem definition. We want to determine if a team of agents has a way to
choose actions so that the resulting behaviour of the system satisfies a given LTL
formula and energy constraint. In other words we want to know if the agents
have a winning strategy. We now define this notion.

A local strategy for agent i is a function σi : Li → ACTi such that σi(l) ∈ Pi(l)
for every l ∈ Li. Note that strategies are uniform (they only depend on the
information available to the agent) and memoryless (they do not depend on the
history, only on the current state). A computation c = s1α1s2α2 . . . is consistent
with a strategy σi for agent i if for every k ≥ 1 it is true that σi(li(sk)) = aci(αk),
where aci(αk) is the action of agent i in αk. A strategy profile σA = {σi}i∈A for
a set A ⊆ Agt of agents is a set of strategies, one for each agent in A. Given a
global state s, a LTL formula ϕ and an energy condition e, we say that a strategy
profile σA for A is winning if for every computation c that starts from s and
that is consistent with each σi for i ∈ A, it holds that I, c |= φ and I, c |= e.

Problem. Given an Interpreted System I, a team of agents A ⊆ Agt, a global
state s ∈ S, a LTL formula ϕ and an energy condition e = 〈w , εinit, [a, b]〉,
determine whether there exists a winning strategy profile for the agents A.

3 Problem Reduction

MCMAS can deal with LTL objectives, but not energy constraints. In this section
we show how to reduce our problem to the same problem with only a LTL
objective, so that we can use MCMAS to solve it.

Fix an IS I, a global state s, a LTL formula ϕ and an energy constraint
e = 〈w , εinit, [a, b]〉. Intuitively, the transformation consists in adding in I a new
energy agent, whose only task is to track the current energy in the evolution
of the system. We introduce a fresh atomic proposition e-ok that is meant to
indicate that the current energy level is in the authorized range [a, b]. We then can
express that the energy condition is satisfied with the LTL formula φe = G e-ok,
and it remains to take as new objective the LTL formula φ ∧ φe.

We define the energy agent (Le, ACTe, Pe, τe) as follows. First Le = {a, a +
1, . . . , b − 1, b, O}: we have one local state for each energy level in [a, b], plus
one local state O denoting that the energy is out of range. Second, the agent
has only one dummy action available in every local state: ACTe = {idle}, and
Pe(l) = ACTe for each l ∈ Le. The transition function τe updates the local state
according to the weight assignment of the energy constraint:

4 B. Maubert, A. Murano et al.

left corner

- - -
k-2

R

k-1 k k+1

R

k+2

- - -
right corner

Fig. 1. Representation of the corridor system with two agents and two recharge cells

– τe(le, α) = le + w(α) if a ≤ le + w(α) ≤ b and le 6= O;
– τe(le, α) = O if le + w(α) < a or le + w(α) > b or le = O.

Writing I = 〈(Li, ACTi, Pi, τi)i∈Agt, λ〉, we define the new interpreted system
I ′ =

〈
(Li, ACTi, Pi, τi)i∈Agt∪{e}, λ

′〉 over agents Agt′ = Agt ∪ {e} and atomic
propositions AP ′ = AP ∪ {e-ok} as follows. (Le, ACTe, Pe, τe) is as defined
above, and λ′ : S × Le → 2AP ′

is such that λ′(s, le) = λ(s) ∪ {e-ok} if le 6= O,
and λ(s) otherwise. This means that e-ok holds if the current state of the energy
agent correspondents to an energy level in the acceptable range.

The LTL formula ϕe = G e-ok means that the energy is always in the range
[a, b]. Clearly, for every computation c, I, c |= e if, and only if, I ′, c |= ϕe.

It follows that we can reduce our problem to a problem of strategy synthesis
for pure LTL objectives:

Theorem 1. There exists a winning strategy profile for A in I for LTL objective
ϕ and energy constraint e if, and only if, there exists a winning strategy profile
for A in I ′ for LTL objective ϕ ∧ ϕe.

4 MCMAS Experimental Results

Resorting Theorem 1, we can solve the problem of strategy synthesis for LTL
and energy constraint in MCMAS. More precisely we used MCMASSLK , an
extension of MCMAS that adds support to Strategy Logic with Knowledge, and
supports reasoning about memoryless strategies with imperfect information [2].

Corridor example. We designed a simple example called corridor, in which
one or more players move in a hallway divided in a finite number of cells. The
players can perform actions left or right, each associated with an energy weight
of -1, meaning that they cost one unit of energy to. In addition, the corridor
contains a number of recharge cells, where the players can gain a certain number
of energy units by performing a recharge action. Each player is an agent, who
tracks his actual position in his local state. We also have a special agent for
the environment (Env) who stores the position of the recharge cells in his local
state, which is observable to all agents. Figure 1 represents an instance of corridor
with two recharge cells marked as R and black and white circles representing
two players. The goal is to find if there exists a strategy for each player such that
both extremities of the corridor are visited infinitely often, while maintaining the
energy in a given range. We have two atomic propositions le and re to express
that some agent is currently at the left (resp. right) extremity of the corridor,
so that visiting infinitely often both extremities can be expressed by the LTL

Towards a Tool for LTL Synthesis with Bounded-Energy Constraints 5

without energy with energy

players reachable mean standard reachable mean standard
number states time (s) deviation states time (s) deviation

1 12 0,0635 0,0695 122 0,054 0,0309

2 144 0,21 0,0946 1084 145,156 1,1707

Table 1. Experimental results for the corridor

formula φ = G(F le∧F re). Using Theorem 1, we know that solving the problem
with LTL objective φ and an energy constraint is equivalent to solving it for the
LTL objective φ∧G e-ok in the system I ′ enriched with the energy agent Ener.

Thus we check in MCMASSLK , for two players a1 and a2, the formula

〈s1〉 〈s2〉 [s3][s4](a1, s1)(a2, s2)(Env, s3)(Ener, s4)G(F le ∧ F re ∧ e-ok).

MCMAS returns that the formula is false because a memoryless winning
strategy for the two players to achieve both objectives does not exist, indeed
with memoryless strategies, each player in each cell has to either always go left
or always go right, so that they cannot reach both extremities. Similarly, they
cannot recharge and exit from a recharge cell at different times, so it is not
possible to remain globally in the energy range.

To make the formula true we add two elements to player agents: first a vari-
able called last dir with possible values left and right that saves the last chosen
direction of the player; second change recharge with two actions recharge left
and recharge right to allow the player to decide to recharge and move away.

We report in Table 1 statistics of two implementations, with one and with two
players, with 7 cells, without and with energy. The one player version starts from
position 4 and has one recharge cell in 3 and energy condition e = 〈w , 13, [2, 13]〉,
and a recharge action adds +11. The second version starts from position 4 for
both players and has two recharge cells in 3 and 5, the energy condition is
e = 〈w , 5, [0, 5]〉 and the weight function adds -1 when both players move without
a recharge action, +2 when one player does a recharge action and +4 when both
do. The reported times include formula verification and winning strategy finding
and are based on 30 repetitions executed on an Intel Core i7-8750H @ 2.2 GHz
laptop with 8 GB RAM running Linux kernel version 5.0.0-15-generic.

Table 1 shows that adding an energy condition can decrease significantly per-
formance. Also we can see that without energy, the time difference between one
player and two players is significant but rather small (0.06 vs 0.21). On the other
hand, with energy, adding one player to the system greatly increases execution
time (0.05 vs 145). Both phenomena are no surprise, because introducing the
energy agent in the modified system I ′ makes the combinatorics much worse.

Discussion. Verification tools for MAS mostly deal with qualitative objec-
tives [2, 7, 10, 11]. We made a step towards automatic verification of quantitative
objectives in MAS. We demonstrated that some types of quantitative constraints
can be expressed as LTL formulas, and thus existing tools such as MCMAS can
be used to perform verification.

6 B. Maubert, A. Murano et al.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM
49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270

2. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: Practical verification of multi-
agent systems against SLK specifications. Inf. Comput. 261, 588–614 (2018)

3. Chatterjee, K., Doyen, L.: Energy parity games. In: ICALP. pp. 599–610. Springer
(2010)

4. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy Logic. Inf. Com-
put. 208(6), 677–693 (2010). https://doi.org/10.1016/j.ic.2009.07.004,
http://dx.doi.org/10.1016/j.ic.2009.07.004

5. Della Monica, D., Murano, A.: Parity-energy ATL for qualitative and quantitative
reasoning in MAS. In: AAMAS. pp. 1441–1449. International Foundation for Au-
tonomous Agents and Multiagent Systems (2018)

6. Ferber, J., Weiss, G.: Multi-agent systems: an introduction to distributed artificial
intelligence, vol. 1. Addison-Wesley Reading (1999)

7. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. STTT 19(1), 9–30 (2017)

8. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies: On
the model-checking problem. ACM Trans. Comput. Log. 15(4), 34:1–34:47 (2014).
https://doi.org/10.1145/2631917

9. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about Strategies:
on the Satisfiability Problem. Logical Methods in Computer Science. 13(1) (2017).
https://doi.org/10.23638/LMCS-13(1:9)2017

10. Belardinelli, F., Jamroga, W., Kurpiewski, D., Malvone, V., Murano, A.: Strategy
Logic with Simple Goals: Tractable Reasoning about Strategies. In: Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019. Ed. by Sarit Kraus. ijcai.org, pp. 88-94
(2019). https://doi.org/10.24963/ijcai.2019/13

11. Čermák, P., Lomuscio, A., Murano, A.: Verifying and Synthesising Multi-
Agent Systems against One-Goal Strategy Logic Specifications. In: Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA. Ed. by Blai Bonet and Sven
Koenig. AAAI Press, pp. 2038-2044 (2015). ISBN: 978-1-57735-698-1.
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9959

