
Model Checking Timeline-based Systems over
Dense Temporal Domains?

Laura Bozzelli1, Alberto Molinari2, Angelo Montanari2, and Adriano Peron1

1 University of Napoli “Federico II”, Napoli, Italy
lr.bozzelli@gmail.com, adrperon@unina.it

2 University of Udine, Udine, Italy
molinari.alberto@gmail.com,angelo.montanari@uniud.it

Abstract. In this paper, we introduce an automaton-theoretic approach
to model checking linear time properties of timeline-based systems over
dense temporal domains. The system under consideration is specified
by means of (a decidable fragment of) timeline structures, timelines for
short, which are a formal setting proposed in the literature to model plan-
ning problems in a declarative way. Timelines provide an interval-based
description of the behavior of the system, instead of a more conventional
point-based one. The relevant system properties are expressed by for-
mulas of the logic MITL (a well-known timed extension of LTL) to be
checked against timelines. In the paper, we prove that the model checking
problem for MITL formulas (resp., its fragment MITL(0,∞)) over timelines
is EXPSPACE-complete (resp., PSPACE-complete).

Keywords: Model checking · Timelines · Timed Automata · Metric
Interval Temporal Logic

1 Introduction

Model checking (MC) is a set of techniques that allow for the automatic verifica-
tion of (temporal) properties of a system, where the model is usually represented
by a (finite) Kripke structure and the properties by logics such as LTL or CTL.
The representation of the system is inherently point-based, as it makes explicit
how a system evolves state-by-state (i.e., how it can move from a state to an-
other one, according to the transition function), and it describes which are the
atomic properties that hold at every state. In the case of real-time systems, the
behaviour of the system has to be checked also against quantitative timing proper-
ties and constraints. In this case, the model of the system has to be enriched with
quantitative time information. For instance, a timed transition system provides
information about the time elapsing when moving from a state of the system to
the following one. To express properties of real-time systems, quantitative time

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0). The work by A.
Montanari and A. Peron has been supported by the GNCS Project 2019 ”Formal
methods for combined verification techniques”.

2 L. Bozzelli et al.

extensions of LTL (and CTL), such as, for instance, Metric Temporal Logic (MTL,
[14]), have been introduced.

In this paper, we focus on the problem of model checking real-time systems,
where the commonly adopted point-based representation has been replaced by
an interval-based one. The basic idea is that the system can be decomposed
into a number of components which evolve in parallel, possibly synchronising at
some points. The behaviour of a component is described by a timeline, namely, a
sequence of intervals during which the component lasts in a state.

Timelines have been fruitfully exploited in temporal planning for quite a
long time. We borrow the formal definition of systems from timeline-based
planning (TP) [10]. TP can be viewed as an alternative to the classic action-based
approach to planning, and it has been successfully applied in several contexts
(see, e.g., [3,8,9,15]). Action-based planning aims at determining a sequence of
actions that, given the initial state of the world and a goal, transforms, step by
step, the state of the world until a state satisfying the goal is reached. Compared
to action-based planning, TP adopts a more declarative approach. It models the
planning domain as a set of independent (but interacting) components, each one
consisting of a number of state variables. The evolution of the values of state
variables over time is described by means of a set of timelines (in turn, these
are sequences of time intervals, called tokens), and it is governed by a set of
transition functions, one for each state variable, and a set of synchronization
rules, that constrain the temporal relations among (values of) state variables.

In [11,12] Gigante et al. proved that TP is EXPSPACE-complete over
discrete temporal domains. Assuming the temporal domain to be dense allows
us to avoid discretization in system descriptions, that is, it makes it possible
to describe systems at a higher level of abstraction, enabling us to neglect
unnecessary details and paving the way for a really general interval-based MC.
Even though the TP problem over dense temporal domains is known to be
undecidable in the general case [5], decidability can be recovered by imposing
significant restrictions on the logical structure of synchronization rules ([7,4]).
Computational complexities suitable for a practical exploitation of TP can be
achieved by further constraining the form of the rules [4].

In this paper, by making use of known results on dense-time TP, we study
timeline-based MC, where systems are modeled by timelines over dense temporal
domains and properties are expressed by means of formulas of Metric Interval
Temporal Logic (MITL) [2], a timed extension of LTL which is interpreted over
timed words. To solve the MC problem, we exploit an automaton-theoretic
approach. To specify the system, we use a fragment of TP, namely, Future TP
with simple rules and non singular intervals (details in the following), which
is known to be EXPSPACE-complete. Solving TP is a preliminary step for
MC since properties are checked against timelines satisfying the synchronization
rules (a sort of a “feasibility check” of the system description). The connection
with the MITL logic is obtained by suitably encoding timelines into time words
and defining the MC problem in terms of containment of timed languages. By
exploiting timed automata [1] constructions to define the encoding of the timeline-

Timeline-based MC over Dense Temporal Domains 3

based description of the system and the models of MITL properties, we prove
that the MC problem for MITL (resp., its fragment MITL(0,∞) [2]) over timelines
is EXPSPACE-complete (resp., PSPACE-complete).

The paper is organized as follows. In Section 2, we give some background
knowledge about the TP framework. In Section 3, we introduce and solve the
MC problem for systems described as timelines against MITL. In Section 4, we
provide some conclusive remarks.

2 The TP Problem

Let N be the set of natural numbers and R+ be the set of non-negative real
numbers; moreover, let Intv denote the set of intervals of R+ whose endpoints are
in N ∪ {∞}, and let Intv (0,∞) denote the set of non-singular intervals I ∈ Intv
such that either I is unbounded, or I is left-closed with left endpoint 0. Intervals in
Intv (0,∞) can be represented by expressions of the form ∼ n, for some n ∈ N and
∼∈ {<,≤, >,≥}. We now introduce the basic notions of the TP framework [10,11].
The domain knowledge is encoded by a set of state variables, whose behaviour
over time is described by transition functions and synchronization rules.

Definition 1. A state variable x is a triple x = (Vx, Tx, Dx), where
– Vx is the finite domain of the state variable x,
– Tx : Vx → 2Vx is the value transition function, which maps each v ∈ Vx to

the (possibly empty) set of successor values, and
– Dx : Vx → Intv is the constraint (or duration) function that maps each
v ∈ Vx to an interval of Intv.

A token for a state variable x is a pair (v, d) consisting of a value v ∈ Vx and
a duration d ∈ R+ such that d ∈ Dx(v). Intuitively, a token for x represents an
interval of time where the state variable x takes value v. In order to clarify the
variable to which a token refers, we shall often denote (v, d) as (x, v, d).

The behavior of the state variable x is specified by means of a timeline, which is
a non-empty sequence of tokens π = (v0, d0) · · · (vn, dn) consistent with the value
transition function Tx, namely, such that vi+1 ∈ Tx(vi) for all 0 ≤ i < n. The start
time s(π, i) and the end time e(π, i) of the i-th token of the timeline π are defined

as: s(π, i) = 0 if i = 0, and s(π, i) =
∑i−1
h=0 dh otherwise; e(π, i) =

∑i
h=0 dh. See

Figure 1 for an example of a timeline.
Given a finite set SV of state variables, a multi-timeline of SV is a mapping

Π assigning to each state variable x ∈ SV a timeline for x. Multi-timelines of

x
t=0 t=7 t=10 t=13.9

x = a x = b x = c x = b

Fig. 1. An example of timeline (a, 7)(b, 3)(c, 3.9) · · · for the state variable x =
(Vx, Tx, Dx), where Vx = {a, b, c, . . .}, b ∈ Tx(a), c ∈ Tx(b), b ∈ Tx(c). . . and
Dx(a) = [5, 8], Dx(b) = [1, 4], Dx(c) = [2,∞[. . .

4 L. Bozzelli et al.

SV can be constrained by a set of synchronization rules, which relate tokens,
possibly belonging to different timelines, through temporal constraints on the
start/end times of tokens (time-point constraints) and on the difference between
start/end times of tokens (interval constraints). The synchronization rules exploit
an alphabet Σ = {o, o0, o1, o2, . . .} of token names to refer to the tokens along a
multi-timeline, and are based on the notions of atom and existential statement.
Atom. An atom ρ is either a clause of the form o1 ≤e1,e2I o2 (interval atom),
or of the forms o1 ≤e1I n or n ≤e1I o1 (time-point atom), where o1, o2 ∈ Σ,
I ∈ Intv , n ∈ N, and e1, e2 ∈ {s, e}. An atom ρ is evaluated with respect to a
Σ-assignment λΠ for a given multi-timeline Π, which is a mapping assigning
to each token name o ∈ Σ a pair λΠ(o) = (π, i) such that π is a timeline of Π
and 0 ≤ i < |π| is a position along π (intuitively, (π, i) represents the token of
Π referenced by the name o). An interval atom o1 ≤e1,e2I o2 is satisfied by λΠ
if e2(λΠ(o2)) − e1(λΠ(o1)) ∈ I. A point atom o ≤eI n (respectively, n ≤eI o) is
satisfied by λΠ if n− e(λΠ(o)) ∈ I (respectively, e(λΠ(o))− n ∈ I).
Existential statementAn existential statement E for a finite set SV of state
variables is a statement of the form E = ∃o1[x1 = v1] · · · ∃on[xn = vn].C, where C
is a conjunction of atoms, oi ∈ Σ, xi ∈ SV , and vi ∈ Vxi

, for 1 ≤ i ≤ n.
The elements oi[xi = vi] are called quantifiers. A token name used in C, but

not occurring in any quantifier, is said to be free.
Given a Σ-assignment λΠ for a multi-timeline Π of SV , we say that λΠ is

consistent with the existential statement E if, for each quantifier oi[xi = vi], we
have λΠ(oi) = (π, h), where π = Π(xi) and the h-th token of π has value vi.
A multi-timeline Π of SV satisfies E if there exists a Σ-assignment λΠ for Π
consistent with E such that each atom in C is satisfied by λΠ .

We can now introduce synchronization rules, which constrain tokens, possibly
belonging to different timelines.

Definition 2. A synchronization rule R for a finite set SV of state variables is
a rule of one of the forms o0[x0 = v0]→ E1∨E2∨ . . .∨Ek, > → E1∨E2∨ . . .∨Ek,
where o0 ∈ Σ, x0 ∈ SV , v0 ∈ Vx0 , and E1, . . . , Ek are existential statements. In
rules of the first form (trigger rules), the quantifier o0[x0 = v0] is called trigger;
we require that only o0 may occur free in Ei, for all 1 ≤ i ≤ n. In rules of the
second form (trigger-less rules), no token name may occur free.
A trigger rule R is simple if, for each existential statement E of R and each
token name o distinct from the trigger, there is at most one interval atom of E
where o occurs.

Intuitively, the trigger o0[x0 = v0] acts as a universal quantifier, which states
that for all the tokens of the timeline for x0, where x0 takes the value v0, at
least one of the existential statements Ei must be satisfied. As an example,
o0[x0 = v0]→ ∃o1[x1 = v1].o0 ≤e,s

[2,∞[o1 states that after every token for x0, with

value v0, there exists a token for x1, with value v1, starting at least 2 time instants
after the end of the former. Trigger-less rules simply assert the satisfaction of
some existential statement. The meaning of simple trigger rules is that they
disallow simultaneous comparisons of multiple time-events (start/end times of
tokens) with a non-trigger reference time-event.

Timeline-based MC over Dense Temporal Domains 5

A variable describes the timed behaviour of a single module of a system.
Trigger-less rules can be used to express either initial conditions of modules or
goals (timed reachability properties). Synchronization rules are used either to
synchronize the behaviour of modules or to express invariant timed properties.

Definition 3. Let Π be a multi-timeline of a set SV of state variables. (i) Given
a trigger-less rule R of SV , Π satisfies R if Π satisfies some existential statement
of R. (ii) Given a trigger rule R of SV , with trigger o0[x0 = v0], Π satisfies R
if, for every position i of the timeline π = Π(x0) for x0 such that π(i) = (v0, d),
there exists an existential statement E of R and a Σ-assignment λΠ for Π
consistent with E such that λΠ(o0) = (π, i) and λΠ satisfies all the atoms of E.

In the following, we shall consider also a stronger notion of satisfaction of
trigger rules, called satisfaction under the future semantics, which requires that
all non-trigger tokens selected by some quantifier do not start strictly before the
start time of the trigger token.

Definition 4. A multi-timeline Π of SV satisfies a trigger rule R = o0[x0 =
v0] → E1 ∨ E2 ∨ . . . ∨ Ek under the future semantics if Π satisfies the trigger
rule obtained from R by replacing each Ei = ∃o1[x1 = v1] · · · ∃on[xn = vn].C by
E ′i = ∃o1[x1 = v1] · · · ∃on[xn = vn].

(
C ∧

∧n
i=1 o0 ≤

s,s
[0,+∞[oi

)
.

Finally, a TP domain P = (SV,R) is specified by a finite set SV of state
variables and a finite set R of synchronization rules for SV modeling their
admissible behaviors. As already pointed out, trigger-less rules can be used to
express initial and intermediate conditions and as well as the goals of the problem,
while trigger rules are much more powerful and useful, and can be exploited, for
instance, to specify invariants and response requirements.

A plan for P = (SV,R) is a multi-timeline of SV satisfying all the rules in R.
A future plan for P is defined in a similar way, but it requires the satisfaction of
all trigger rules under the future semantics.

The TP problem (resp., Future TP problem) is a decision problem formulated
as follows: given a TP domain P = (SV,R), is there a plan (resp., a future plan)
for P? Table 1 summarizes all the known decidability and complexity results for
TP and restrictions of TP involving trigger rules with future semantics, simple
trigger rules, and intervals in atoms (of trigger rules) which are non-singular or
in Intv (0,∞) [4,5,6]. In particular, both the general TP problem and the future
TP problem over dense temporal domains are undecidable [5,6]. In [4], it is
proved that decidability of the TP problem can be recovered if we use only
simple trigger rules under the future semantics. If we further assume intervals in
trigger rules to be non-singular (resp., to be in Intv (0,∞)), the problem becomes
EXPSPACE-complete (resp., PSPACE-complete). We conclude the section
by showing how to specify a simple timed system in a TP domain.

Example 1. Let us consider a system consisting of three components (temperature
sensor, processing unit, and data transmission unit) respectively modelled by
the state variables, xtemp = (Vtemp, Ttemp, Dtemp), xproc = (Vproc, Tproc, Dproc), and
xtransm = (Vtransm, Ttransm, Dtransm), where

6 L. Bozzelli et al.

Table 1. Decidability and complexity of restrictions of the TP problem.

TP problem Future TP problem

Unrestricted Undecidable Undecidable

Simple trigger rules Undecidable Decidable (non-primitive recursive)

Simple trigger rules,
? EXPSPACE-complete

non-singular intervals

Simple trigger rules,
? PSPACE-complete

intervals in Intv (0,∞)

– Vtemp={ready, not ready}, Ttemp(ready)={not ready}, Ttemp(not ready)=
{ready}, Dtemp(ready) = [1, 2], Dtemp(not ready) = [2, 3];

– Vproc={reading1, reading2, read0, read1, read2}, Tproc(reading1)={read0,
read1}, Tproc(reading2) = {read1, read2}, Tproc(read0) = {reading1},
Tproc(read1) = {reading2}, Tproc(read2) = {read2}, Dproc(reading1) =
Dproc(reading2)=[1, 2], Dproc(read0)=Dproc(read1)=Dproc(read2)=[2, 3];

– Vtransm = {send}, Ttransm(send) = {send}, Dtransm(send) = [2, 5].

The temperature sensor swaps between the states ready and not ready. In
the former, it senses the temperature of the environment and possibly sends
the temperature value to the processing unit. The processing unit receives two
temperature samples from the sensor, and sends the average value to the data
transmission unit. When in state readi, for i = 0, 1, 2, i samples have been read,
while when in readingj , for j = 1, 2, it is attempting to read the j-th sample. A
successful reading requires the occurrence of a ready token of the sensor within
a reading token of the processing unit (conversely, such an occurrence does not
guarantee the success of reading). Analogously, the processing unit can send data
to the transmitter only if a token with value read2 occurs within a token send.

The sensor starts in state not ready and the processing unit starts in state
reading1, as required by the trigger-less rules >→∃o[xtemp =not ready].o≤s

[0,0] 0

and > → ∃o[xproc = reading1].o ≤s
[0,0] 0. (Recall that trigger-less rules may

also contain singular intervals.) The goal of the system is encoded by the rule
> → ∃o1[xproc = read2]∃o2[xtransm = send].(o2 ≤s,s

[0,+∞[o1 ∧ o1 ≤
e,e
[0,+∞[o2).

The synchronization between the sensor and the processing unit for reading
is given by the following simple trigger rule (under the future semantics).

o[xproc = reading1]→ (∃o1[xproc = read0].o ≤e,s
[0,1] o1)∨

(∃o2[xproc = read1]∃o3[xtemp = ready].o ≤e,s
[0,1] o2 ∧ o3 ≤

e,e
[0,+∞[o). (1)

Each reading attempt (token reading1) can be either unsuccessful being followed
by read0 (first existential statement) or successful including a ready token and
being followed by a read1 token (second existential statement). Due to the future
semantics, the token o starts no later than o3. A similar rule is given for the second
temperature sample. In Figure 2, we show an example of a plan/computation for
the system described by P = ({xtemp, xproc, xtransm}, R).

Timeline-based MC over Dense Temporal Domains 7

t = 0 1 2 3 4 5 6 7 8 9 10 11

xtemp

xproc

xtransm

not ready

12

send send send send

not ready not readyready ready ready

13 14

reading1 reading1 reading1read0 read0 read1 reading2 read2 read2

send

15

Fig. 2. An example of a computation of the considered system (plan).

3 Timeline-based MC for MITL specifications

In this section, we define the problem of model checking systems specified by
means of timelines against properties expressed in terms of the logic MITL. The
logic MITL is a fragment of the Metric Temporal logic (MTL) which extends LTL
with time constraints on the until modality and is interpreted over timed words.
The key idea is that multi-timelines can be naturally encoded into timed words
so that MITL can be used to express properties of (encoded) timelines.

We start by introducing timed words and MITL. Then, we define the timeline-
based MC problem for MITL, and we devise a procedure to solve it.

Timed words. Let Σ be a finite alphabet. A timed word w over Σ is a finite
word w = (a0, τ0) · · · (an, τn) over Σ×R+ (the timestamp τi is the time at which
the “event” ai occurs) such that τi ≤ τi+1 for all 0 ≤ i < n (monotonicity
requirement). We often denote the timed word w by (σ, τ), where σ is the finite
(untimed) word a0 · · · an and τ is the sequence of timestamps τ0, . . . , τn. A timed
language over Σ is a set of timed words over Σ.

The logic MTL. Metric Temporal Logic (MTL) extends LTL with time con-
straints on the until modality [14]. Let AP be a finite set of proposition letters.
MTL formulas ϕ over AP are defined by the grammar ϕ ::= > | p | ϕ ∨ ϕ | ¬ϕ |
ϕUIϕ, where p ∈ AP , I ∈ Intv , and UI is the strict timed until MTL modality.

MTL formulas over AP are interpreted on timed words over 2AP . Given an
MTL formula ϕ, a timed word w = (σ, τ) over 2AP , and a position 0 ≤ i < |w|,
the satisfaction relation (w, i) |= ϕ—meaning that ϕ holds at position i of w—is
defined as follows (we omit the clauses for Boolean connectives):
– (w, i) |= p iff p ∈ σ(i),
– (w, i) |= ϕ1UIϕ2 iff there is j > i such that τj − τi ∈ I, (w, j) |= ϕ2, and

(w, k) |= ϕ1, for all i < k < j.
A model of ϕ is a timed word w over 2AP such that (w, 0) |= ϕ. The timed language
LT (ϕ) is the set of models of ϕ.

In the following, we use standard shortcuts such as FIϕ for ϕ∨(>UIϕ) (timed
eventually) and GIϕ for ¬FI¬ϕ (timed always). We also consider two fragments of
MTL, namely, MITL (Metric Interval Temporal Logic) and MITL(0,∞) [2]: MITL is
obtained from MTL by allowing only non-singular intervals of Intv as subscripts of
U, while MITL(0,∞) is obtained from MITL by allowing only intervals in Intv (0,∞).
The maximal constant of an MTL formula ϕ is the greatest integer occurring as
an endpoint of some interval of (the occurrences of) UI in ϕ.

8 L. Bozzelli et al.

Encoding multi-timelines into timed words. Given P = (SV,R), let us define
an encoding of the multi-timelines of SV by means of timed words over 2AP

for a suitable finite set AP of proposition letters. For each x ∈ SV , we let
x = (Vx, Tx, Dx). Given an interval I ∈ Intv and some n ∈ N, let n + I (resp.,
n− I) denote the set of non-negative real numbers τ ∈ R+ such that τ − n ∈ I
(resp., n − τ ∈ I). For an atom ρ in R involving a time constant (time-point
atom), let I(ρ) be the interval in Intv defined as follows: if ρ has the form o≤eI n
(resp., n≤eI o), then I(ρ)=n−I (resp., I(ρ)=n+I). Finally, let IntvR be the set
of intervals J ∈ Intv such that J = I(ρ) for some time-point atom ρ occurring in
a trigger rule of R.

For any pair of distinct state variables x and x′, we assume the sets Vx
and Vx′ to be disjoint. To encode multi-timelines of SV , we use the set AP =
(
⋃
x∈SV Mainx) ∪Deriv of proposition letters, where Mainx = (({begx} ∪ Vx)×

Vx) ∪ (Vx × {endx}) and Deriv = IntvR ∪ {p>} ∪
⋃
x∈SV

⋃
v∈Vx
{past sv, pastev}.

Intuitively, we use proposition letters in Mainx to encode a token along a timeline
for x. Proposition letters in Deriv enrich the encoding in order to translate simple
trigger rules in MTL formulas under the future semantics (see below). The tags
begx and endx in Mainx are used to mark the start and the end of a timeline
for x. A token tk with value v along a timeline for x is encoded by two events:
the start-event (occurring at the start time of tk) and the end-event (occurring
at the end time of tk). The start-event of tk is specified by a main proposition
letter of the form (vp, v), where either vp = begx (tk is the first token of the
timeline) or vp is the value of the token for x preceding tk. The end-event of tk
is instead specified by a main proposition letter of the form (v, vs), where either
vs = endx (tk is the last token of the timeline) or vs is the value of the token for
x following tk. An example of encoding is given in Figure 3. Let us consider now
the proposition letters in Deriv . The elements in IntvR reflect the semantics of
the time-point atoms in the trigger rules of R: for each I ∈ IntvR, I holds at the
current position if the current timestamp τ satisfies τ ∈ I. The proposition p> is
used to mark a timestamp if it is strictly greater than the previous one. Finally,
a proposition past sv (resp., pastev) is used to mark a timestamp τ if it is preceded
by a token of value v starting (resp., ending) at the same time τ .

An encoding of a timeline for x is a timed word w over 2Mainx∪Deriv of the
form w = ({(begx, v0)}∪S0, τ0)({(v0, v1)}∪S1, τ1) · · · ({(vn, endx)}∪Sn+1, τn+1)
where, for all 0 ≤ i ≤ n+1, Si ⊆ Deriv , and (i) vi+1 ∈ Tx(vi) for i < n; (ii) τ0 = 0
and τi+1 − τi ∈ Dx(vi) for i ≤ n; (iii) Si ∩ IntvR is the set of intervals I ∈ IntvR
such that τi ∈ I; (iv) p> ∈ Si if and only iff either i = 0 or τi > τi−1; (v) for
all v ∈ Vx, past sv ∈ Si (resp., pastev ∈ Si) if and only if there is 0 ≤ h < i such
that τh = τi and v = vh (resp., τh = τi, v = vh−1 and h > 0). Note that the
length of w is at least 2. The given timed word w encodes the timeline for x of
length n+ 1 given by π = (v0, τ1)(v1, τ2− τ1) · · · (vn, τn+1− τn). The timestamps
τi and τi+1 represent the start and the end time of the i-th token of the timeline
π (0 ≤ i ≤ n). See again Figure 3 for an example.

Next, we define the encoding of a multi-timeline Π of SV . For P ⊆ AP and
x ∈ SV , let P [x] = P \

⋃
y∈SV \{x}Mainy. An encoding of a multi-timeline Π of

Timeline-based MC over Dense Temporal Domains 9

x

y

z

t=0 t=4 t=7 t=10.2 t=13 t=17.1 t=20.9

x = a11 x = a21 x = a41

y = a12 y = a22 y = a32 y = a22

z = a13z = a13 z = a23

x = a51x = a31

Fig. 3. Example of multi-timeline of SV = {x, y, z}. The timeline
for x is (a1

1, 7), (a2
1, 5), (a3

1, 0), (a4
1, 7.9), (a5

1, . . .). Note that the third
token has null duration. The encoding of the timeline for x is(
{(begx, a1

1), p>}, 0
)(
{(a1

1, a
2
1), p>}, 7

)(
{(a2

1, a
3
1), p>}, 13

)(
{(a3

1, a
4
1), pastsa3

1
, pastea2

1
}, 13

)(
{(a4

1, a
5
1), p>}, 20.9

)
· · · The encoding of the multi-timeline is(

{(begx, a1
1), (begy, a

1
2), (begz, a

1
3), p>}, 0

)(
{(a1

2, a
2
2), p>}, 4

)(
{(a1

1, a
2
1), (a2

2, a
3
2), p>}, 7

)(
{(a1

3, a
1
3), p>}, 10.2

)(
{(a2

1, a
3
1), (a1

3, a
2
3), p>}, 13

)(
{(a3

1, a
4
1), pastsa3

1
, pastea2

1
}, 13

)(
{(a3

2, a
2
2), p>}, 17.1

)
· · ·

SV , written wΠ , is a timed word w over 2AP of the form w = (P0, τ0) · · · (Pn, τn)
such that (i) for all x ∈ SV , the timed word obtained from (P0[x], τ0) · · · (Pn[x], τn)
by removing the pairs (Pi[x], τi) such that Pi[x] ∩Mainx = ∅ is an encoding of a
timeline for x, and (ii) P0[x] ∩Mainx 6= ∅ for all x ∈ SV (initialization). For a
system model Psys = (SV,R), LT (Psys) = {wΠ : Π is a plan for Psys} is the set
of timed words over 2AP encoding plans of Psys.

Example 2. We list some MITL(0,∞) properties for the timed systems of Example
1. We first introduce some auxiliary formulas. Let x ∈ SV and v ∈ Vx; ψ(s, v)
and ψ(e, v) are two propositional formulas over Mainx defined as: ψ(s, v) =
(begx, v) ∨

∨
u∈Vx

(u, v) and ψ(e, v) = (v, endx) ∨
∨
u∈Vx

(v, u). Intuitively, ψ(s, v)
(resp., ψ(e, v)) states that a start-event (resp., end-event) for a token for x with
value v occurs at the current time. Finally, given an MTL formula θ, we define
the MTL formula EqTime(θ) = θ ∨ [¬p>U≥0(¬p> ∧ θ)], which is satisfied by an
encoding of a multi-timeline at time τ if θ eventually holds in future position
having the same timestamp τ .

– G<2 ¬ψ(s, ready), which holds true in any system computation, as the sensor
does not ever get ready by 2 seconds;

– F≤8 ψ(s, read1) which does not hold true in all the computations (but it
holds in the computation in Figure 2), since the sensor and the processing
unit may synchronize for the first time after 8 seconds;

– F≥0
(
ψ(s, ready) ∧ (>U>0 ψ(s, ready))

)
which holds true in any system

computation, since the system fulfills the goal of eventually sending the data
and, consequently, the sensor must become ready (at least) twice.

– G≥0
(
ψ(s, read1)→ F≤3 ψ(s, read2)

)
, which is not true in all computations

as the processing unit, after reading the first sample, may not be able to read
the second one by 3 time units due to a delayed synchronization.

10 L. Bozzelli et al.

– G≥0
(
ψ(s, reading1) ∧ (EqTime(ψ(s, ready)) ∨ past sready)→ F≤2 ψ(s, read1)

)
.

We recall that the proposition letter past sready is true at the time of interpre-
tation if there is a preceding token for xtemp with value ready starting at the
same time. It is globally required that, whenever a token reading1 starts
together with a token ready, a token for read1 starts within 2 times units.
The invariant does not generally hold, as either (i) the token reading1 may
not contain the token ready, hence xproc will not move to the state read1 by
2 time units, or (ii) the token reading1 may be followed by a token read0
(when the synchronization required to move from reading1 to read0 fails).

Let us now formally define the timeline-based MC problem for MITL formulas.

Definition 5 (Model checking). Given a system model Psys = (SV,R) and a
MITL formula ϕ over AP , the timeline-based MC problem for MITL formulas is
to decide whether LT (Psys) ⊆ LT (ϕ).

To solve the timeline-based MC problem for MITL we adopt an automaton
theoretic approach which exploits Timed Automata (TA) as a reference model.

Timed Automata (TA). Let C be a finite set of clocks. A clock valuation is a
function val : C → R+ for C that assigns a non-negative real value to each clock
in C. Given t ∈ R+ and a set Res ⊆ C (called reset set), (val + t) and val [Res]
denote the valuations for C defined as: for all c ∈ C, (val + t)(c) = val(c) + t,
and val [Res](c) = 0 if c ∈ Res and val [Res](c) = val(c) otherwise.

A clock constraint θ over C is a Boolean combination of atomic formulas
of the form c ∈ I or c − c′ ∈ I, where c, c′ ∈ C and I ∈ Intv . Given a clock
valuation val and a clock constraint θ, val is said to satisfy θ, written val |= θ, if
θ evaluates to true after replacing each occurrence of a clock c in θ by val(c), and
interpreting Boolean connectives and membership to intervals in the standard
way. We denote by Φ(C) the set of all possible clock constraints over C.

Definition 6. A timed automaton (TA) over Σ is a tuple A = (Σ,Q, q0, C,
∆, F), where Q is a finite set of (control) states, q0 ∈ Q is the initial state,
C is a finite set of clocks, F ⊆ Q is the set of accepting states, and ∆ ⊆
Q×Σ × Φ(C)× 2C ×Q is the transition relation.

The maximal constant of A is the greatest integer occurring as an endpoint
of some interval in the clock constraints of the transitions of A.

Intuitively, while transitions of a TA are performed instantaneously, time can
elapse in a control state. The clocks progress at the same speed and can be reset
independently of each other when a transition is executed, in such a way that
each clock keeps track of the time elapsed since the last reset. Clock constraints
are used as guards of transitions to restrict the behavior of the automaton.

A configuration of A is a pair (q, val), where q ∈ Q and val is a clock valuation
for C. A run r of A on a timed word w=(a0, τ0) · · · (an, τn) over Σ is a sequence of
configurations r=(q0, val0)· · ·(qn+1, valn+1) starting at the initial configuration
(q0, val0), with val0(c) = 0 for all c∈C (initiation requirement) and such that,

Timeline-based MC over Dense Temporal Domains 11

for 0 ≤ i ≤ n, (i) (qi, ai, θ,Res, qi+1)∈∆ for some θ ∈ Φ(C) and reset set Res,
(ii) (val i+τi−τi−1) |= θ, and (iii) val i+1 = (val i+τi−τi−1)[Res], where τ−1 = 0
(consecution requirement).

The behavior of a TA A can be described as follows. Assume that A is on
state q ∈ Q after reading the symbol (a′, τi) at time τi and, at that time, the
clock valuation is val . Upon reading (a, τi+1), A chooses a transition of the form
δ = (q, a, θ,Res, q′) ∈ ∆ such that the constraint θ is fulfilled by (val + t), with
t = τi+1 − τi. The control then changes from q to q′ and val is updated in such
a way as to record the amount of elapsed time t in the clock valuation, and to
reset the clocks in Res, namely, val is updated to (val + t)[Res].

A run r is accepting if qn+1 ∈ F . The timed language LT (A) is the set of
timed words w over Σ such that there is an accepting run of A on w.

As shown in [1], given two TA A1, with s1 states and k1 clocks, and A2, with
s2 states and k2 clocks, the union (resp., intersection) automaton A∨ (resp., A∧)
such that LT (A∨) = LT (A1)∪LT (A2) (resp., LT (A∧) = LT (A1)∩LT (A2)) can
be effectively computed, and has s1 + s2 states (resp., s1 · s2 states) and k1 + k2
clocks (resp., k1 + k2 clocks).

The automaton theoretic construction for the MC problem. Let P = (SV,R) be
an instance of the problem where the trigger rules in R are simple. The maximal
constant of P , denoted by KP , is the greatest integer occurring in the atoms of
the rules in R and in the constraint functions of the state variables in SV .

The proposed approach exploits some automata constructions proposed in [4]
to solve the Future TP problem with simple rules as follows:
1. It is possible to construct a TA ASV over 2AP accepting the encodings of the

multi-timelenes for SV ;
2. It is possible to define an MTL formula ϕ∀ over AP such that for each multi-

timeline Π of SV and encoding wΠ of Π, wΠ is a model of ϕ∀ if and only
if Π satisfies all the trigger rules in R under the future semantics. Mostly
relevant for our pourposes, if the intervals in the trigger rules are non-singular
the formula ϕ∀ is a MITL formula;

3. It is possible to construct a TA A∃ over 2AP such that for each multi-timeline
Π of SV and encoding wΠ of Π, wΠ is accepted by A∃ if and only if Π
satisfies all the trigger-less rules in R;

4. In summary, there is a future plan for P = (SV,R) if and only if LT (ASV)∩
LT (A∃) ∩ LT (ϕ∀) 6= ∅.
We list the precise results in [4] used for the construction:

Theorem 1. For P = (SV,R) with maximal constant KP we build:
1. a TA ASV over 2AP , with 2O(

∑
x∈SV |Vx|) states, |SV |+ 2 clocks, and maximal

constant O(KP), such that LT (ASV) is the set of encodings of the multi-
timelines of SV (it is built in exponential time);

2. an MTL formula ϕ∀, with maximal constant O(KP), such that for each multi-
timeline Π of SV and encoding wΠ of Π, wΠ is a model of ϕ∀ if and only
if Π satisfies all the simple trigger rules in R, under the future semantics (it
is built in linear time).

12 L. Bozzelli et al.

The formula ϕ∀ has O(|R| ·NA ·NE ·
(
|IntvR|+(

∑
x∈SV |Vx|)2

)
) distinct sub-

formulas, where NA (resp., NE) is the maximum number of atoms (resp.,
existential statements) in a trigger rule of R.
The formula ϕ∀ is an MITL (resp., MITL(0,∞)) formula if the intervals in the
trigger rules are non-singular (resp., belong to Intv (0,∞));

3. a TA A∃ over 2AP such that, for each multi-timeline Π of SV and encoding
wΠ of Π, wΠ is accepted by A∃ if and only if Π satisfies all the trigger-less
rules in R (it is built in exponential time).
A∃ has 2O(Nq) states, O(Nq) clocks, and maximal constant O(KP), where
Nq is the overall number of quantifiers in the trigger-less rules of R.

In summary, we can construct a TA Asys such that LT (Psys) = LT (Asys) and
check it for emptyness to solve the Future TP problem with simple trigger rules.

Theorem 2. ([4]) The Future TP problem with simple trigger rules which uses
only non-singular intervals in their atoms (resp., intervals in Intv (0,∞)) is decid-
able in EXPSPACE (resp., in PSPACE).

The last fundamental fact is the well known result in [2] stating that given
a MITL (resp., MITL(0,∞)) formula ψ having N distinct subformulas and K the
largest occurring integer, we can build a TA Aψ accepting the models of ψ having
O(2N ·K) (resp., O(2N)) states, O(N ·K) (resp., O(N)) clocks, and maximum
constant O(K). Deciding the emptiness of Aψ requires space logarithmic in the
number of states of Aψ and polynomial in the number of clocks and in the length
of the encoding of K, hence exponential (resp., polynomial) space.

To decide if LT (Asys) ⊆ LT (ϕ), we check whether LT (Asys) ∩ LT (A¬ϕ) = ∅
by defining the intersection A∧ of Asys and A¬ϕ, and checking for emptiness
of its timed language. The size of A∧ is polynomial in those of Asys and A¬ϕ.
Moreover Asys, A¬ϕ and A∧ can be built on the fly, and the emptiness test can
be done without explicitly constructing them as well. The next result follows by
the observations above and by Theorem 2. The hardness of the MC problems
derives from the corresponding underlying Future TP problems.

Theorem 3. The timeline-based MC problem for MITL formulas, with simple
future trigger rules and non-singular intervals, is EXPSPACE-complete.

The timeline-based MC problem for MITL(0,∞) formulas, with simple future
trigger rules and intervals in Intv (0,∞), is PSPACE-complete.

4 Conclusions

In this paper we have considered timed systems modelled by multi-timelines
and studied the problems of model checking against properties expressed by
the logics MITL and MITL(0,∞), respectively. To solve them, we have exploited
an automaton-theoretic construction (using TAs) proving that they are EX-
PSPACE-complete and PSPACE-complete, respectively.

In future work we shall investigate model checking combining the interval-
based representation of systems given by timelines with interval-based logics (e.g.,
Halpern-Shoham logic HS, see [13]) for expressing properties.

Timeline-based MC over Dense Temporal Domains 13

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal
of the ACM 43(1), 116–146 (1996). https://doi.org/10.1145/227595.227602

3. Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris,
P., Ong, J., Remolina, E., Smith, T., Smith, D.: EUROPA: A Platform for AI
Planning, Scheduling, Constraint Programming, and Optimization. In: Proc. of
ICKEPS (2012)

4. Bozzelli, L., Molinari, A., Montanari, A., Peron, A.: Complexity of timeline-based
planning over dense temporal domains: exploring the middle ground. In: Proc. of
GandALF. pp. 191–205. EPTCS (2018). https://doi.org/10.4204/EPTCS.277.14

5. Bozzelli, L., Molinari, A., Montanari, A., Peron, A.: Decidability and Complexity of
Timeline-based Planning over Dense Temporal Domains. In: Proc. of the Sixteenth
International Conference on Principles of Knowledge Representation and Reasoning
(KR 2018). AAAI (2018), full version at https://www.dimi.uniud.it/la-ricerca/
pubblicazioni/preprints/1.2018/

6. Bozzelli, L., Molinari, A., Montanari, A., Peron, A.: Undecidability of future
timeline-based planning over dense temporal domains. arxiv.org/abs/1904.09184
(2019)

7. Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Woeginger, G.: Timeline-based
planning over dense temporal domains with trigger-less rules is NP-complete. In:
Proc. of ICTCS. pp. 116–127. CEUR WP (2018)

8. Cesta, A., Cortellessa, G., Fratini, S., Oddi, A., Policella, N.: An Innovative Product
for Space Mission Planning: An A Posteriori Evaluation. In: Proc. of ICAPS. pp.
57–64. AAAI (2007)

9. Chien, S., Tran, D., Rabideau, G., Schaffer, S., Mandl, D., Frye, S.: Timeline-based
space operations scheduling with external constraints. In: Proc. of ICAPS. pp.
34–41. AAAI (2010)

10. Cialdea Mayer, M., Orlandini, A., Umbrico, A.: Planning and Execution with
Flexible Timelines: a Formal Account. Acta Informatica 53(6–8), 649–680 (2016).
https://doi.org/10.1007/s00236-015-0252-z

11. Gigante, N., Montanari, A., Cialdea Mayer, M., Orlandini, A.: Timelines are Expres-
sive Enough to Capture Action-based Temporal Planning. In: Proc. of TIME. pp.
100–109. IEEE Computer Society (2016). https://doi.org/10.1109/TIME.2016.18

12. Gigante, N., Montanari, A., Cialdea Mayer, M., Orlandini, A.: Complexity of
timeline-based planning. In: Proc. of ICAPS. pp. 116–124. AAAI (2017)

13. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. Journal
of the ACM 38(4), 935–962 (1991). https://doi.org/10.1145/115234.115351

14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time
Systems 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

15. Muscettola, N.: HSTS: Integrating Planning and Scheduling. In: Intelligent Schedul-
ing, pp. 169–212. Morgan Kaufmann (1994)

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/227595.227602
https://doi.org/10.4204/EPTCS.277.14
https://www.dimi.uniud.it/la-ricerca/pubblicazioni/preprints/1.2018/
https://www.dimi.uniud.it/la-ricerca/pubblicazioni/preprints/1.2018/
https://doi.org/10.1007/s00236-015-0252-z
https://doi.org/10.1109/TIME.2016.18
https://doi.org/10.1145/115234.115351
https://doi.org/10.1007/BF01995674

	Model Checking Timeline-based Systems over Dense Temporal Domains

