
A Deterministic Event Calculus for Effective
Runtime Verification⋆

Davide Ancona1, Luca Franceschini1,
Angelo Ferrando2, and Viviana Mascardi1

1 DIBRIS, Università di Genova, Italy
{davide.ancona,viviana.mascardi}@unige.it,

luca.franceschini@dibris.unige.it
2 University of Liverpool, UK angelo.ferrando@liverpool.ac.uk

Abstract. Runtime verification (RV) is an effective technique for dy-
namically monitoring, even after deployment, properties that could be
hardly verified statically. To this aim, specification formalims for RV
have to reconcile expressive power and monitoring efficiency.
We present an event calculus which provides a basis for the semantics
and the implementation of RML, a domain specific language (DSL) for
RV. The semantics of the calculus is based on a deterministic reduction
strategy which allows concise specifications of non context-free proper-
ties, and their efficient verification at runtime.

Keywords: Runtime verification · event calculi · specification lan-
guages · effective monitoring.

1 Introduction

Runtime Verification (RV) [10,8] is a technique concerned with dynamic moni-
toring of the traces of events generated by a system under scrutiny (SUS); this
is typically achieved through a monitor synthesized from a specification which
is written in either a DSL or a programming language, and which defines the
expected correct behavior of the SUS.

Roughly, RV amounts to deal with a word problem, since the aim of the
monitor is to check that a trace of events (the word) belongs to the set of valid
traces defined by the specification; however, this is an oversimplification for sev-
eral reasons. RV is also concerned with the problem, typically addressed by code
instrumentation, of generating the events that have to be observed and con-
sumed by the monitor. For what concerns the monitoring activity, monitors can
perform either offline, after the execution of the SUS has produced a necessarily
finite trace, or online, during the execution of a possibly non-terminating SUS,
hence the word to be checked can be either finite or infinite. The verdict of the
monitor is usually modeled by a many-valued logic to take into account incon-
clusive responses which may occur especially for online monitoring. Finally, if
⋆ Copyright © 2019 for this paper by its authors. Use permitted under Creative Com-

mons License Attribution 4.0 International (CC BY 4.0)

monitoring occurs after deployment, then the monitor is also expected to send
a feedback to the SUS to allow for error recovery.

RV can be successfully integrated [1] with other verification techniques be-
cause of its distinguishing features: as static verification, it is based on formal
specifications, but allows checking of properties that can be hardly verified stat-
ically; as software testing, it scales well to real complex systems, and is not
exhaustive, but is better for dealing with control-oriented properties and non
deterministic behavior, and may offer opportunities for runtime contract en-
forcement, fault protection and automatic program repair.

In order to be effective, RV DSLs have to reconcile expressive power and
monitoring efficiency; for this reason, they are usually more suitable to monitor
control-oriented properties, while they exhibit limitations in dealing with data-
oriented properties which often require more expressive power; several RV DSLs
proposed in literature are based on regular expressions or temporal logics which
are not able to express context-free (CF) properties, some support CF grammars,
but, anyway, fail to define properties beyond that expressive power; for instance,
verifying the correctness of a simple but widely used data type as FIFO queues
requires non-CF properties.

RML is a rewriting-based [2] and system agnostic RV DSL which decouples
monitoring from instrumentation by allowing users3 to write specifications and
to synthesize monitors from them, independently of the SUS and its instru-
mentation. The expressive power of RML goes beyond CF grammars, and the
language has been successfully employed to verify complex properties in multi-
agent systems [6,7], and for Node.js and IoT applications [3,9].

This paper is focused on the problem of non-deterministic specifications that
typically has to be faced when designing and implementing RV DSLs: non deter-
ministic monitors are more difficult to be fully implemented and may introduce
serious performance penalties that make them unusable in practice; furthermore,
detecting whether a specification is not deterministic can be difficult, if not un-
decidable, and the problem of automatically transforming a non deterministic
specification into an equivalent deterministic one is even harder.

In RML specifications can be deterministic by construction if the semantics is
based on a deterministic reduction strategy; by exploring this possibility, we have
discovered that, besides supporting a simpler and more efficient implementation,
a deterministic semantics still allows RML users to express certain non-CF data-
oriented properties in a simple way and to monitor them efficiently.

Section 2 briefly introduces RML and examples of specifications of data-
oriented properties which benefit from the adoption of a deterministic semantics;
the semantics of the language is formalized by an event calculus in Section 3,
where its basic properties are proved. Section 4 draws conclusions, discusses
limitations and outlines opportunities for future work.

3 The implementation of RML is available at https://github.com/
LucaFranceschini/RML.

https://github.com/LucaFranceschini/RML
https://github.com/LucaFranceschini/RML

2 RML with deterministic reduction strategy

This section briefly introduces RML, a runtime monitoring language with moti-
vating examples; the presentation is deliberately informal, the semantics of the
language is defined in Section 3.

2.1 Events and event types

RML is based on a general model where events are object literals.Such a model
can be instantiated in more specific ones, where events may include several prop-
erty keys, with their types and intended meaning. Throughout the whole paper,
we will consider a simple model where events can have the property keys event,
name, args, and res; event is associated with a string specifying only two possi-
ble kinds of event: 'func_pre' or 'func_post' for the events ‘function has been
called’ and ‘function has returned’, respectively; name specifies the name of the
function, args the list of its arguments, and res (only expected for 'func_post'
events) its result.

For instance, for a certain data value val, the following events
{event:'func_pre ',name:'enqueue',args:[val]}
{event:'func_post ',name:'dequeue',args:[],res:val}

denote ‘function enqueue has been called with argument val’, and ‘function
dequeue has returned value val, after being called with no arguments’, respec-
tively.

Event types define possibly infinite sets of events and coincide with what is
often referred as symbolic events in the context of RV [5]. In RML, event types
are terms built on top of (possibly overloaded) symbols with different arities,
and subterms representing data values of primitive, array, or object type; event
types are defined by pattern matching as in the following example:
enq(val) matches {event:'func_pre ',name:'enqueue',args:[val]};
deq(val) matches {event:'func_post ',name:'dequeue',res:val};
enq matches enq(_);
deq matches deq(_);

Listing 1.1. Definition of event types.

According to the definition, enq(val) matches all calls to function enqueue with
argument val, deq(val) all returns from function dequeue with result val, and
enq and deq match all events matching enq(val) and deq(val), respectively, for
any4 value val.

A match succeeds if the event has all specified properties with the expected
values, and possibly other properties; RML supports two basic predefined event
types denoted by the keywords none and any, which match no event and all
events, respectively. Other features that allow more flexible definitions of event
types, including negation, are not presented here, for sake of brevity.
4 Wild-cards are used for unspecified property values.

2.2 Basic operators

In RML specifications denote sets of event traces (i.e., sequence of events), ob-
tained by combining event types with the following basic binary operators, listed
in decreasing order of precedence: concatenation (juxtaposition), intersection
(∧), union (∨), and shuffle (|); recursion is supported, and the keyword empty
denotes the singleton set containing the empty trace.

The formal semantics of the basic operators is defined in the calculus pre-
sented in Section 3; to the aim of this section, it is important to observe that,
while intersection always requires both operands to consume the current event,
for the others only one operand at time is needed, and there are cases where
both could be selected; hence, for intersection there exists a unique reduction
strategy, which is also deterministic, but for the remaining operators one can
opt for either a non deterministic (ND) or a deterministic strategy.

Let us consider for instance the following specification which uses the shuffle
operator:
enq | (enq deq) // shuffle enq with enq concatenated to deq

This specification requires the first event of the trace to match event type
enq; with the ND strategy, the event can be consumed by either the right
or left operand of the shuffle; accordingly, the specification reduces to either
empty | (enq deq) or enq | deq. This strategy corresponds to the conventional se-
mantics of the shuffle operator in formal languages: traces en en ′de and en ′en de
and en ′de en are accepted, where en and en ′ are events matching the left-most
and right-most event type enq, respectively, and de matches deq. Conversely,
only en en ′de is accepted with the left-to-right (LR) deterministic strategy.

Similar considerations apply also for union and concatenation. In the specifi-
cation below, both operands of the union operator accept a first event matching
enq with the ND strategy, thus the specification reduces to either empty or deq,
and both traces en and en ′de are accepted, while only en is accepted with the
LR strategy.
enq ∨ (enq deq) // union of enq with enq concatenated to deq

In the following specification both (enq ∨ empty) and (enq deq) expect a first
event matching enq; because (enq ∨ empty) accepts the empty trace, the specifi-
cation reduces to either empty (enq deq) or deq with the ND strategy, and both
en en′de and en ′de are accepted, while only en en ′de is accepted with the LR
strategy.
(enq ∨ empty) (enq deq) // concatenate enq ∨ empty to enq deq

2.3 Derived operators

Besides the previously introduced operators, several derived operators can be
used for conciseness. Standard postfix operators are borrowed from regular ex-
pressions: for any expression exp, (exp)? is equivalent to empty ∨ (exp), while
(exp)* and (exp)+ correspond to the following specifications:

Star = empty ∨ (exp) Star // (exp)*
Plus = (exp) Star // (exp)+

The empty set of traces can be easily represented by none, while the constant
all denotes the universe of all traces, which can be expressed by any*.

The filter operator is useful when only some kinds of events are relevant
for verifying a certain property: in ev_ty≫exp1:exp2, expression exp1 consumes
events matching ev_ty, while exp2 the others; ev_ty≫exp is an abbreviated version
corresponding to ev_ty≫exp:all (that is, only events matching ev_ty must be
checked). The filter operator is expressible in terms of the intersection and shuffle
operators: (ev_ty*∧exp1)|(not_ev_ty*∧exp2), where not_ev_ty is the negation of
the event type ev_ty.

2.4 Parametric specifications

A specification is called parametric if it expresses a property which depends on
the data values carried by the events; linguistic support for parametric specifica-
tions is of paramount importance to guarantee that the expressive power of the
specification formalism is high enough to make runtime verification effective.

Let us consider randomized queues, where enqueued elements can be de-
queued in any order, and let us assume that queues are initially empty; to be
correctly specified, a parametric specification is required.

For instance, RQ = (enq (deq |RQ))? does not work properly, because it
accepts incorrect traces as en1 de2, where en1 and de2 match enq(1) and deq(2),
respectively,

RML supports parametric specifications by allowing users to declare variables
which hold data values and are dynamically bound when events are matched.
RQ = {let val; enq(val) (deq(val) | RQ)}?;

Listing 1.2. Specification of randomized queues.

The specification is parametric in the enqueued and dequeued values, thanks to
the declaration of the variable val, whose scope is delimited by the curly braces;
a value is dynamically associated with val when an event successfully matches
enq(val), so that the subsequent event type deq(val) can only match events
corresponding to dequeuing the same value. Since the specification is recursively
defined, the declaration of val can be arbitrarily nested; enqueuing of different
values can be correctly managed because at each level the new declaration hides
the outer ones.

With the shuffle operator it is possible to express concisely the random be-
havior of the dequeue operation; in this case the reduction strategy does not
affect the semantics, because event types enq(val) and deq(val) are disjoint and
queues are randomized, hence elements can be dequeued in any order, and it
does not matter whether the corresponding event is consumed by the left or
right operand of the shuffle.

For sake of simplicity, the specification above, and those that follow, require
that traces can end only when the queue is empty; in this case the condition can

be relaxed by adding ? at the end of deq(val); similar comments apply to the
other examples.

2.5 Examples with the LR reduction strategy

The following examples show how the LR reduction strategy can help specifying
non trivial properties concisely and efficiently.

Randomized queues with no repetitions: we first consider the variation of ran-
domized queues with no repetitions.

RQNR = {let val; enq(val) (enq(val)* deq(val) | RQNR)}?;
Listing 1.3. Specification of randomized queues with no repetitions.

The specification is obtained by slightly changing the example in Listing 1.2:
enq(val)* is added before deq(val), to ensure that after a value val is enqueued,
subsequent additions of the same element will not change the queue before the
element is dequeued. In this case, the ND and the LR strategy yield different
semantics.

Let us consider the incorrect trace en1 en1 de1 de1, where en1 and de1 match
enq(1) and deq(1), respectively; the first occurrence of en1 can only be con-
sumed by the left-most occurrence of enq(val); accordingly, the specification
reduces into enq(1)* deq(1) |RQNR; the second occurrence of en1 can be con-
sumed by either the left or the right operand of the shuffle, but the LR strat-
egy forces the reduction of enq(val)* deq(val) into itself (by definition of the
star and concatenation operators). Then, the first occurrence of de1 can be
consumed by enq(1)* deq(1) (but not by RQNR), and the specification reduces
to empty | RQNR; hence, the second occurrence of de1 cannot be accepted, and,
the whole trace is correctly rejected. Conversely, with the ND strategy the
second occurrence of en1 can be consumed by RQNR yielding the specification
enq(1)* deq(1) |enq(1)* deq(1) |RQNR which can accept both occurrences of de1,
and, thus, fails to reject the whole trace.

FIFO queues: the specification in Listing 1.4 defines the correct behavior of
standard FIFO queues.

Q = {let val; enq(val) ((deq | Q) ∧ (deq≫deq(val) all))}?;
Listing 1.4. Specification of FIFO queues.

The specification is obtained from RQ in Listing 1.2 by adding, through the
intersection operator, the constraint specified by deq≫(deq(val) all), requiring
that, in all traces, the first event matching deq must actually match deq(val);
indeed, this addition allows refinement of randomized queues into FIFO queues.
In this case (deq | Q) works equally well as (deq(val) | Q), since the fact that a
call to dequeue must return the value val is ensured by the right operand of the
intersection operator.

Also in this case, the specification is correct only if we adopt the LR strategy;
indeed, with the ND strategy, for any trace t in Q, (deq | Q) contains all traces
obtained by inserting in t an event matching deq at arbitrary position; from
this we can derive that, for instance, the incorrect trace en1 en1 en2 de1 de2 de1
can be accepted with the ND strategy, if eni and dei match enq(i) and deq(i),
respectively. This counter-example also works when (deq | Q) is replaced with
(deq(val) | Q).

FIFO queues with no repetitions: similarly as done for randomized queues, the
specification of FIFO queues with no repetitions in Listing 1.5 is obtained from
the specification in Listing 1.4 by adding enq(val)* before deq in the left operand
of the shuffle operator.
QNR={let val; enq(val) ((enq(val)* deq | QNR)

∧ (deq≫deq(val) all))}?;
Listing 1.5. Specification of FIFO queues with no repetitions.

Analogously as done for the specification in Listing 1.4, one can show that the
specification is correct only with the LR strategy.

3 Event calculus

In this section we define the formal semantics of RML through an event calculus
which is also at the basis of the language implementation: RML specifications
are translated into the calculus, and the corresponding reduction rules, defining
a labeled transition system, are implemented in SWI-Prolog5 to monitor event
traces.

v ::= x | κ (data value)
θ ::= τ | τ(v1, . . . , vn) (event type)
t ::= ϵ (empty trace)

| θ : t (prefix)
| t1 · t2 (concatenation)
| t1 ∧ t2 (intersection)
| t1 ∨ t2 (union)
| t1 | t2 (shuffle)
| {x; t} (parametric expression)

Fig. 1. Syntax of trace calculus.

Syntax. As in the RML examples, event types are built on top of names τ and
data value variables x and literals κ. The calculus does not cover event type
definitions, which are assumed to be provided separately; we only require that
the set of event types is not empty, and that definitions of event types are closed
5 http://www.swi-prolog.org/

http://www.swi-prolog.org/

w.r.t. negation: for any event type θ, its negation θ̄ is definable. This assumption
is needed to ensure that operators in Section 2.3 can be actually derived in the
calculus.

For conciseness ϵ is used for empty; the two constants 1 and 0 denote the
universe and the empty set of all event traces, respectively. They are introduced
for convenience, and they do not belong to the syntax of the calculus, since they
are both derivable, by virtue of our hypotheses on event type definitions: 1 is
equivalent to the term defined by t = ϵ ∨ (θ : t) ∨ (θ̄ : t), while 0 corresponds to
(θ : ϵ) ∧ (θ̄ : ϵ), for any event type θ.

In the calculus, RML concatenation is expressed with the prefix and the con-
catenation operators, and the empty trace; for instance, (enq ∨ empty) (enq deq)
is translated into the term ((enq:ϵ)∨ϵ)·(enq:deq:ϵ). The remaining basic binary
operators are supported with the same syntax of RML; a parametric expression
{x; t} corresponds to the RML expression {let x; t}. As shown in Section 2,
all other operators can be derived from the basic ones.

The terms of the calculus are allowed to be regular (a.k.a. rational) [4], to
support recursion: they correspond to trees with possibly infinite depth, but finite
set of subtrees; equivalently, they are those terms that can always be defined
as the unique solutions of a finite set of syntactic equations. For instance, the
equation t = enq:t defines a unique tree, whose depth is infinite and whose set
of subtrees only contains enq and t itself.

Semantics. The semantics of the calculus depends on four predicates, inductively
defined by the inference rules in Figure 2. Events e range over a fixed universe of
events E . The predicate t1

e−→ t2;σ defines the single reduction steps of the labeled
transition system on which the semantics of the calculus is based; t1

e−→ t2;σ is
derivable iff the event e can be consumed, with the generated substitution σ,
by the expression t1, which then reduces to t2. The negation of the predicate,
denoted by t ̸ e−→, is derivable iff there are no reduction steps for event e starting
from expression t; the predicate is needed to enforce the LR reduction strategy.

Substitutions are finite partial maps from variables to data values which are
produced by successful matches of event types; the domain of σ and the empty
substitution are denoted by dom(σ) and ∅, respectively, while σ|x and σ\x denote
the substitutions obtained from σ by restricting its domain to {x} and removing
x from its domain, respectively. We simply write t1

e−→ t2 to mean t1
e−→ t2; ∅.

Application of a substitution σ to an expression t is denoted by σt, and defined
by coinductionon t; in particular,

σx = σ(x) if x ∈ dom(σ), σ(x) = x otherwise
σ{x; t} = {x; σ\xt}

while σt is the homomorphic extension for the remaining cases.
Since the calculus does not cover event type definitions, the semantics of

event types is provided by the external partial function match, used in the side
condition of rules (prefix) and (n-prefix): match(e, θ) returns the substitution σ
iff event e matches event type σθ and fails (that is, is undefined) iff there is no

(pre)
θ : t

e−→ t;σ
σ=match(e,θ) (or-l)

t1
e−→ t′1;σ

t1 ∨ t2
e−→ t′1;σ

(or-r)
t1 ̸ e−→ t2

e−→ t′2;σ

t1 ∨ t2
e−→ t′2;σ

(and)
t1

e−→ t′1;σ1 t2
e−→ t′2;σ2

t1 ∧ t2
e−→ t′1 ∧ t′2;σ

σ=σ1∪σ2 (shuffle-l)
t1

e−→ t′1;σ

t1 | t2
e−→ t′1 | t2;σ

(shuffle-r)
t1 ̸ e−→ t2

e−→ t′2;σ

t1 | t2
e−→ t1 | t′2;σ

(cat-l)
t1

e−→ t′1;σ

t1 · t2
e−→ t′1 · t2;σ

(cat-r)
t1 ̸ e−→ E(t1) t2

e−→ t′2;σ

t1 · t2
e−→ t′2;σ

(par-t)
t

e−→ t′;σ

{x; t} e−→ σ|xt′;σ\{x}
x∈dom(σ)

(par-f)
t

e−→ t′;σ

{x; t} e−→ {x; t′};σ
x ̸∈dom(σ) (n-ϵ)

ϵ ̸ e−→
(n-prefix)

θ : t ̸ e−→
match(e,θ) fails

(n-or)
t1 ̸ e−→ t2 ̸ e−→
t1 ∨ t2 ̸ e−→

(n-and-l)
t1 ̸ e−→

t1 ∧ t2 ̸ e−→
(n-and-r)

t2 ̸ e−→
t1 ∧ t2 ̸ e−→

(n-and)
t1

e−→ t′1;σ1 t2
e−→ t′2;σ2

t1 ∧ t2 ̸ e−→
σ1∪σ2 fails (n-shuffle)

t1 ̸ e−→ t2 ̸ e−→
t1 | t2 ̸ e−→

(n-cat-l)
t1 ̸ e−→ NE(t1)

t1 · t2 ̸ e−→
(n-cat-r)

t1 ̸ e−→ t2 ̸ e−→
t1 · t2 ̸ e−→

(n-par)
t ̸ e−→

{x; t} ̸ e−→
(e-ϵ)

E(ϵ)

(e-or-l)
E(t1)

E(t1 ∨ t2)
(e-or-r)

E(t2)

E(t1 ∨ t2)
(e-al)

E(t1) E(t2)

E(t1 op t2)
op∈{|,·,∧}

(e-par)
E(t)

E({x; t}) (ne-pre)
NE(θ : t)

(ne-or)
NE(t1) NE(t1)

NE(t1 ∨ t2)

(ne-all)
∃ i ∈ {1, 2} NE(ti)

NE(t1 op t2)
op∈{|,·,∧} (ne-par)

NE(t)

NE({x; t})

Fig. 2. Small-step operational semantics for the event calculus.

substitution σ for which e matches σθ. The substitution is expected to be the
most general one, that is, its domain coincides with the set of variables in θ.

As an example of how match could be derived from the RML event type def-
initions, if e ={event:'func_pre',name:'enqueue',args:[42]}, then the following
specification

enq(val) matches {event:'func_pre ',name:'enqueue',args:[val]};

determines the function match s.t. match(e, enq(v)) = σ, and match(e, enq(3))
fails, if dom(σ) = {v}, σ(v) = 42 .

The side condition of rule (and) uses the partial binary operator ∪ to merge
substitutions: σ1 ∪ σ2 returns the union of σ1 and σ2, if they coincide on the
intersection of their domains, and fails otherwise.

The predicate E is needed in rule (cat-r): event e consumed by t2 can also
be consumed by t1 · t2 only if e is not consumed by t1 (premise t1 ̸ e−→ forcing the
LR reduction strategy), and the empty trace is accepted by t1 (premise E (t1)).

Rule (par-t) can be applied when variable x is in the domain of the substi-
tution σ generated during the reduction step from t to t′: σ is applied to t′, x is
removed from the domain of σ, together with its corresponding declaration. If x
is not in the domain of σ (rule (par-f)), no removal is performed.

Since monitors can be on line, and can check non terminating programs,
the semantics of a specification may include also infinite traces; an event trace
ē ∈ E∗ ∪ Eω is a possibly infinite sequence of events; the empty trace is denoted
by ϵ, while eē denotes the trace consisting of the first event e, followed by the
rest of the trace ē. The semantics JtK of a specification t is the set of traces
coinductively defined as follows:
– ϵ ∈ JtK iff E (t) is derivable;
– eē ∈ JtK iff t

e−→ t′;σ is derivable, and ē ∈ Jσt′K.
3.1 Examples of reductions

Before providing some examples of reductions, we show how an RML specifica-
tion compiles down to the event calculus; in particular, we focus on RQNR defined
in Listing 1.3, which is translated into the rational term trqnr defined by the
following equations:

trqnr = {v; enq(v) : ((s · (deq(v) : ϵ)) | trqnr)} ∨ ϵ s = ϵ ∨ (enq(v) : s)

Let us assume that function match corresponds to the definitions of the event
types provided in Listing 1.1, and that eni and dei denote any event matching
enq(i) and deq(i), respectively, for any integer value i.

The following reduction steps can be derived: trqnr
en1−−→ t1

en1−−→ t2
en2−−→

t3
de1−−→ t4

de2−−→ t5 where

t1 = t2 = (s1 · (deq(1) : ϵ)) | trqnr t4 = ϵ | ((s2 · (deq(2) : ϵ)) | trqnr)
t3 = (s1 · (deq(1) : ϵ)) | ((s2 · (deq(2) : ϵ)) | trqnr) t5 = ϵ | (ϵ | trqnr)

and si denotes the term obtained by applying the substitution {v 7→ i} to s. By
rules (e-al), (e-or-r) and (e-ϵ), E (t5) is derivable, therefore we can deduce that
en1en1en2de1de2 ∈ JtrqnrK, as expected.

3.2 Identity and optimizations

In order to keep the time and space complexity of the verification procedure
linear, it is crucial to shrink the calculus term during the reduction whenever
possible. This can be done by exploiting some laws of the calculus which can be
proved by virtue of the operational semantics:

Jϵ | tK = Jt | ϵK = JtK J1 ∧ tK = Jt ∧ 1K = JtK Jθ≫ 1K = J1K

Let us consider Listing 1.4, formalizing the correct behavior of standard FIFO
queues. Such RML specification can be translated to the following rational term
in the event calculus:

tq = ϵ ∨ {val ; enq(val) : (((deq : ϵ) | tq) ∧ (deq ≫ deq(val) : 1}

After enqueuing and dequeuing an element e, the following term is obtained:

tq
enq(e)−−−−→ ((deq : ϵ) | tq) ∧ (deq ≫ deq(e) : 1)

deq(e)−−−−→ (ϵ | tq) ∧ (deq ≫ 1)

By identity of the shuffle operator and idempotence of 1 w.r.t. the filter, the
resulting term can be simplified to tq ∧ 1. Finally, since 1 is the identity element
of intersection, the term is equivalent to the initial one, tq.

The laws presented in this section are crucial to ensure good monitoring per-
formance. The implementation tries to apply them after each step, to keep the
size of the term as low as possible. The computational complexity of a single
reduction step is a linear function of the term size. This can be understood by
looking at the inference system inductively defining the small-step operational
semantics. The complexity of the verification algorithm for the queue specifica-
tions given in this work, for instance, benefits from the optimizations driven by
the laws. At any point in the reduction sequence, the time complexity of a single
step (and the space complexity of the term) goes down from O(n) to O(s), with
n and s being the total number of elements enqueued so far and the current size
of the queue, respectively. Note that, in the long run, s could be much lower
than n, and more importantly, only the former can decrease during execution.
Without the ability to shrink the term when possible, the monitor would, at
some point, run out of memory.

3.3 Formal results

In this section we prove that the semantics of the calculus is deterministic; in
terms of the previous example, this means that there are no other reduction
steps starting from trqnr for the trace en1en1en2de1de2; furthermore, for each
reduction there exists a unique derivation.

Lemma 1. For all t, E (t) is derivable if and only if NE (t) is not derivable.

Proof. (Sketch) The two implications can be proved simultaneously by induction
on the derivations of E (t) and NE (t), and by case analysis on the shape of t.

Lemma 2. For all t1 and e, there exist t2 and σ s.t. t1
e−→ t2;σ is derivable if

and only if t1 ̸ e−→ is not derivable.

Proof. (Sketch) The proof depends on Lemma 1; except for this detail, the proof
proceeds in a similar way as for lemma 1.

Theorem 1. For all t, e, t1, t2, σ1 and σ2, if t
e−→ t1;σ1 and t

e−→ t2;σ2 are
derivable, then t1 = t2 and σ1 = σ2.

Proof. The proof proceeds by induction on the sum of the depths of the two
derivations for t

e−→ t1;σ1 and t
e−→ t2;σ2, and by case analysis on the shape of t.

– if t = ϵ, then the claim holds vacuously, since there cannot be reduction
steps.

– if t = θ : t′, then the derivations can only be obtained by applying rule
(prefix), and the claim can be derived directly from the assumption that
match is a partial function, as stated at the beginning of this section.

– if t = {x; t′}, then the derivations can only be obtained by first applying
either rule (par-t) or (par-f); since the two rules share the same hypothesis,
we have two derivations for t′

e−→ t′′;σ′ and t′
e−→ t′′′;σ′′ where the sum of

their depths is strictly less than the sum of the depths of the derivations for
t

e−→ t1;σ1 and t
e−→ t2;σ2. Hence, by induction we deduce that t′′ = t′′′ and

σ′ = σ′′; from the equality σ′ = σ′′ and the two side conditions of rules (par-
t) or (par-f), we deduce that both derivations have been built by applying
the same rule, hence the claim can be derived.

– the proofs for all remaining shapes are similar: they all exploit the fact that
by Lemmas 1 and 2 there always exists at most one applicable rule for fixed
t and e, and then conclude the claim by induction.

4 Conclusion
We have presented an event calculus which provides a basis for the semantics and
the implementation of RML, a domain specific language for RV; the semantics
is based on a deterministic reduction strategy, therefore RML specifications are
deterministic by construction. We have shown that, besides supporting a sim-
pler and more efficient implementation of RML, a deterministic semantics allows
RML users to express certain non-CF data-oriented properties in a simple way
and to monitor them efficiently. Such examples are all based on the deterministic
semantics of the shuffle operator, but there are others, that have been omitted
for space reasons, which exploit the deterministic semantics of concatenation as
well, while for union we conjecture that the deterministic version can be derived
from the ND one. Even though it has its advantages, considering a deterministic
reduction strategy does not come at no costs, because the semantics of union,
concatenation and shuffle is no longer the conventional one, as in the case of the
ND semantics; for instance, while we have shown that there are some laws that
still hold and can be exploited for optimization purposes, others, as commuta-
tivity of union and shuffle, no longer hold for the deterministic semantics.

We reserve for future work a deeper study of the properties of the determin-
istic version of these operators, the relationship between the expressive power
of the calculus with the ND and the deterministic semantics (respectively), and
the monitorability [11] of RML specifications for finite prefixes of traces.

References
1. Wolfgang Ahrendt, Jesús Mauricio Chimento, Gordon J. Pace, and Gerardo Schnei-

der. Verifying data- and control-oriented properties combining static and runtime

verification: theory and tools. Formal Methods in System Design, 51(1):200–265,
2017.

2. Davide Ancona, Angelo Ferrando, and Viviana Mascardi. Parametric runtime
verification of multiagent systems. In Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May
8-12, 2017, pages 1457–1459, 2017.

3. Davide Ancona, Luca Franceschini, Giorgio Delzanno, Maurizio Leotta, Marina
Ribaudo, and Filippo Ricca. Towards runtime monitoring of node.js and its appli-
cation to the internet of things. In Proceedings First Workshop on Architectures,
Languages and Paradigms for IoT, ALP4IoT@iFM 2017, Turin, Italy, September
18, 2017., pages 27–42, 2017.

4. Bruno Courcelle. Fundamental properties of infinite trees. Theor. Comput. Sci.,
25:95–169, 1983.

5. Yliès Falcone, Klaus Havelund, and Giles Reger. A tutorial on runtime verification.
In Engineering Dependable Software Systems, pages 141–175. 2013.

6. Angelo Ferrando, Davide Ancona, and Viviana Mascardi. Decentralizing MAS
monitoring with decamon. In Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017,
pages 239–248, 2017.

7. Angelo Ferrando, Louise A. Dennis, Davide Ancona, Michael Fisher, and Viviana
Mascardi. Recognising assumption violations in autonomous systems verification.
In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018, pages
1933–1935, 2018.

8. Adrian Francalanza, Jorge A. Pérez, and César Sánchez. Runtime verification
for decentralised and distributed systems. In Lectures on Runtime Verification -
Introductory and Advanced Topics, pages 176–210. 2018.

9. Maurizio Leotta, Diego Clerissi, Dario Olianas, Filippo Ricca, Davide Ancona,
Giorgio Delzanno, Luca Franceschini, and Marina Ribaudo. An acceptance testing
approach for internet of things systems. IET Software, 12(5):430–436, 2018.

10. Martin Leucker and Christian Schallhart. A brief account of runtime verification.
The Journal of Logic and Algebraic Programming, 78(5):293–303, 2009.

11. Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification
via testers. In FM 2006: Formal Methods, 14th International Symposium on Formal
Methods, Hamilton, Canada, August 21-27, 2006, Proceedings, pages 573–586, 2006.

	A Deterministic Event Calculus for Effective Runtime Verification

