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Abstract. The modeling of complex systems often has to deal with the
presence of features emerging at multiple scales of complexity, and the
availability of data in both qualitative and quantitative form. Correspond-
ingly, many mathematical formalisms were developed to define either
quantitative or qualitative models of such systems. Bridging the gap
between these two worlds would allow to exploit the advantages provided
by both approaches: however, to date the attempts in this direction
were limited. A novel, general-purpose computational framework, named
FuzzX, is here presented to address this limitation. FuzzX enables the
analysis of hybrid models consisting in a quantitative (or mechanistic)
and a qualitative module, reciprocally controlling each other’s behavior.
FuzzX leverages quantitative information about the system by means of
a mechanistic module. At the same time, it describes the behavior of not
fully characterized system components by exploiting fuzzy logic to define
a qualitative module. FuzzX is here applied for the analysis of a hybrid
model of a complex biochemical system, characterized by the presence of
several feedback regulations. The results show that FuzzX can reproduce
known emergent system behaviors, in normal and perturbed conditions.
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1 Introduction

Complex systems show emergent dynamic behaviors that arise from the functional
interactions among their components. In order to grasp the inner workings of
such systems, researchers relied on mathematical modeling, bringing to significant
breakthroughs in many fields of science [1]. In the last decades, a plethora of
frameworks and mathematical formalisms have been developed to represent
several characteristics of these systems. The resulting modeling approaches can
be roughly partitioned into two categories: quantitative (or mechanistic) modeling
and qualitative modeling [15]. Mechanistic models are regarded as the closest
to the physical reality of the system under investigation, as they describe its
inherent processes in detail. They exploit numerical data, and they feature the
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presence of parameters that control the system’s dynamic behavior. Conversely,
qualitative models are closer to human perception and natural language: their
definition is based on qualitative data, and they describe the underlying physical
phenomena in approximate terms. These two approaches have been separately
used to address different problems [6, 15], while efforts in trying to bridge them
have been limited to domain-specific applications [2]. However, complex systems
often show features that could benefit from a description that simultaneously
exploits both approaches. Thus, integrating uncertain and qualitative information
with precise and quantitative data could result in the definition of more complete
models, possibly uncovering unexpected or unknown emergent behaviors.

A novel framework named FuzzX (Fuzzy-mechanistic modeling of compleX
systems) was presented in [13]. Designed for the definition and simulation of
hybrid models, FuzzX integrates mechanistic and qualitative modules into a
unified approach. In FuzzX, the mechanistic module can be defined by means
of any fully parameterized modeling formalism, such as algebraic equations,
ordinary differential equations (ODEs), Markov jump processes, etc. Any variable
belonging to the mechanistic module can serve as input for the qualitative module,
formalized as a fuzzy inference network [5], controlling either some variables or
parameters of the mechanistic module. Exploiting a fuzzy module allows to define
models with a higher degree of interpretability, thanks to the use of linguistic
terms, and to exploit the flexibility of fuzzy sets to handle heterogeneous data.
Moreover, FuzzX could be beneficial to analyze systems characterized by partial
uncertainty about the underlying mechanisms, or to reduce the computational
effort posed by detailed mechanistic models by mitigating their complexity.
Examples of such applications include economics and finance models [8], cyber-
physical systems [12], and biochemical reaction networks [9].

To show its advantages, FuzzX is here employed to redefine, as a hybrid
model, a mechanistic model of a biochemical pathway characterized by non-linear
behaviors arising from the presence of several feedback regulations among its
components [4]. Although a part of the mechanistic interactions is substituted by
a set of expert-defined fuzzy rules, the hybrid model can reproduce the emergent
behaviors that were observed in the original model, such as the presence of a
transient phase and the establishment of stable oscillations.

2 Methods

Let a hybrid model of a complex system Ω be formalized by specifying two
elements: a mechanistic module M and a fuzzy module F . The module M =
〈VM, θM,P〉 consists in three disjoint sets corresponding to, respectively, the set
of variables, the set of parameters and the set of mechanistic processes that
govern the functioning of Ω. The module F = 〈VF,R〉 consists in two dis-
joint sets corresponding to, respectively, the set of linguistic variables and the
set of fuzzy rules. Notably, in FuzzX the interface of Ω is defined as the set
I = (VM ∩ VF) ∪ (θM ∩ VF). This interface allows the communication between the
mechanistic and the fuzzy module, effectively resulting in the two modules af-



Bridging qualitative and quantitative modeling with FuzzX 3

Mechanistic module M

Variables V M Parameters θ M Mechanistic 
processes P

Fuzzy module F

Fuzzy rules RVariables V F

INTERFACE I Mechanistic 
simulation update 

until t = t+Δ
Fuzzy inference

t ≥ tmax

Fuzzification of 
interface elements

Update interface 
elements

yes

no

Initial 
state

Simulation 
ends

Fig. 1: Scheme of FuzzX framework (left) and its simulation procedure (right).

fecting each other’s behavior. It should be noted that the module M treats
the elements belonging to the interface as variables, if they belong to VM ∩ VF,
or as parameters, if they belong to θM ∩ VF. Conversely, the module F treats
all elements of the interface as fuzzy variables. This allows the fuzzy module
to effectively control its mechanistic counterpart, driving the overall dynamic
behavior of the hybrid model and making FuzzX able to deal with complex
systems that require the handling of both precise and uncertain data. Fig. 1, left
side, shows a graphical schematization of the modules and the interface.

Let now VM = {xM1, . . . , xMm} and VF = {xF1, . . . , xFf} denote the elements in

the sets of mechanistic and fuzzy variables, respectively. The variables in VM
assume values in some given set XM , according to the mathematical formalism
adopted to define the module M, while the variables in VF assume values in R.
Additionally, let XM(t) = (xM1(t), . . . , xMm(t)) denote the state of the mechanistic
module at time t, and XF(t) = (xF1(t), . . . , xFf (t)) denote the state of the fuzzy
module at time t. These two vectors represent overall the state of the hybrid
model describing Ω. The update of XM(t) and XF(t) is carried out by means of
two functions, UM and UF. UM : XmM → XmM maps the current state XM(t) of M
into the state XM(t′) at the next time step, taking into account the parameters
in θM and the mechanistic processes in P. This function describes the temporal
evolution of the processes present in M, and can be evaluated by means of any
computational method suitable for the formalism employed in the definition
of M (e.g., if M is formalized as a system of ODEs, UM can be a numerical
integration algorithm; if M is formalized as a reaction-based model, UM can be a
stochastic simulation algorithm). UF : Rf → Rf maps the current state XF(t) of
F into the state XF(t′) at the next time step, taking into account the fuzzy rules
specified in R. Thus, in FuzzX a simulation step of a hybrid model consists in the
application of UM to compute the dynamics of the mechanistic module, followed
by the application of UF to perform a fuzzy inference with the fuzzy network
defined in the fuzzy module (see Fig. 1, right side). In particular, the dynamics of
M is simulated by applying UM for a user-defined time interval of length ∆, for
some ∆ ∈ R+. The choice of ∆ determines how often the two modules interact.

The application of both UM and UF on the elements belonging to the interface
allows the two modules to communicate and exert their mutual regulation.
Specifically, the value of an interface element I ∈ VM ⊆ I is first updated by
UM, and then fuzzified during the fuzzy inference operated by UF, affecting the
dynamics of the fuzzy module; at the same time, an element I ∈ I can be



4 S. Spolaor

updated by UF, thus modifying the values of variables and/or parameters of
M, and eventually affecting its dynamics during the next simulation step. A
simulation ends when a user-defined time limit tmax ∈ R+ is reached, therefore
lasting exactly k = d tmax

∆ e steps.

3 Results

To show its potentiality, FuzzX was tested on a hybrid model of a complex
network of biochemical reactions. This network describes the Ras/cAMP/PKA
pathway in the yeast S. cerevisiae, a cellular process involved in the regulation
of metabolism and cell cycle [11]. This system is characterized by the presence of
positive and negative feedback controls that ensure, under certain conditions, the
establishment of stable oscillations in the dynamics of some essential proteins,
such as Ras2-GTP. A thorough description of the pathway can be found in [4].

The hybrid model appearing in this work is a modified version of the original
mechanistic model [4], which was formalized as a reaction-based model (RBM) [3]
consisting of 39 reactions and 33 molecular species, and simulated by means of the
Stochastic Simulation Algorithm (SSA) [7]. The mechanistic module of the hybrid
model consists in the first 10 reactions of the original model, and its dynamics
(i.e., the implementation of UM) is obtained by means of SSA. The fuzzy module
describes the feedback controls, it consists in a set VF of 8 linguistic variables and
a set R of 16 fuzzy rules, adopting a 0-order Sugeno inference system [14]. The
species Ras2-GTP belongs to VM ∩ VF, and the 3 kinetic parameters controlling
the strength of the feedback regulations belong to the set θM ∩ VF: together,
these four elements constitute the interface I of the hybrid model. A complete
description of the hybrid model can be found in [13].

Fig. 2 shows the effects of different values of ∆ on the overall dynamics of the
hybrid model, as shown in [13]. For small values of ∆ (e.g., smaller than 10, as in
Fig. 2, left side) with respect to the scale of the phenomena modeled by the fuzzy
rules, the dynamics present damped oscillations, slowly converging to a steady
state. On the contrary, for larger values of ∆ (e.g., ∆ ≥ 10, Fig. 2, right side), the
hybrid model produces the stable oscillations characterizing the behavior of the
system. Increasing values of ∆ correspond to increased values of the frequency,
phase and amplitude of the oscillations (see [13] for a complete analysis). As a
matter of fact, since the firing of fuzzy rules is instantaneous, ∆ must be chosen
according to the temporal scale of the modeled phenomena. Small values of ∆
could result in small modifications of the interface elements by M, leading to
the firing of the same subset of fuzzy rules at each iteration; large values of ∆
imply longer intervals between the fuzzy inferences, decreasing the impact of the
fuzzy regime on the dynamics. Therefore, ∆ should be carefully chosen by the
modeler, by comparing the resulting dynamics with respect to known behaviors
of the system. In the case of the Ras/cAMP/PKA model, ∆ was set to 10.

Following this analysis, several simulation of the hybrid model were carried out
by perturbing elements of M or F . The hybrid model was able to qualitatively
reproduce most of the known behaviors of the system reported in [4], as shown
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Fig. 2: Dynamics of Ras2-GTP with ∆ = 5 (left) or 10 (right).

in [13]. Worthy of note, the computational demand of the hybrid model is
reduced: a single simulation with FuzzX is approximately 25× faster than a single
stochastic simulation of the original model. Altogether, these results highlight the
advantages provided by FuzzX: the simplification of model complexity by means
of fuzzy rules close to natural language, notably requiring a reduced number of
free parameters; the possibility to run simulations of hybrid models, conveying
both quantitative and qualitative information, exploiting a unified approach; the
capability of hybrid models to reproduce known behaviours of the system and,
once the model has been validated, to possibly predict unknown ones.

4 Conclusion

FuzzX is a novel framework for the modeling and simulation of complex systems
that, for the first time, combines a module based on detailed processes and
numerical data with one based on fuzzy logic. To test its effectiveness, FuzzX was
employed for the definition and analysis of a hybrid model of the Ras/cAMP/PKA
pathway in yeast. Provided that a suitable ∆ is chosen, FuzzX was able to
qualitatively reproduce known behaviors of the system, proving that an interface
between mechanistic approaches and fuzzy logic can be a suitable and useful
structure to model heterogeneous complex systems.

Notably, the definition of a fuzzy module requires less precise information with
respect to a fully mechanistic model: this provides a cost-effective solution (in
terms of number and accuracy of parameters) to the modeling of complex systems,
allowing to reproduce and predict emergent behaviors even when mechanistic
information is not fully available. Moreover, a hybrid approach can reduce the
computational demand with respect to a fully mechanistic model. The flexibility
of fuzzy sets and their ability to connect qualitative and quantitative data allow
to define models that take into account heterogeneous components (e.g., non-
real-valued, spanning different orders of magnitude, having different units of
measure). Thus, taking into account all these key points, FuzzX could be leveraged
to facilitate the modeling of systems characterized by multiple scales of time,
spatial and functional organization, as well as to revise and extend validated
mechanistic models by describing mechanisms that are not fully characterized,
possibly gaining new insights on the systems under investigation. In the future, I
plan to apply FuzzX to analyze the repair of DNA double strand breaks in yeast
[10], a phenomenon that is only partially characterized in mechanistic detail.
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