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We introduce a radically new approach to the particle track reconstruction problem for tracking 

detectors of HEP experiments. We developed the end-to-end trainable YOLO-like convolutional 

neural network named Look Once On Tracks (LOOT) which can process the whole event representing 

it as an image, but instead of three RGB channels, we use, as channels in-depth, discretized contents of 

sequential detector coordinate stations. The LOOT neural net avoids all problems of the existing 

sequential tracking algorithms because it does computations in one shot. The first promising results of 

the algorithm's application to the data from the Monte-Carlo simulations are presented and discussed.  
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1. Introduction 

Track reconstruction, so-called tracking, plays a significant role in the modern high energy 

and nuclear physics (HENP) analysis.  During HENP experiments, the ion beam collides with another 

beam or with a fixed target, generating a huge number of secondary particles registered then by track 

detectors in accordance with the energy release of each particle as it passes through the detector 

element.  Each energy trace allows to calculate the spatial point, the so-called hit, where some particle 

probably pierced the sensitive area of the detector. The general idea of tracking consists in joining 

these hits into groups which includes all hits belonging to the same track one of many others, 

discarding noise and fake hits. The knowledge of track curvatures allows physicists to recover the 

initial momentum of particles and, eventually, to recover the whole event. Tracking is especially 

difficult for modern HENP experiments with heavy ions where detectors register events with very high 

track multiplicity. 

As we are working on the BM@N experiment of the NICA megaproject [1], we face the 

famous shortcoming of GEM strip detectors when a great amount of fake hits appears along with real 

hits because of extra spurious crossings of strips activated by other tracks. The number of those fakes 

is greater for some order of magnitude than for true hits.  

Classical tracking methods as Kalman filter [2] used successfully for years, including 

improvements to solve tracking problems in the GEM environment [3]. However, in the recent 

BM@N experiments with xenon beam producing thousands of tracks the Kalman filter approach could 

not meet the desired tracking speed, largely due to its sequential nature.  

In opposite to classical tracking methods, deep learning (DL) approaches have the explicit 

advantage due to their capability to model complex non-linear data dependencies.  Besides, they imply 

linear algebra operations performing which are highly parallelizable. So, DL methods should make a 

great contribution to the tracking problem. 

2. Previous study  

Although DL methods are very popular nowadays, as far as we know, there is not any end-to-

end trainable solution for tracking in GEM detectors. Therefore, we had to overcome the shortcomings 

of our first attempt in using deep neural networks for tracking which includes two stages: track-

candidates 3D search and true track selecting among all candidates with the help of the deep recurrent 

neural classifier [4] by inventing a new end-to-end trainable neural network for tracking. It can search 

for the track-candidate continuation and simultaneously define the probability of whether it is a true 

track. It works sequentially from the first station of the detector to the last excluding fake track-

candidates and prolongs the true ones. We called this model TrackNETv1, one can find a detailed 

description of it in [5]. 

Though TrackNETv1 performed pretty well, especially in its track-following part, it has 

several drawbacks. In particular, it requires a labeled dataset with true and fake tracks, also, we cannot 

use a single TrackNETv1 model to solve the tracking problems up to the hilt, because of the 

cohabitation of the classification part and regression part. To address all these problems, we simplified 

the TrackNETv1 structure dropping out the classification part. The new model TrackNETv2 performs 

like a trainable version of Kalman filter, but instead of recalculation of the state of the track, it predicts 

the area where the next hit of a track can be located [6].  

Nevertheless, all proposed algorithms for tracking are sequential. They cannot see the whole 

picture, being limited only to individual trajectories pass while trying to ignore the neighbors. Also, as 

the number of tracks grows, we run into a memory limit since those algorithms are sensitive to the 

number of tracks and their length.  

In [7] we proposed the novel DL model named LOOT – «Look Once On Tracks» to solve the 

abovementioned tracking problems. The model was tested there only on simple track collection with 

straight tracks only. The remaining part of the paper describes the main concept of LOOT and how it 

was developed to process the Monte-Carlo simulation data for carbon-carbon (C+C) interactions in the 

BM@N experiment.  
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3. Look Once On Tracks concept 

When we were looking for the solution of the tracking problem in one single end-to-end 

trainable pipeline, we tried to find any similar applications in related areas of DL. There is a common 

model in object recognition named YOLO [8] whose name is a fun acronym inherited from the famous 

American slogan “You Only Live Once”.  

YOLO is a deep convolutional network (DCN) for real-time object detection. It splits input 

image into parts using a regular grid; for each block predicts the probability of the object existence 

inside; the center of the bounding box area; the size of the bounding box; class label for the object 

inside the grid cell. The YOLO paper [8] inspired us and we asked ourselves: how we can represent 

the event as an image? Mostly, images have a 3d format: height, width, and RGB channels. Event data 

from each detector station can be considered as a sparse matrix of zeros and ones, where ones indicate 

the appearance of hits. Considering then each station, as a video frame, one can use DCN image 

format, where RGB channels are replaced by discretized contents of detector stations considering each 

of them as a channel in depth. It brings us to a radically new approach. In this way, we split all event 

data into stations, then we put all hits on a pixel grid with height and width equal to the height and 

width of the largest station depending on the selected resolution. For our BM@N configuration, we 

define the resolution of 512 and 256 pixels for width and height, respectively. Then we stack all 

resulting matrices on channels dimension, therefore, we obtained an object which is similar to image 

but instead of RGB we have stations. 

In order to start with track reconstruction, we have to predict a LOOT mask for the first station 

as a simple binary matrix with the number of rows equal to height resolution and the number of 

columns equal to width resolution. It is a very sparse matrix in which rare ones locate in cells 

corresponding to the true hits on the first station. Nonzero cells in this mask represent the starting hits 

of true tracks. 

Together with mask LOOT predicts coordinate shifts on OX and OY axes for every station 

except the first one. These shifts are also matrices with the same size as the mask. The value in each 

cell represents an axis shift from the previous hit of the track to obtain the coordinate position of the 

current hit. Thus, to predict the second hit of the track we have to know the position of the starting 

point – row and column indices (ij) of corresponding nonzero value in the predicted mask matrix. 

Then ij value of the first OX shift matrix indicates j shift, so to obtain the OX coordinate of the second 

hit of the track – 𝑗 +  𝑗_𝑠ℎ𝑖𝑓𝑡. To obtain the OY coordinate of the second hit of the track, one needs to 

sum 𝑖 value (row number) with ij value from the first OY shift matrix. To obtain the third hit of the 

track, values from ij cell of the second OX and second OY shift matrices are required and then they 

are summed with the coordinates of the previous (second) hit of the track. The process repeats until the 

last station. In total: 1 𝑚𝑎𝑠𝑘 +  (𝑛_𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 –  1)  ∗  2 𝑠ℎ𝑖𝑓𝑡𝑠, e.g. for 6 stations – 11 matrices, so 11 

channels on the output. 

It should be noted that such an approach has some obvious limitations – it can only find tracks 

that start from the first station; short tracks and hits omissions not taken into consideration. 

4. Model architecture 

The first version of LOOT was applied to the toy dataset of 160K events with no magnetic 

field (straight tracks) registered in 5 stations, the number of tracks varied from 10 to 100 while fake hit 

numbers were taken twice greater than true hits and sampled uniformly. Mean tracks accuracy 

(fraction of tracks reconstructed accurately) was 96.5%. The model is a simple deep convolutional 

network with several blocks of 1x1 convolutions. A detailed description of it one can find in [7]. The 

main part of it is a special coordinate convolution layer [9]. 

There is a well-known coordinate transform problem, namely, the prediction of the coordinate 

grid that is extremely difficult for the common convolutional neural networks because they cannot 

learn coordinates from data samples without any additional knowledge about spatial positions of 

pixels. The idea is to add coordinate channels to the input of a deep neural network [9]. Without this 

layer, LOOT won’t predict axes shifts accurately. 

To train the LOOT model we proposed a special loss function with two terms – binary cross-

entropy loss for the mask prediction and normalized squared error loss for the axes shifts. But while 
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adapting LOOT to the Monte-Carlo simulation data for the BM@N experiment we faced with the 

problem, when all output confidences (the mask for the starting hits of tracks) become equal to zero. It 

happened because the number of empty cells is much greater (𝑛2) than for the true tracks. This was 

overcome by replacing cross-entropy loss to the Dice loss function [10] which is a very common loss 

in the segmentation problems. 

Also, we replace the original model architecture to the U-Net [11] like network. The network 

consists of a contracting path and an expansive path, which gives it the u-shaped architecture. During 

the contraction, the spatial information is reduced while feature information is increased. The 

expansive pathway combines the feature and spatial information through a sequence of up-

convolutions and concatenations with high-resolution features from the contracting path which is very 

useful to weed out fakes. We used U-Net with some small modifications, as the LOOT base network, 

preserving the output layer from the original LOOT. 

5. Results and discussion 

 To train the LOOT model we generate 166K train and 62K test events of 4 GeV C+C 

interactions specific the BM@N experiment using LAQGSM generator. All tracks in these events 

have the number of hits equals to the number of stations (6 hits). We train the model for 50 epochs 

using SGD with momentum. We set the learning rate to 0.1 and momentum to 0.9. We set the batch 

size to 32. Also, we applied a cyclic learning rate update [12]. We measure several metrics: recall – 

expresses the ability to find all true tracks in a dataset, precision – expresses the proportion of data, our 

model says was true, actually were true tracks, shifts mean squared error and processing speed. We 

measure processing speed on a single Nvidia Tesla V100 GPU without float16 optimization and tensor 

cores utilization, so the processing speed may be optimized further.  

Results from the tab. 1 look quite promising, although we found that LOOT suffers from the 

high error on the OY axis, which can lead to loss of tracks, as it shown in fig.1. It occurred because of 

using mean-squared error as shift loss. X shifts orders of magnitude greater than Y shifts, so the model 

learns to reduce OX error while preserving the OY error constant. To avoid this problem a special 

weighting of the shift loss is required. 

 
Figure 1. Illustrates LOOT problems in the reconstruction of OY shifts. Top row – OX 

projection, bottom – OY projection. Left column – reconstruction, right column – true event  
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Table 1. Result of the LOOT evaluation  

Precision 0.9719 

Recall 0.9690 

Shifts MSE 0.0152 

Processing speed (event/sec), batch size – 16  150 

 

We have introduced the radically new approach to the problem of tracking and have presented 

the LOOT, which is fully end-to-end trainable; consumes the whole event at a time; doesn’t depend on 

the number of fakes and tracks; memory cheaper than the other approaches; greatly drops out fake 

hits. 

Now we are going to reduce the OY error by utilizing weighted shifts loss; improve the model 

to work on tracks with different lengths; try to predict track momentum instead of shifts; vertex 

prediction; expand the model’s powers to solve tracking in a collider environment. 
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