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GENIE is one of the most popular MC neutrino event generators, widely used in many modern neutrino 

experiments (e.g. NOvA, MINERvA, MicroBooNE, KM3NeT, IceCube). The tasks related to the 

development and optimization of the generator itself require creating a large number of events in the 

shortest possible time in order to reduce the overall development time. The usage of large-scale 

distributed computing infrastructures, such as Grid, does not guarantee the minimal execution time due 

to possibly long queue times. At the same time, the power of a modern PC is not capable of performing 

such computations in a reasonable amount of time. In this work we give an example of a hybrid 

approach: accelerating computations by using a personal computing device in conjunction with a 

general-purpose batch system based on HTCondor. 
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1. Introduction 

Modern research in neutrino physics requires a large amount of computing power to carry out 

data analysis in a reasonable time. Traditionally research computing centers provide the majority of 

computing capacities through batch systems (e.g. HTCondor [1]), which form a queue of user jobs and 

handle their distribution across multiple computing nodes. Of course, not any computing job can be 

easily distributed and processed on a batch system; one of the tasks that can be distributed is to generate 

a large number of neutrino events using the GENIE generator [2]. 

GENIE (Neutrino Event Generator & Global Analysis of Scattering Data), as one of the main 

components, is used in the detector simulation software chain of the FNAL accelerator of the neutrino 

oscillation experiment NOvA (NuMI Off-axis νe Appearance) [3].  To date there is no official 

publication of results for (anti)neutrino interaction cross sections in the near detector (ND), though 

preliminary data are available [4]. The GENIE package is also actively used in another NOvA-related 

Fermilab experiment MINERvA (Main Injector Experiment for ν-A) [5] using the same beam NuMI at 

FNAL, but operating at different energies (MINERvA is on-axis, while NOvA is the off-axis 

experiment).  A careful comparison of GENIE simulation with MINERvA measurements is necessary 

to test the models of interaction for (anti) neutrinos with nuclei used in NOvA. Figure 1 shows an 

example of such a comparison of MINERνA experimental data [6] with GENIE simulation based on the 

phenomenological model SuSAM* (a super-scaling model operating with the so-called nucleon 

effective mass, which accounts for non-trivial nuclear effects in lepton-nucleus interactions) [7]. The 

number of events generated for the high statistics histogram is 5 times greater than the corresponding 

number for low statistics: the difference between the histograms is barely noticeable, while the 

corresponding χ2 values (calculated with the full covariance matrix) differ significantly. 

 

 

 

 

Figure 1. Comparison of experimental data with GENIE predictions. The points with bars show 

 MINERνA data (a double differential cross section for the muon antineutrino scattering on 

hydrocarbon vs linear bins) with full (statistical and systematical) errors. The histograms show 

predictions of the SuSAM* model [7] incorporated into the GENIE MC generator. Simulations 

 with GENIE were performed with low and high statistics

136 



Proceedings of the 27th International Symposium Nuclear Electronics and Computing (NEC’2019) 
Budva, Becici, Montenegro, September 30 – October 4, 2019  

Figure 2 illustrates the reason for the observed difference. It uses a different representation of 

the same data but as ratios of Monte Carlo simulation (after the best-fit re-normalization allowed due to 

the uncertainty in the NuMI antineutrino flux) to MINERvA data; the experimental error band is shown 

on the background. The dips on the low statistics histogram are due to the fact that the cross section 

values in the corresponding bins are very small in comparison with the ones in other bins (see Fig.1), but 

the weight of contributions from these bins into the χ2 sum is rather large: if the number of generated 

events is not sufficiently large, there is almost no chance for an event to get into the dips, while the 

experimental data contain such events. That is why χ2 for the low statistics histogram is so large. 

 Figure 2. Re-normalized high and low statistics histograms 

It takes about 576 CPU hours to generate the high statistics histogram and 115 CPU hours for 

the low statistics one correspondingly. To compare a theoretical prediction with only one experiment, 

one needs to generate dozens of such histograms, which will take about 10 days to produce results on a 

workstation with 24 CPU cores and that is unreasonably long. Using a dedicated batch cluster with 576 

CPU cores can reduce this time to just 10 hours, but since research clusters are normally multi-user with 

a fair-share usage of resources, the overall waiting time may still be significant when the cluster is busy. 

In this paper, we show an example of the combined workflow: accelerating a personal computing 

resource using a general-purpose batch cluster. 

2. Combining a batch system with a PC 

As shown in the introductory part, batch clusters can significantly speed up computations even 

if a user has a powerful personal computer, but this is not guaranteed. The major factor is the availability 

of nodes on the cluster: the resources of the cluster are normally co-shared by many users and their jobs 

may stay in a job queue for days waiting for an execution. By connecting a user personal computer to the 

batch cluster as a worker node we achieve the following goals: 

• The personal computer is still dedicated to the user, thus guaranteeing the maximum execution 

time limited by the personal computer power. 

• The execution time can be speeded up depending on the availability of computing nodes of the 

batch system.  

137 



Proceedings of the 27th International Symposium Nuclear Electronics and Computing (NEC’2019) 
Budva, Becici, Montenegro, September 30 – October 4, 2019  

• The user gets a unified job execution system: the entire workload gets started via a submission 

mechanism of the batch system, so there is no need to start it differently on the personal 

computer. 

The major drawback of this approach is a much more complicated software distribution. 

2.1 Testing environment 

The suggested approach was tested in the following environment: 

• HTCondor batch system with a total of 418 CPU cores. 

• The memory in the cluster ranges from 2 GB to 5 GB per CPU core. 

• All general-purpose nodes run Scientific Linux 6.10. 

• One personal computer with 24 CPU cores and 48 GB RAM running Debian 8. 

The HTCondor system allows one to connect new worker nodes without restarting any services 

(daemons), so it is possible to dynamically add or remove computing nodes, and it does not affect the 

functioning of the rest of the cluster. It also has a daemon-to-daemon authentication system making it 

possible to restrict access to specific nodes in order to join the cluster. In our test setup we used the 

shared x509 certificate for the daemon-to-daemon authentication, but it is possible to use per-node 

certificates for better control over the system. 

2.2 Software distribution 

As was mentioned above, the main issue to consider in such an environment is how to organize 

the storage system. In our particular use case we were able to distinguish two types of software: 

• Software that does not change much and does not need to be frequently delivered to worker 

nodes 

• Software that changes frequently 

The standard approach for delivering software coming from the field of High Energy Physics 

(HEP) is the use of CVMFS [8]. Unfortunately, the deployment of the CVMFS service at JINR is not 

well suited for storing software and data that change a lot and need to be delivered to worker nodes: it 

takes at least 1 hour to synchronize changes between the CVMFS servers. However, it works well for the 

software that does not change much. 

For frequently changing software and data, we used the NFS share: it provides access to the 

latest changes, but introduces a much higher network load, as it is a classic network-attached storage. 

In our case the cluster operating system (OS) is different from the user node OS, so it is also 

necessary to build all the software for all the operating systems available on the cluster.  

2.3 Resulting system and future modifications 

As a result, we came up with the system shown in Figure 3. 

 

 Figure 3. Scheme of the final system

The  presented  scheme  works  quite  well  for  our  users,  but  we  consider  some  future 

improvements: 
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1. The Laboratory of Information Technologies at JINR plans to make a common file system for 

generic use, which is based on EOS [9]. We plan to test it as a possible alternative to the NFS 

share in the current solution. 

2. CVMFS can probably be configured to increase the speed of publishing software. This will 

allow us to transfer some of the software and data from NFS. 

3. Establish a CA to issue certificates on a per-node basis. 

4. HTCondor has a Docker universe that allows one to run jobs in docker containers – setting it up 

will eliminate the need to build software for different operating systems, as nodes will simply 

run user-defined containers. 

3. Distributed compilation 

Modern scientific software is complex, and building it can also be a resource-intensive 

operation, e.g., building a ROOT framework [10] on a machine with 4 CPU cores takes about 45 

minutes on average. Speeding up software builds through distributing the compilation process can also 

improve the user experience. 

Not all software builds can be efficiently parallelized, and a user needs to decide whether it is 

worth it. In some cases, it is easy to decide by simply looking at the contents of the “Makefile”, but in 

some other more complicated cases, it may require to profile the builds. 

Figure 4 shows the build time of GENIE on one machine with a different number of CPUs: it is 

obvious that it does not parallelize well, and running it on a distributed system can make it even worse 

due to the network and distribution management overhead. 

 

 Figure 4. Parallel compilation of GENIE on one machine. The j-parameter is the number of 

 parallel processes 

 On  the  contrary,  Figure 5  shows  an  example  of  software  compilation  that scales  well.  The 

ROOT  framework  in  this  example  is  the  base  for many  other  scientific  software  packages, and 

compiling it can be efficiently distributed.
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 Figure 5. Distributed compilation of the ROOT framework. The j-parameter is the number of 

 parallel processes 

 There  are  several compilers  that  allow  distributed  compilation,  in  our  experiments  we  used 

DistCC [11], an open-source distributed compiler. We tried to use it with HTCondor directly, without 

any other auxiliary system; a possible workflow consists of several stages:

 1. Check  the  number  of  available HTCondor  nodes  and  the  number  of  slots/cores  available  on 

 each node to make a list. 

 2. Submit DistCC jobs multiple times to fit different slot sizes — there should be only one DistCC 

 daemon on each running node. 

 3. Wait for some “reasonable” time for the DistCC daemons to start. 

 4. Make a list of IP-addresses/the number of slots and put it into the environment of the DistCC 

 client to tell it how many processes each daemon is able to run. 

 5. Start the build as usual. 

 6. When the build is complete, remove all DistCC jobs from HTCondor to stop wasting resources. 

 Using DistCC  and  HTCondor, it  is  possible  to  distribute  the  compilation  stage  of  the  build 

process,  while  pre-processing  and  linking  should  be  handled  by  the  same dedicated  machine,  in  our 

case, a PC of the submitting user. 

 This workflow can be seen as a proof of concept, but without any automated auxiliary system, 

the workflow is very complicated for the  average user, as it requires  a deeper understanding of how 

DistCC and HTCondor systems work.  

4. Conclusions 

In this paper, we described the idea of using a batch system as a flexible computing resource, 

gave an example of a typical workload and showed that such a system could be built of well-known 

components, such as HTCondor, CVMFS and NFS. We also described how software builds could be 

treated as a distributed workload, i.e. technically possible, but too complicated for ordinary users 

without better integration of a distributed compiler with a batch system. To further develop this idea, it is 

worth noting that using batch systems for distributed software compilation also looks as a promising 

technology to complement Continuous Integration systems.  
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