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Particle tracking is a very important part of modern high energy physics experiments. While the data 

stream from such experiments is increasing day by day, classic tracking methods lack the ability to fit 

these amounts of data. In order to solve this problem, new effective machine learning algorithms are 

actively developed in the HEP.TrkX project for Large Hadron Collider detector and for the GEM 

detector of the BM@N experiment. This work is a logical continuation of the research presented on 

the XXIII International Scientific Conference of Young Scientists and Specialists (AYSS-2019), 

where we have already introduced a new application for tracking with the Graph Neural Network 

based on the Minimum Branching Tree preprocessing. However, that approach has had some 

problems, including the overall inaccuracy with the segments purification of the preprocessed event 

graph. In this work, we overcome many of such problems and introduce a revised approach with 

improved tracking accuracy. Promising results of the improved GNN tracking are given. 
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1. Introduction 

Modern high energy and nuclear physics (HENP) requires precise and effective reconstruction 

of events occurring during its experiments. One of the most important parts of event reconstruction is 

tracking of the particle trajectories (tracks). This process called particle tracking or just tracking, and it 

demands swiftest and most accurate algorithms to operate on, as in the modern experiments beams of 

heavy ions are collided on the very high speeds, and particle collisions produce enormous amounts of 

traces of the secondary particles in the sensitive elements of tracking detectors. These traces are to be 

converted then into so-called ‘hits’, which is usually points in some coordinate space, and one of the 

main parts of the event reconstruction process is to search for groups of those hits each connected by 

affiliation to the same track. 

As we are working on the BM@N experiment of the NICA megaproject [1], we obtain hits 

information from the microstrip gaseous chamber GEM detector which has the one main drawback: 

with any N actual particles hits, we also get 𝑁2 −𝑁 spurious hits. Although this problem has 

successful classical solutions, as the Kalman filter method [2], it meets difficulties at achieving 

satisfying speed on the events with the heavy ions in the recent BM@N experiments due to its 

sequential nature and problems with parallelization. 

At the same time, machine learning approaches have the capability of modeling such complex 

environments and can be effectively run in parallel. There are some existing machine learning 

approaches for tracking [8], but a majority of them are sequential, they operate over the chain of hits 

and do not process the whole event at a time and can miss important informational patterns. One of the 

possible options to represent an event is to consider it as a graph. This approach is not completely new, 

there is a successful approach based on the Hopfield Network [3], but it will not be able to handle 

properly current amounts of data. 

Recently the idea of graph representation in machine learning found great success with the 

Geometric Deep Learning methods known as Graph Neural Networks (GNN) [4], and the recent 

HEP.TrkX approach [5] based on GNN showed the huge potential for the data from the LHC pixel-

based detector. We were inspired of this approach, so in our previous study, we tried to adopt the same 

approach for the data from the GEM detector of the BM@N experiment [6]. However, our approach 

was not able to achieve similar success compared to the LHC one. In this work, we propose some 

improvements which lead us to more precise and robust results. 

2. Previous study 

The key idea of our approach is an event-as-a-graph representation when registered hits are 

nodes of the graph and edges of the graph fully connect the nodes between the adjacent layers of the 

detector. One can see the full graph of a particular event simulated for the GEM BM@N in figure 1. 

GNN consumes the nodes’ features, namely, 3-D coordinates (X, Y, Z) of the hit and their 

connectedness of each other and the adjacency matrix of nodes (hits). The forward pass of the model 

consists of iterating data through the 2 subnetworks, so-called ‘Edge’ and ‘Node’ networks. The Edge 

network selects nodes’ features and the Node network aggregates neighbor node features. The full 

details and explanation of the model one can find at [5]. 

During the integration of this approach for the GEM data we recognized the biggest pitfall of 

the initial approach – while it works on the data without the fake hits perfectly, it is highly afflicted by 

the great fake count, which is a common problem of the microstrip-based detectors like GEM. This 

approach cannot handle huge noise rate and for that purpose, we had to introduce a special filtering 

process containing two main steps: 

● Truncating the segments based on their statistical behavior (i.e. cutting all segments which 

angle exceeds some constant). This step brings substantial influence on the overall noise rate, 

reducing the noise factor by half. 

● Utilizing the Minimum Branching Tree. It brings a huge impact on the overall fake segment 

rate. We discovered that MBT-based filtering reduces the fake-to-real ratio from 1:120 to 1:10 

(for one true segment we observe 10 fake segments). But this algorithm has one big 

disadvantage – it discards about 18% of true segments.  
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Figure 1. Event-as-a-graph representation of a 4 GeV C+C BM@N experiment event. Orange 

edges, also called ‘segments’, are parts of true tracks, black edges represent fake segments. Green 

nodes are true hits, black nodes are fakes produced by the GEM detector  

After applying the filtering described above, GNN showed promising results achieving 77% 

recall and 96% precision on the preprocessed data. This result has inspired us towards the continuation 

of our studies, so we needed to improve the filtering process and increase the overall network 

accuracy. 

3. New event representation 

3.1 New network feature idea 

The common straightforward method for improving neural network model accuracy is to feed 

the network with more features. As it was mentioned above, the GNN model uses a hits 3-D 

coordinate position as a feature. Looking at the physical interpretation of particle track one can notice 

that track in the GEM detector is usually a smooth curve that has a concavity, which is not varying 

much, being approximately constant. In other words, the track curve has about the same value for its 

first-order derivative (and always the same sign). The information of the curve monotonicity and 

concavity can be obtained as the gradient of particle track function and its Laplacian, correspondingly. 

We would like to use such characteristics as features and feed it to the network. But the network 

consumes only the hits positional information as nodes features. The information about the segment 

direction (‘monotonicity’) can be obtained only if we use it as an edge feature (because segment 

direction depends on the two nodes positions, which cannot be encoded into a single node). 

Unfortunately, current GNN architecture utilizes the graph adjacency matrix as a binary mask for the 

network message passing mechanism so it is considerably hard to encode such information to the 

current event-as-a-graph representation. Therefore, we found a new type of graph representation that is 

more in line with our intentions. 

3.2 Line graph 

Line graph [7] of a graph 𝐺 is another graph 𝐿(𝐺) that represents the adjacencies between 

edges of G. Given a graph 𝐺, its line graph 𝐿(𝐺) is a graph such that: 

● each node of 𝐿(𝐺) represents an edge of 𝐺; and  

● two nodes of 𝐿(𝐺) are adjacent if and only if their corresponding edges share a common 

endpoint in 𝐺. 

Roughly speaking, the line graph inverts the nodes and edges of the original graph. We also can use 

the directed version of line graph, called ‘line digraph’. If 𝐺 is a directed graph, its directed line graph 

or line digraph has one vertex for each edge of 𝐺. Two vertices representing directed edges from 𝑎 to 

𝑏 and from 𝑐 to 𝑑 in 𝐺 are connected by an edge from 𝑎𝑏 to 𝑐𝑑 in the line digraph when 𝑏 = 𝑐. That 

is, each edge in the line digraph 𝐿(𝐺) represents a length-two directed path in G. The biggest 
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advantage of such transformation is the fact that edge features from the initial graph turn into node 

features of the line graph which becomes really convenient to use within the GNN model.  

3.3 Applying line digraph approach 

Consider the initial event-as-a-graph conception we are transforming the initial graph 𝐺 to the 

line digraph 𝐿(𝐺). As an initial graph fully-connects adjacent layers nodes we can apply the same 

approach described above: each (graph) path of two consecutive segments will be the edge of 𝐿(𝐺); 
each segment will be the node of the new line digraph 𝐿(𝐺). In this situation, each node of 𝐿(𝐺) 
gathers two 3-D coordinate positions from the two initial event hits. One can see the resulting line 

digraph representing the same event as in figure 1 is depicted in figure 2 where almost all tracks 

become more straighten in such representation because they are in fact first-order derivatives of initial 

tracks.  

   

Figure 2. Line graph representation of the same event shown in figure 1. Two pictures show 

both 𝑋𝑜𝑍 and 𝑌𝑜𝑍 planes. Nodes of this graph (being the segments of the initial graph) here are being 

positioned by their 𝑑𝑋 = 𝑥𝑖 − 𝑥𝑖−1 coordinate, where 𝑥𝑖 is a segment’s end 𝑋 coordinate and 𝑥𝑖−1 is a 

segment’s start 𝑋 coordinate (same for the 𝑌𝑜𝑍 plane) 

Despite the fact that this representation brought new features (𝑑𝑋 and 𝑑𝑌 values) to the 

network model, it still suffers from a big amount of fake segments. But now filtering fake segments is 

a much simpler procedure: the segment of a line digraph now, in fact, represents hits from three 

consecutive layers, so we can compute the second-order derivative of a curve which passes through 

these hits. So, the current filtering process is the following: 

● construct line digraph; 

● compute edges weight; edge weight computed as 𝑤 = (𝑑2𝑋, 𝑑2𝑌), where 𝑑2𝑋 is computed as 

𝑑2𝑋 = 𝑑𝑋1 − 𝑑𝑋0 = (𝑥2 − 𝑥1) − (𝑥1 − 𝑥0) = 𝑥2 − 2 ∗ 𝑥1 − 𝑥0. 𝑥2, 𝑥1, and 𝑥0 are three 

consecutive hits’ 𝑋 coordinates of a track curve. 

● filter out all segments with weight value more than a constant. 

This filtering process achieves 100% purity (purity is the count of true segments left after 

filtering divided by the count of initial true segments) and reduces overall fake segment rate up to 10 

times (fake segment rate is the count of fake segments divided by the count of true segments). It is 

worth to note that constructing line digraph, finding and filtering segments can be computed with up to 

𝑂(𝑁) operations with usage up to 𝑂(𝑁2) memory, where 𝑁 is a number of segments in the graph. We 

also vectorized this algorithm and achieved the resulting speed about ~7 events/sec; which is, in fact, 

satisfying for the current study but an important thing to improve in the future.  

3.4 Graph Neural Network training and results 

We used the same network architecture and structure described in [6] except feeding it with 

segments produced by the filtered line digraph. During the network training, we observed that optimal 
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feature configuration is a vector of the following five line digraph node features: 

(𝑑𝑋0, 𝑑𝑋1, 𝑑𝑌0, 𝑑𝑌1, 𝑍). With this configuration, our model achieves 85% precision and 96% recall on 

the validation dataset containing 4k events.  

Moreover, we also have measured more strict metrics introduced in [8]: it achieves 94% hit 

and 87% track accuracy (hit accuracy is a percentage of true hits found by network out of all true hits 

in a single event; track accuracy is a percentage of full tracks without gaps found by network out of all 

tracks in a single event). Although overall results are totally satisfying, we discovered the main 

shortcoming of the line digraph approach – our algorithm runs out of memory when handling events 

with a huge number of hits (more than 3000 hits in a single event). On the other side, the total 

percentage of such events in the whole dataset is about 1-2% out of all events. We will investigate and 

resolve memory issues in future studies. 

4. Conclusion 

In this paper, we have introduced a novel approach for the effective graph representation of 

the event in GEM detector – line digraph. It facilitated both filtering and feature extraction processes. 

GNN being trained on line digraph achieves significant results even with the strict metrics reaching 94 

% hit accuracy and 87% track accuracy and handles tracks of any length. The main drawback of the 

line digraphs is high memory consumption (because it is quadratic from the total hit count in the 

event). Now we are going to speedup the filtering process; embed line graph architecture into the 

network model itself; overcome memory issues; expand the approach to solve tracking in a collider 

environment. 
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