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The reconstruction and identification of tau leptons decaying into hadrons are crucial for analyses with 

tau  leptons  in  the  final  state.  To  discriminate  hadronic  𝜏 decays from  the  three main  backgrounds 

(quark or gluon induced jets, electrons, and muons), with a low rate of misidentification and with high 

efficiency on the signal at the same time, the information of multiple CMS sub-detectors is combined. 

The application of deep machine learning techniques allows  to exploit the available information in a 

very efficient way. The introduction of a new multi-class DNN-based discriminator at CMS provides a 

considerable  improvement  of  the  tau  identification  performance  with  respect  to  the  previously  used 

BDT and cut-based discriminators. 
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1. Introduction 

The tau is the heaviest Standard Model (SM) lepton with a mass of 1776.86 ± 0.12 MeV [1]. 

It decays into hadrons + neutrino in about 64.8% of all cases. Taus play an important role for Higgs 

physics, where the scalar couplings to fermions are proportional to the mass of the fermions. Other 

physics analyses, such as measurements of the properties of SM particles or searches for new BSM 

particles (W', Z', leptoquarks, …), also involve tau leptons. A good performance in reconstruction and 

identification of the hadronic tau decays (𝜏ℎ) is a crucial ingredient for achieving optimal results in 

such analyses. For proton-proton collisions at the Large Hadron Collider (LHC), the main 

backgrounds that can be misidentified as 𝜏ℎ are quark or gluon induced jets, electrons and muons that 

can be produced by Drell-Yan, leptonic W decays, and other SM processes. In this article, we 

introduce a new machine learning (ML) based algorithm, DeepTau, to identify 𝜏ℎ decays in the CMS 

experiment [2]. 

2. Tau reconstruction and identification in CMS 

The distinct feature of the CMS detector [2] is a superconducting solenoid of 6 m internal 

diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal 

electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter are located within 

the solenoid volume. Muons are detected in gas-ionization detectors embedded in the steel flux-return 

yoke outside the solenoid. 

Individual particles (electrons, muons, photons, and neutral and charged hadrons) in the event 

are reconstructed by the particle-flow (PF) algorithm [3], which combines the information from all 

CMS subdetectors. Jets are reconstructed based on an anti-kT algorithm [4, 5], clustering neutral and 

charged PF candidates with a distance parameter of 0.4. Hadronically decaying taus are reconstructed 

with the hadron-plus-strip (HPS) algorithm [6, 7], seeded by anti-kT jets. This algorithm uses 

information from PF candidates belonging to the jet and reconstructs 𝜏ℎ candidates based on the 

number of charged hadrons and the number of ECAL strips in the 𝜂 − 𝜑 plane. Tau candidates are 

rejected if their absolute charge is other than 1 or if they have charged particles or strips outside the 

signal cone. The signal cone is defined in the 𝜂 − 𝜑 plane by 𝑅𝑠𝑖𝑔 =  3.0 GeV / 𝑝𝑇
𝜏 , and is limited to 

the range 0.05 − 0.10. In [7] four modes to reconstruct 𝜏ℎ decays are defined: 1 charged prong + 0, 1, 

2 𝜋0 and three charged prongs + 0 𝜋0 with tight matching conditions. Recently more inclusive decay 

mode definitions (further referred to as the “updated decay modes”) have been introduced, adding 

three charged prongs + 0 or 1 𝜋0 with relaxed matching conditions to the previously available 

reconstruction modes.  

Before the introduction of DeepTau, to discriminate 𝜏ℎ decays against each type of 

background three dedicated algorithms were used within CMS [7]. The rate of quark or gluon induced 

jets that were reconstructed as tau candidates (𝜏𝑗) was reduced by a multivariate (MVA) discriminator 

based on boosted decision trees (BDT) trained on 22 high-level input variables like the sums of energy 

depositions in the tau isolation cone (𝑅𝑖𝑠𝑜 = 0.5) and the tau lifetime. An ensemble of 8 BDT 

discriminators, each trained on 𝒪(30) variables that characterize ECAL clusters and track quality, was 

used to reject electrons reconstructed as tau candidates (𝜏𝑒). A cut-based selection, using summary 

information about hits in muon chambers and energy deposited in the calorimeters, was applied to 

discriminate true taus against muons reconstructed as tau candidates (𝜏𝜇). 
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3. DeepTau: a new ML-based tau identification algorithm 

To further improve the identification of 𝜏ℎ decays, low-level information from multiple CMS 

sub-detectors is combined. The application of ML techniques has been proven to provide superior 

results for such multi-dimensional problems. DeepTau is a new multiclass tau identification algorithm 

based on a convolutional deep neural network (DNN) that combines information from the high-level 

variables attributed to the reconstructed hadronic tau candidate with low-level information from the 

inner tracker, calorimeters and muon sub-detectors using particle candidates reconstructed within the 

𝜏ℎ signal and isolation cones. DeepTau also takes advantage from using the updated decay mode 

definitions. 

The training is performed on a balanced mix of 𝒪(1.4 ∙ 108) 𝜏𝑒, 𝜏𝜇, 𝜏ℎ and 𝜏𝑗 candidates 

coming from Drell-Yan, 𝑡𝑡̅, W+jets and Z' Monte Carlo (MC) simulation. Training, validation and 

testing sets are composed of reconstructed tau candidates with a minimal preselection: 𝑝𝑇 ∈

[20,  1000] GeV, |𝜂| < 2.3, and |𝑑𝑧| < 0.2 (the longitudinal impact parameter of the tau with respect 

to the primary vertex), which makes it suitable for a wide range of CMS analyses with hadronic taus in 

the final state. The ground truth is based on MC truth matching. 

The inputs are separated into sets of high-level and low-level features. As high-level inputs, 

the algorithm takes 42 variables that are used during tau reconstruction or proven to provide 

discriminating power by previous tau discriminators, and one global event variable – the average 

energy deposition density (𝜌). For each candidate reconstructed within the tau signal or isolation 

cones, information of 4-momentum, track quality, relation with the primary vertex, calorimeter 

clusters, and muon stations is used, if available. The tau signal and isolation cones define two regions 

of interest in vicinity of the tau candidate. Based on the angular distance between the reconstructed tau 

4-momentum, all available candidates are split into two 𝜂 × 𝜑 grids of 11 × 11 (21 × 21) cells with a 

cell size of 0.02 × 0.02 (0.05 × 0.05) for the signal (isolation) cone. In cases where there is more than 

one object of the given type that belong to the same cell, only the object with the highest 𝑝𝑇 is 

considered as input. Within each cell, the input variables are split into 3 blocks: e-gamma, muon, 

hadrons. One input cell is represented by 188 inputs: 34 variables in the hadrons block, 60 variables in 

the muon block, and 82 variables in the e-gamma block, plus four high-level features, which are added 

for each block. 

As a result, the total number of inputs is 105 699: 43 high-level features and 105 656 from the 

two grids. The high dimensionality of the inputs is compensated by a low occupancy: the average 

number of non-empty cells in the training set is around 1.7% (7.1%) for the signal (isolation) grid. 

The organization of the low-level inputs into two 2D grids allows to first process the local 

patterns originating from the tau or jet structure, and then iteratively to combine the obtained 

information covering bigger 𝜂 × 𝜑 regions up to the point where the whole tau signal or isolation 

cones are covered. This approach is inspired by similar techniques that are widely used in the modern 

ML-based image recognition with convolutional DNNs. Considering the high dimensionality of the 

input space (188 inputs per cell), a pre-processing step with several fully connected dense layers 

allows us to reduce the dimensionality before processing the signal (isolation) grid with 5 (10) 

convolutional layers with 3 × 3 windows each, on each step extracting 64 features from nine alongside 

cells until the entire grid is convoluted into an array of 64 features. Also, the information from the 

high-level features is pre-processed by three fully connected dense layers. It is then combined with the 

convoluted representations of the signal and isolation cones and passed through 5 dense layers. The 

four outputs, 𝑝𝑖, of the network represent estimates of the probabilities of the reconstructed tau 

candidate to be 𝜏𝑒, 𝜏𝜇, 𝜏𝑗, or a genuine 𝜏ℎ. The overall number of trainable parameters is 1 555 352. 

In order to ensure the best performance for a wide tau identification efficiency range, we 

define a custom loss function based on the focal loss [8] for the training. The loss function is 
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minimized using the Adam algorithm with the Nesterov momentum [9]. The DNN structure is 

implemented using the Tensorflow package [10] and the training is run for 10 epochs. The best 

performance on the validation set is achieved after 7 epochs and the corresponding DNN is chosen as 

the final discriminator. The discriminator score against each background source is chosen to be of the 

form 𝐷𝜏
𝛼 = 𝑝𝜏 (𝑝𝜏 + 𝑝𝛼)⁄ , where 𝛼 ∈ {𝑒, 𝜇, 𝑗}. 

4. Results 

The performance of the algorithm is evaluated using MC simulation and, applying the 

following preselection on the reconstructed tau candidates: 𝑝𝑇 ∈ (20,  1000) GeV, |𝜂| < 2.3, 

|𝑑𝑧| < 0.2 cm. The tau ID efficiency is estimated from 𝐻 → 𝜏𝜏 MC using reconstructed tau candidates 

that match hadronically decaying taus at the generator level (the simulation step just before modelling 

of interactions of the particles with the detector). The results in Figure 1 show the DeepTau 

performance in form of the receiver operating characteristic (ROC) curve on 2017 MC. The jet 

misidentification probability is estimated from 𝑡𝑡̅ MC using reconstructed tau candidates that match 

quarks or gluons at the generator level and do not overlap with generated prompt electrons, muons or 

products of hadronic tau decays. The probability for an electron (muon) to be misidentification as 𝜏ℎ is 

estimated from Drell-Yan MC using reconstructed tau candidates that match to electrons (muons) at 

the generator level. DeepTau shows consistent improvement at both low and high 𝑝𝑇 ranges for all 

sources of backgrounds. 

 Figure 1. Performance of tau discrimination against quark and gluon induced jets (left), electrons 

 (middle), and muons (right) for DeepTau and the previously available discriminators from [7].     

Working points of the discriminators are indicated by the dots. These plots are split by 𝜏 𝑝𝑇 ranges

 To evaluate the DeepTau performance on data, events with well reconstructed muon and tau 

candidates are selected. The  visible  𝜇𝜏 mass  is  reconstructed as the  sum  of  4-momenta  of  the  muon 
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and visible tau decay products. Figure 2 shows a comparison of the distributions of the visible 𝜇𝜏 mass 

for 2018 data between the selection using the previously available discriminators from [7] and the 

selection using DeepTau. With the DeepTau selection, the yield from genuine 𝜏ℎ increases by 20%, 

while the yield from fakes decreases by 23%. 

Figure 2. Distributions of the visible 𝜇𝜏 mass for 2018 data with the selection using previously 

 available discriminators from [7] (left) and the selection using DeepTau (right)

5. Conclusion 

A new ML-based algorithm to discriminate hadronic tau decays against all main sources of 

backgrounds has been developed. The introduction of DeepTau provides a considerable improvement 

of the tau identification performance. Compared to the previously used discriminators, for the same 

efficiency to reconstruct hadronic tau decays, the jet misidentification probability is reduced by more 

than 50%, and the probability to misidentify an electron (muon) as a 𝜏ℎ is reduced by up to 95% 

(90%). 
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