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Fitness Functions and Transformations in an
Automated Process
NATAŠA SUKUR, DONI PRACNER and ZORAN BUDIMAC, University of Novi Sad

An important aspect of program maintenance is the understanding of the original code. One option is to automate the process

with code transformations as much as possible by using �tness functions to evaluate the improvements made. The process

presented focuses on low-level code and relies on FermaT, a program transformation system based on the WSL language. It

has been used in software evolution applications, mainly for legacy systems and conversions of low-level code into high-level

structures. This paper presents experiments with di�erent �tness functions and compares their in�uence on the end result. The

main focus is on the number of tried and applied transformations.

1. INTRODUCTION

In modern environments software is almost constantly in a state of change, adapting to the new needs.
There is a strong need for tools that can help in various stages of maintenance. One of the problems is
that even just understanding the original logic of the code can be hard. The experience has shown that
understanding a piece of code one has written can often be cumbersome, let alone when the work is of
someone else. Not understanding the original code and its functionalities correctly can lead to creating
new errors in software rather than its improvements.

Software maintenance is a very important part of the software life cycle. It is the longest phase of the
life cycle and it can be used for perfective, adaptive and corrective purpose, depending on the needs.
When maintaining the software, it is very important to keep the quality of the software at the same
level or to improve it. The perseverance in quality preservation is important for providing a long life
for the software at hand. The deadlines are short and the demands for changes are high, especially
compared to the early days of computer science and technology. By introducing new functionalities
and correcting the existing ones, there is a lot of room for creating errors.

Software evolution and reengineering are another important aspect of the software lifetime. It is
almost inevitable that software will have to adapt and evolve from the functionalities, environment
and scale point of view over time. If the software has had many changes or if there is a need for
significant changes, it is often necessary to completely reengineer it. Again, without understanding the
functionalities of the software, reengineering cannot be done properly. Software evolution is repeated
reengineering working towards creating a better system.
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If these perfective processes are done by hand and rely purely on the expertise and experience of the
engineer, as well as his understanding of the problem, there is still a possibility for creating errors. The
ideal scenario would be having a helper tool that would provide automation or at least semi-automation
of software evolution.

This paper presents experiments with an automated source code transformation process. The foun-
dation of this research is based on FermaT program transformation system and mjc2wsl, a tool that
translates MicroJava bytecode to WSL (Wide Spectrum Language). Upon translation, the resulting
WSL code is transformed by FermaT. The transformation process in this research is automated by
another tool, from the translated low-level program to a higher-level and more understandable code.
This approach uses the hill climbing algorithm [Russell and Norvig 2016], a search algorithm which
moves "uphill", which means that it constantly tries to move towards the increasing value until it
reaches a peak. In this case, the peak would be the best program possible, meaning that no further
transformation could lead to a better program. In order to determine which values are better, this
process is guided by a fitness function, a concept which originates from evolutionary computing. The
ideas of evolutionary computing come from the natural process of evolution, where the qualities of an
individual determine its chances of survival. The same could be applied to the solving of the computing
problems: a fitness function should point to the most suitable candidate solutions which seem to have
the best chances for solving the problem at hand. In this case, a "better" program is the one which is
simpler and more understandable. The quality of the candidate solutions usually reflects in the values
of metrics, where the better ones tend to be lower. That is the reason why the built-in WSL metrics
were the obvious first candidates for fitness functions.

In our previous work [Sukur and Pracner 2018], the main question we tried to answer was whether
using a certain metric as a fitness function would lead to the best improvements of the said metric in
the end result. Our assumption was that will not be the case for all metrics. The experiments performed
confirmed our expectations, since the best results for a metric were not always accomplished by the
same metric as a fitness function. Also, there was no single fitness function which would give the best
results by far. The best fitness functions were metrics whose initial values were quite high and whose
values changed frequently.

In this paper, we are trying to analyze another aspect of using different metrics as fitness functions.
The main observations in this paper will be in regard to comparison of the efficiency of the process
when using different fitness functions and the differences in the number of transformation that the
process tries and succeeds to apply. The final, transformed code is often very similar when compared
across all variants of the process. However, there are noticeable differences in the number of tried and
applied transformations.

The rest of the paper is organized as follows: related work is given in Section 2; the automated trans-
formation process and experiment setups are explained in Section 3; the results of the experiments and
their discussion are given in Section 4; finally the conclusions and options for future work are given in
Section 5.

2. FOUNDATIONS AND RELATED WORK

Formal methods are important for the overall software reliability and are often used in various stages
of its life cycle. They can be applied to software artifacts such as specifications, models or source code.
Formal methods are used in different fields of software engineering, such as specification or develop-
ment, but also for the purpose of software reengineering. Software reengineering consists of reverse
engineering, functional restructuring and forward engineering. It relies on numerous formal methods,
such as assertional methods, temporal logic, process algebra and automata throughout forward engi-
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neering and functional restructuring. In reverse engineering, it sometimes relies on formal methods
for activities such as formal specification and verification of existing systems, as well as introduction
of new functionalities. It is, however, still debatable whether formal methods should be used in system
development and to what extent. On one hand, formal methods are very important for the reliability of
the systems and for the quality of the entire development process. In other opinion, they are not 100%
reliable in (re)engineering processes and using them can be very costly. What is obvious is that there
is, beyond any doubt, a strong need for a reliable methodology which would take care of the quality of
processes throughout the entire life cycle [Yang and Ward 2003].

Formal methods are very versatile and there is not a single formal method suitable for all purposes.
There are different quality criteria of formal methods, some of which are supporting automated tools
for development, reliability, concurrency and existence of a proof system. Although many formal meth-
ods have their advantages and disadvantages in regard to these criteria, the conclusion by [Yang and
Ward 2003] is that formal methods should be chosen depending on the nature of the problem at hand.
Depending on the scale and nature of the problem, one should choose a suitable formal method, for
example, Z in the case of large industrial applications [ISOZ 2002]; different process algebras for rea-
soning about concurrency and communication; and net-based formalisms for visual representation.
However, formal methods are not so frequently used in reverse engineering. WSL [Ward 2013] is a
language for reverse engineering of sequential systems, based on formal methods. The main idea of
the entire WSL/FermaT system is strongly based around reverse and forward engineering.

Formal methods can also be suitable for code transformations. A program transformation is an op-
eration which, once applied to a program, produces a program with the same external behavior [Ward
1989]. The idea around code transformation is to achieve cost reduction – for example, improvements
regarding performance, memory usage or even portability. Code transformations are not only useful
for evolution of existing software, but also in the development phases of new software.

FermaT is one such system that offers program transformations. It is based around the WSL lan-
guage, which stands for wide spectrum language, meaning that it contains both abstract mathematical
specifications and low-level programming constructs. WSL contains standard language functionalities,
such as commands and structures. Apart from that, another important aspect of WSL is MetaWSL, a
set of operations that work on WSL programs themselves, as the name suggests. One of the main pur-
poses of MetaWSL is its role in transformations. Program transformations are a part of the system
and their correctness can be automatically checked. Transformations can be used for creating pro-
grams from specifications, performing reverse engineering of programs and getting specifications, as
well as analyzing properties of a program. WSL was shown as very useful in various restructuring
activities [Yang and Ward 2003], including industrial projects, where the aim was to convert legacy
assembly code to human understandable and maintainable C and COBOL [Ward 1999; Ward 2004;
Ward et al. 2004; Ward 2013]. Another tool that was made for assembly translation, with a slightly
different focus is asm2wsl [Pracner and Budimac 2011].

The experiments in this paper use the hill climbing approach and rely on fitness functions for au-
tomated reengineering. There have already been some attempts to answer the question whether hill
climbing is adequate and optimal approach for automatic program repair in [Arcuri and Yao 2008].
However, the conclusions did not show a lot of optimism for this approach, due to hill climbing ten-
dency towards local optimums. Fitness functions have also been used for code improvement. Extensive
research on automated software repair using fitness functions has been done, firstly focusing on C
programs [Forrest et al. 2009] and assembly programs [Schulte et al. 2010], which resulted in appli-
cability to any kind of code in general [Le Goues et al. 2012]. In this paper, we also tried to show that
using different fitness function can lead to change in results and that these functions should be se-
lected based on properties of the problem at hand. The research which focuses on the automated bug
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detection [Fast et al. 2010; de Souza et al. 2018] also speaks in that favor and tries to give directions
for designing these fitness functions in order to get the best results.

Rascal is a domain specific language (DSL) for metaprogramming, which can be used for static
analysis, program transformation and implementation of other DSLs [Klint et al. 2011]. It has been
used, inter alia, on C, Java and PHP [Hills and Klint 2014].

SmaCC (Smalltalk Compiler-Compiler) is a parser generator, successfully used to write custom
refactoring and transformation tools for languages such as Java, C#, and Delphi [Brant and Roberts
2009]. The purpose of these tools varies from small scale refactorings to large scale migration projects.
SmaCC was also ported to Pharo, which made usage of Moose analyzers and other Pharo-based soft-
ware available [Brant et al. 2017; Ducasse et al. 2000].

3. AUTOMATED TRANSFORMATION PROCESS

The automated code transformation is done by a tool [Pracner and Budimac 2017] which uses a hill
climbing algorithm, where the progress relies on the results of a fitness function. Simply explained, the
process tries to apply code transformations as long as it is improving the structure of the input pro-
gram, and the fitness function determines whether the program is improved after a transformation is
applied. The fitness function can be some numeric value which indicates the complexity of the program
(various software metrics). The program which has better fitness is usually the one whose complexity
is less than of the original. The hill climbing script which was used in this research tries to apply one
transformation at a time. However, if there is no improvement, the script attempts to achieve it by
combining two transformations. The process is finished once it has reached the program of the highest
quality possible. The original automated script used the structure metric as fitness. It is a custom WSL
metrics which gives a weighted sum of the structures in the program.

The process records all intermediate steps which have resulted in some improvement in separate
files, which gives more insight into the details. The process is also fully recorded in logs, which means
that the order of transformations that were tried and successfully applied is also available for further
inspection.

Code transformation is done by FermaT. However, since FermaT transforms only code written in
WSL, it is necessary to translate the original source code to WSL by corresponding translation tools.
The reduction of size and complexity of the outputs is not highly important for these tools, since the
transformation part of the process takes care of that. The translation is also done in such a manner
so that the low-level structures and operations retain the same level of abstraction. The translator
tool for MicroJava, a subset of Java programming language [Mössenböck 2018], is mjc2wsl [Pracner
and Budimac 2017]. The tool does not work with the code written in MicroJava, but rather with the
compiled bytecode obtained from the original high-level source code.

In this paper, the hill climbing process with a number of different fitness functions was tested on
a set of MicroJava programs called alpha-mj [Pracner 2019]. This set of code samples was carefully
created with the idea to cover different properties of code and the virtual machine – recursion, in/out
operations, some erroneous situations (division by zero) and similar. Previous experiments have shown
that changing the fitness function can influence the end results of the process. Some common properties
of the fitness functions that led to best code improvements were usually software metrics which had
high starting values and which had tendencies to change their values easily when transformations
were applied. Changing values easily meant that the process could make a lot of progress by trying
and successfully applying many transformations, whereas the process was significantly longer and
less successful when these properties were not present (i.e, McCabe’s cyclomatic complexity) [Sukur
and Pracner 2018].
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Most of the tested fitness functions were basic metrics built-in to WSL [Yang and Ward 2003]. These
include McCabe’s cyclomatic complexity, marked as fit-mccabe; the number of statements (fit-stat); the
size of the abstract syntax tree (fit-size); control flow and data flow – the number of variable accesses
and updates, combined with the number of procedure calls and branches (fit-cfdf ); structure metric –
a custom WSL metric for representing the complexity of program structures, gives different weights to
various types of structures (fit-struct).

As an initial experiment into more complex fitness functions, two combinations of "simple" metrics
were also used. One tries to combine many different aspects of the program in a sequence. It is named
fit-o1 and evaluates the new program as better if it has, in order, less actions, calls, McCabe’s complex-
ity, statements or expressions. The other one, fit-o2, is a simple expansion of the originally used metric.
It first compares the number of calls, and then the structure metric.

Additionally, another fitness function (fit-max) was used to see the maximal number of transforma-
tions tried. Basically it is a function that always returns the same result for any program, therefore the
hill climbing process can never advance and will just go through all of the possible transformations.

We also define several groups of these fitness functions, based on the results that will be discussed
later. The two complex functions, fit-o1 and fit-o2, are in group o-fit; functions fit-size, fit-struct and
fit-stat are in group s-fit; and the union of these two groups is named so-fit.

4. EXPERIMENT RESULTS

The main focus of this paper is the comparison of efficiency of the process with different fitness func-
tions, mainly how many transformations were tried and how many were applied to achieve the end
result. However, the fitness functions can and will lead to different final programs and these need to
be compared quality-wise first to have a useful comparison of efficiency. The analysis here will focus
on the structure metric of the end results, since most of the other metrics have very similar relative
values. It was chosen since it gives a good approximation of the abstraction level of the program. The
improvements of WSL programs from their original low-level version to the final, more abstract version
are expressed as the percentage of improvement, to overcome the differences in program sizes.

It is obvious from the definition of fit-max that it will lead to no improvements in the programs, so
it will not be discussed in this context further. The least improvements in programs is always with fit-
mccabe, usually by a significant margin compared to the other fitness functions. The main reason for
this is that the values of McCabe’s cyclomatic complexity are not easily changed by a transformation,
and therefore there are very few that will lead to forward steps in the hill climbing process. This is
not the case with the other fitness functions tested. The differences between end result metrics for the
other fitness functions were relatively small, as shown in Table I. The so-fit group of fitness functions
have nearly identical metrics, with a difference from the best being often 0, and rarely, on same samples
up to 5 or 6 percentage points. Following them is the fit-cfdf function, which was consistently somewhat
lower in its results, but not by a significant amount, mostly just a few percentage points, sometimes
up to 8.

Table I. Differences of fitness functions from best results for alpha-mj
fit-mccabe fit-cfdf fit-o1 fit-o2 fit-size fit-stat fit-struct

avg 81.75 3 0.5 0.44 0.25 0.56 0.06
stdevp 11.22 1.9 1.46 1.22 0.75 0.93 0.24

min 53 1 0 0 0 0 0
max 90 8 6 5 3 3 1

Differences are expressed in percentage points; less is better
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One of the aspects that is important is the length of the process itself. The number of transformations
tried in the whole process is very good for this purpose since these numbers are hardware independent
and are not influenced by any other processes that might be running on the same machine. Figure 1
shows all of the tested fitness functions with a log scale of the transformations tried. The highest num-
bers are always with fit-max, as they should be, since this is a “fake” fitness function that never leads
to improvements, and was meant to get an idea of how long the process can be. The highest number of
transformations on these samples was more than 3 million, while the average values exceeded half a
million. Next is fit-mccabe, which is always significantly worse than the other “real” fitness functions,
generally almost as bad as fit-max. The rest of the functions have much more intertwined results, with
a lot of variations between samples. Table II shows the ratio of transformations tried compared to fit-
max per fitness function. In this aspect the s-fit group was the best, with overall very similar results
among them. Following them are the two o-fit functions, with similar averages, but higher deviations
and significantly higher maximums. Finally fit-cfdf had a slightly higher average, but low deviation
numbers and a better maximum than the o-fit functions.

In general, functions that have much worse end results are also the ones with significantly more
transformations tried. This also holds for fit-cfdf, having somewhat higher averages than the functions
in the so-fit group. The reason for this behaviour is that a successful transformation will reduce the
size of the program, and in turn reduce the number of places where the following transformations can
be tested. This means that, in a general case, a less successful transformations process naturally leads
to longer search times.

Fig. 1. Number of transformations tried, per fitness function, on alpha-mj

In the comparison of the number of transformations that were applied during the process fit-max
and fit-mccabe will not be included, since one results in no changes, and the other shows very little
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Table II. Ratio of transformations tried compared to fit-max
fit-mccabe fit-cfdf fit-o1 fit-o2 fit-size fit-stat fit-struct

avg 69.86 9.84 7.65 8.10 7.80 7.20 7.22
stdevp 12.17 3.68 6.05 5.19 3.62 4.31 3.08

min 54.36 3.25 2.32 2.73 2.20 2.23 2.25
max 99.45 17.15 28.90 25.00 13.50 15.77 13.27

All numbers are percentage of fit-max

improvements compared to the others. Figure 2 shows the variations of the fitness functions using a
log scale. The lowest number of applied transformations was almost always with fit-cfdf, but this fitness
function also gave slightly worse end results. Functions fit-o1 and fit-o2 mostly had the highest values,
on average over 60% more transformations. On average fit-struct had about 30% more transformations
than the minimum, but would sometimes match the o-fit group. Function fit-size was mostly 10% above
the minimum. Whereas, fit-stat was sometimes the minimum, and on average just 4% above it. The
conclusion is therefore that using the number of statements as a guide will, for most cases, lead to a
process with the lowest number of applied transformations for the same end result.

Fig. 2. Number of transformations applied, per fitness function, on alpha-mj

The percentage of transformations that were applied from all of those that were tested is in most
cases around 1%, but can be as low as 0.05%, or almost 5% in some cases (excluding fit-mccabe, which
was on average 0.0019%). Again the groupings are similar as in previous considerations. Function fit-
cfdf is a bit lower than others (around 0.5%, 1.63 at most), the o-fit group is around 1.5%, with the
highest values being almost 5%, while s-fit are around 1% and maximums of around 3%.
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5. CONCLUSIONS AND FUTURE WORK

FermaT and WSL can be successfully used for code transformation from the low-level to a higher level
of abstraction. In this approach, the entire process is automated by using a hill climbing algorithm
which relies on a fitness function. The fitness function is a means which is used to evaluate the results
of the applied transformation and help deduce whether applying a transformation leads to program
improvement. The process tries to improve the input program as long is it possible, that is, as long
as it can generate better versions of it by applying transformations. In this research, different fitness
functions were used, from the obvious candidates – built-in metrics for WSL, to a few more complex
ones, which consist of different combinations of the simple metrics.

This paper presents an analysis of these alternative fitness functions that can be used in the process
and how they influence the end results, and especially how they change number of transformations
tried and the number of transformations that were applied in the process. They were all run on a set
of MicroJava programs called alpha-mj. A special fitness function, fit-max, which never advances the
process was used to estimate the maximum number of transformations tried.

In terms of metrics, the fitness functions in the so-fit group resulted in very little differences, and
generally gave the same end results. The general conclusion is that functions that have relatively
high numbers which are more prone to change are better as a fitness function (as already analyzed
in [Sukur and Pracner 2018]).

When comparing the number of transformations tried, there is a strong trend that better end results
actually lead to fewer transformations tried. This is an inherent property of the process itself – the
“better” programs are in general shorter, and therefore have less possible places for transformations
to be applied at, which reduces the search space.

The number of applied transformations in the process was almost always lowest with fit-cfdf, but this
function gave slightly worse end results. From the so-fit group, fit-stat had the lowest average number
of transformations applied. This means that it tends to make larger steps forwards with individual
transformations, but it is still inconclusive whether this is inherent to this fitness function, or is it a
combination of the order of transformations tried and the sample set that was used. The number of
applied transformations in proportion to the number of transformations tried was in general around 1%
for all fitness functions (except fit-mccabe, which was much lower).

Overall, these results give more insights into the behaviour of the process, and how it might be
improved, both in terms of end results, but also in terms of its length. It is not likely that there is an
universal best fitness function that will lead to best results on any input program, as this is a case
of the no free lunch theorem [Wolpert and Macready 1997]. However, recommendations can be made
about these specific types of low-level programs, and there are trends to be observed.

There is a lot of room for improvements and additional analyses. The functions in the so-fit group
have on average a very similar number of transformations tried, just like their end results are very
similar. However, there is some per-sample variation that should be inspected in more detail, which
could lead to more insights into the process and how it can be improved.

The knowledge of which fitness function leads to the lowest number of applied transformations for
similar end results could be very interesting for general recommendations on what transformations
should be applied both in manual and in automated scenarios.

There is a need for further experiments with more complex fitness functions. This paper used only
two of these, one with a large number of parameters checked, and another that was a simple expansion
of one of the basic ones. These initial results should be expanded with a larger set of functions created
in a systematic approach. A deeper analysis of individual successful end results should also be used
when combining the metrics into more complex ones.
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The main drawback of the hill climbing algorithm is its tendency towards local optimums, which can
hinder the process. Future versions could try to use one of the classical solutions, in which the process
is started from multiple points and the final results are compared. It could also be replaced altogether
with an algorithm which offers better results.
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