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Abstract

Reinforcement Learning (RL) is a widely employed machine learning architecture
that has been applied to a variety of decision-making problems, from resource
management to robot locomotion, from recommendation systems to systems biology,
and from traffic control to superhuman-level gaming. However, RL has experienced
limited success beyond rigidly controlled or constrained applications, and successful
employment of RL in safety-critical scenarios is yet to be achieved. A principal
reason for this limitation is the lack of formal approaches to specify requirements
as tasks and learning constraints, and to provide guarantees with respect to these
requirements and constraints, during and after learning. This line of work addresses
these issues by proposing a general framework that leverages the success of RL in
learning high-performance controllers, while guaranteeing the satisfaction of given
requirements and guiding the learning process within safe configurations.

1 Introduction
Machine learning is becoming ever more pervasive in providing workable solutions to industrial problems,
and is starting to be leveraged to address tasks ever closer to the presence of humans or concerning data
pertaining humans. Reinforcement Learning (RL), as an effective branch of machine learning, has similarly
seen expanded use and increased success. RL provides a solution to decision-making problems either when
no prior knowledge is available or when analytical solutions are hard to be found [55]. This practical
approach has paved the way for RL to be employed in automatic control, game theory, economics, and
biology inter alia [2, 27,51,64].

Deep RL is arguably one of the recent breakthroughs in RL, whereby human-level game play has been
achieved on a number of Atari games by incorporating the use of deep neural networks into RL [37]. The
success of deep RL has resulted in the extensive use of RL beyond small-scale, classical contexts [19,29,52,58].
In particular, RL has recently been applied to safety-critical problems [3,10,14,16,22,23,30,40], including
autonomous driving [47, 48] and avionics [2, 35]. This however inevitably entails the need for correct-
by-design policy synthesis, in order to guarantee, among other quantitative requirements, the safety of
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policies synthesised via RL. Furthermore, and with a different perspective on the notion, safety has to be
present also “during learning”, namely as the agent explores the environment.

Existing RL methods provide promising exploration guarantees, though they tend to rely either on an
ergodicity assumption or a soft safety assumption. The essence of soft safety is that unsafe states, which
might be absorbing sink states can be visited regardless of its possible catastrophic outcome. For most
physical systems this assumption is not affordable as these systems may break before any meaningful
exploration happens. Alternatively, the ergodicity assumption requires that any state is eventually reached
from any other state when a proper policy is followed. This assumption allows RL to explore by simply
favouring states that have rarely been visited, and are potentially unsafe in practice. Thus, unsurprisingly
in safety-critical scenarios when the aforementioned assumptions do not hold most of the exploration
methods are unrealistic.

Further to the discussed exploration problems, the expression of safety requirements in the RL
literature has mostly relied on reward engineering [15]: it is often inconvenient to map complex goals
to an appropriate reward structure in safety-critical problems [6]. In particular, [21] showed that the
expected discounted reward might need careful tuning when dealing with safety requirements.

In this line of work we address the aforementioned issues in safe RL by leveraging concepts and
techniques from Formal Methods. In particular, we employ Linear Temporal Logic (LTL) [43], as a
formal high-level language in which a complex task can be easily described [9], and later automatically
shape a reward function that is directly fed to an RL algorithm. The notion of safety in this sense
is encompassed in the LTL specification and can be seen as RL generally not violating the property
during and after learning. Thus, the proposed method benefits from reward engineering aspects that
are standard in safe RL, and at the same time infuses notions from formal methods that allows guiding
exploration and certifying learning outcomes in terms of the probability of staying safe. In addition to this
algorithmic reward shaping, standard exploration schemes in RL need to relax the unrealistic assumptions
on ergodicity and soft safety. In this work, we propose an adaptive safe padding mechanism [25] that does
not rely on the aforementioned assumptions while automatically balances the trade-off between efficient
exploration and ensuring safety during learning.

2 Background and Related Work
The interaction between an agent and its (possibly partly known) environment can be described by
Markov Decision Processes (MDPs). MDPs are extensively used for modelling sequential decision making
problems [44]. In this research, MDPs are discrete-time stochastic control processes defined as M = (S,
A, s0, P,AP, L) over a state space S, an action space A; a transition kernel P (·|s, a) ∈ P(S) describes the
dynamics, where P(S) is the set of probability distributions on subsets of S; AP is a finite set of atomic
propositions and a labelling function L : S→ 2AP assigns to each state s ∈ S a set of atomic propositions
L(s) ⊆ 2AP; finally, the MDP is initialised in state s0.

For the sake of generality, we assume that the MDP is initially unknown. Namely, the transition kernel
P and also the labelling map L (known as grounding in RL) are not given to the agent. The agent is only
able to observe its current state s ∈ S, the label of the current state L(s), and the action taken a ∈ A.

A reward function R : S × A → R+ is defined over the state-action space to denote the immediate
bounded reward received by the agent from the environment after performing action a ∈ A in state s ∈ S.

A policy is a rule according to which the agent chooses its action at a given state. More formally, a
policy π is a mapping from the state space S to a distribution in P(A), where P(A) is the set of probability
distributions on subsets of A. A policy π is called stationary if π(·|s) ∈ P(A) does not change over time
and it is called a deterministic policy if π(·|s) is a degenerate distribution, namely if it deterministically
selects a value in A. For any policy π on an MDP M, the expected discounted return in state s is defined
as [55]:

UπM(s) = Eπ[
∞∑
n=0

γn R(sn, an)|s0 = s], (1)

where Eπ[·] denotes the expected value under policy π, γ is the discount factor1, and s0, a0, s1, a1, ... is
1The discount factor γ is a hyper-parameter that in general can be tuned. In particular, there is standard work in RL on
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the sequence of state-action pairs generated by the MDP under policy π. The expected discounted return
is often referred to as the “utility function” and is the optimisation objective in RL. We might drop the
subscript M when clear from the context in the rest of this work. With (1) as the optimisation objective,
an optimal policy π∗ is a policy that maximises the expected return, as

π∗(s) = argsup
π∈$

UπM(s),

where $ is the set of stationary deterministic policies over the state space S. Note that in any MDP M
with a bounded reward function and a finite action space optimal policies are proved to be stationary and
deterministic [8, 44], hence the restriction to set $.

Linear Temporal Logic (LTL) [43] denotes a formal language that can express a wide range of complex,
time-dependent objectives in a succinct and human-interpretable form. In particular, LTL can be used to
express requirements on a given MDP, and there exists a substantial body of research on extraction of
LTL properties from requirements (safety, liveness and eventuality, successive satisfaction) expressed in
natural languages [20, 39,61]. Conversely, the expression of of such complex, possibly memory dependent
objectives by hand crafting of rewards is often cumbersome, if at all possible [6, 28]. As detailed later,
LTL allows to automatically and formally shape reward functions usable in RL with guarantees on the
outcomes.

The problem of control synthesis for LTL in finite-state MDPs has been considered in numerous works
- we summarise a couple of broad options. In [60], a modified Dynamic Programming (DP) is employed, to
maximise the worst-case probability of satisfying the LTL over all transition probabilities – however, [60]
assumes to a-priori know the full MDP. [11] relaxes this assumption and considers an MDP to have
unknown transition probabilities: a Probably Approximately Correct MDP (PAC MDP) is then generated
via an RL-like algorithm, and value iteration is then applied to synthesise the control policy.

Focusing exclusively on the safety fragment of LTL, the concept of shielding is proposed in [3], where
a shield is a reactive machine to ensure agent safety during learning given that an abstraction of the MDP
is given. [12, 13] address safety-critical settings in the context of cyber-physical systems, where the agent
has to select a correct model within a heterogeneous set of models in RL so that the safety constraint is
not violated during and after learning.

By relaxing safety during learning requirement, [7] synthesises policies that maximise the probability
of satisfying given unbounded reachability properties: the policy generation relies on an approximate
DP over a model that is generated via model-based RL. Much in the same direction, [45] employs a
learning-based approach to generate a policy that is able to certifiably satisfy a given LTL property. The
algorithms in [3,7,45] are “model-based” and hinge on learning the transition probabilities of the unknown
MDP, which requires a sufficiently large number of simulations has to be executed to make sure that the
probability approximations are accurate enough.

Compared to the mentioned approaches, we propose the first “model-free” framework for LTL synthesis
[22,26], which means that we are able to synthesise optimal policies (1) without knowing MDP graph and
its transition probabilities (as opposed to DP); and (2) without any pre-processing or construction of a
model of the MDP. In standard RL literature, model-free methods are very successful, since they learn a
“direct” mapping from states and actions to the associated expected reward. Model-free algorithms display
applicability to a broader range of problems, whereas model-based approaches are not as general [18],
even though model-based learning can come with convenient theoretical guarantees [31,54].

In the domain of continuous-state and -action MDPs, to the best of our knowledge, no research has
been done to enable model-free RL to generate policies under LTL properties. The framework proposed is
the first that can handle MDPs with uncountably-infinite state space [24] and uncountably-infinite action
space [63] in this context. Conversely, whenever a model of the MDP is known [1, 53, 56] there is a broad
literature on this issue.
state-dependent discount factors [38,42,59,62], which is shown to preserve convergence and optimality guarantees.
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3 Logically-Constrained Reinforcement Learning (LCRL) [33]
Given an LTL specification, we propose the first framework that allows a model-free RL algorithm to
synthesise a control policy for a finite-state MDP (and for the more general, continuous-state case), such
that the generated traces satisfy the LTL property with maximal probability in finite-state MDP case.
In this framework, the LTL property essentially acts as a high-level monitor for the agent planning,
whereas the low-level synthesis is handled by a native RL scheme. In order to synchronise this high-level
guide with the RL architecture, we convert the LTL property into an automaton, namely a finite-state
machine [5]. In general, the LTL-to-automaton translation can generate non-deterministic models, over
which policy synthesis for MDPs is not semantically meaningful. A standard solution to this issue is to
use the “Safra construction” [46] to determinise the automaton, which as expected can greatly increase its
size [41]. An alternative solution is to directly convert the given LTL formula into a Deterministic Rabin
Automaton (DRA), which by definition rules out non-determinism. Nevertheless, it is known that such a
conversion results, in the worst case, in automata that are doubly exponential in the size of the original
LTL formula [4]. Nevertheless, the LTL-to-DRA conversion is the standard method employed for LTL
synthesis in the RL literature, e.g. [7, 11, 45, 60]. Conversely, in this work we propose to express the given
LTL property as a Limit Deterministic Büchi Automaton (LDBA) [49].

An LDBA is a special case of a finite-state machine called Generalized Büchi Automaton (GBA). A
GBA A = (Q, q0,∆,Σ,F) is a tuple, where Q represents a finite set of states, q0 ∈ Q is the initial state,
∆ : Q × Σ → 2Q is a transition relation, Σ = 2AP is a finite alphabet, and F = {F1, ...,Ff} is the set
of accepting conditions, where Fj ⊂ Q, 1 ≤ j ≤ f . A GBA A = (Q, q0,∆,Σ,F) is an LDBA if Q can be
partitioned into two disjoint sets Q = QN ∪QD such that [49]: (1) ∆(q, α) ⊂ QD and |∆(q, α)| = 1 for every
state q ∈ QD and for every α ∈ Σ; (2) for every Fj ∈ F, Fj ⊂ QD; and (3) there are non-deterministic
ε-transitions2 from QN to QD. See Figure 1a for an example. It can be shown that this construction results
in an exponential-sized automaton for LTL\GU3, whereas it results in nearly the same size as a DRA for
the rest of LTL. Furthermore, a Büchi automaton is semantically easier than a Rabin automaton in terms
of its acceptance conditions, which makes policy synthesis algorithms much simpler to implement [50, 57].
We should conclude emphasising that there exist a few LDBA construction algorithms for LTL, but not
all of resulting LDBAs can be employed for model checking or synthesis over MDPs [32].

Once the LDBA is generated from the given LTL property, we employ it to monitor executions of the
MDP in the learning process. This can be done leveraging a classical product construction, namely a
synchronous product between the MDP and the resulting LDBA (Figure 1c). Technically, given an MDP
M = (S,A, s0, P,AP, L) and an LDBA A = (Q, q0,∆,Σ,F) with Σ = 2AP, the product MDP is defined as
M⊗ A = P = (S⊗,A, s⊗0 , P⊗,AP⊗, L⊗,F⊗), where S⊗ = S× Q, s⊗0 = (s0, q0), AP⊗ = Q, L⊗ : S⊗ → 2Q

such that L⊗(s, q) = q and F⊗ ⊆ S⊗ is the set of accepting states F⊗ = {F⊗1 , ...,F
⊗
f }, where F⊗j = S×Fj .

The transition kernel P⊗(·|s⊗i , a) ∈ P(S⊗) is such that given the current state (si, qi) and action a, the
new state is (sj , qj) is obtained by sj ∼ P (·|si, a) and qj ∈ ∆(qi, L(sj)). In view of the model-free feature
of our approach, such as construction can unfold “on-the-fly”, meaning that the algorithm tracks the state
of an underlying structure without explicitly constructing the entire structure a-priori. As such, let us
underline that, when running LCRL, there is no need to build the above product MDP and to store all
its states and transitions in memory. The product MDP transitions can be executed so that the agent
can track the automaton state by just looking at the trace that has been read so far. The agent only
needs to store the current state of the automaton and observe the label at each step to check whether the
automaton state has changed or not.

At this stage, in order to feed the constructed product MDP to an RL scheme, a reward function
ought to be defined - however, recall we want to avoid ad-hoc reward engineering. On the contrary, we
introduce a general reward function that depends on the accepting conditions of the Büchi automaton
over the state-action pairs of the MDP [23,26]. Such a reward function is adaptive to the current state of
each learning episode. Using this reward, an RL scheme can generate a policy (or policies) returning the
maximum expected reward: in the finite-state case we show that this is the policy that satisfies the given

2An ε-transition allows an automaton to change its state without reading any atomic proposition.
3LTL\GU is a fragment of linear temporal logic with the restriction that no until operator occurs in the scope of an

always operator
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Figure 1: (a) LDBA for the example formula a ∧©(♦�a ∨ ♦�b); (b) instance of an MDP; (c) Product
MDP obtained from the LDBA and the MDP.

LTL property with maximal probability. As mentioned above, we also propose a mechanism to determine
this probability while the agent is learning the MDP: consequently, we can certify the generated policy
with respect to the LTL property at hand.

LCRL thus targets verified learning in its core, namely the learning-based synthesis of policies that
abide by given requirements. Additionally, LCRL can be endowed with the capacity to “learn while being
safe”. More precisely, formulating the desired objective via LDBA in safety-critical problems allows the
agent to predict unsafe outcomes before running into risky states. In particular, we present the concept
of an adaptive safe padding in [25] that forces RL to synthesize optimal control policies while being
safe. Enforcing RL to stay safe during learning might limit the exploration in some safety-critical cases.
However, we show that the proposed architecture is able to automatically handle the trade-off between
efficient progress in exploration and ensuring strict safety [25]. Recall that the expression of safety in
the classical RL literature mostly relies on reward engineering [6, 15], while with the LDBA-synchronised
reward function, we are able to automatically shape the reward function.

4 Case Studies
The performance of the proposed framework has been evaluated via a set of numerical examples and
benchmarks, where we observe an improvement of one order of magnitude in the number of iterations
required for policy synthesis, compared to existing approaches that mostly rely on model-based setups,
e.g. [7, 45]. Much of this faster convergence and scalability is owed to our model-free architecture, and to
the on-the-fly construction underpinning LCRL.

In the domain of finite-state MDPs, the experiments include robot planning in different layouts of
slippery grid worlds with at least |S| = 1600 [22]. Further, we have explored the well-known Atari 2600
game Pacman with state-space cardinality in excess of |S| = 80,000, where conventional methods in RL
have failed to synthesise an optimal and stable policy [26]. LCRL has outperformed DeepQN [37] in the
complex environment of Atari 2600 Montezuma’s Revenge (Figure 2a) with over |S| = 700,000 states [23].
Finally, with safety as an additional hard constraint in the learning process, we have extended LCRL to
synthesise optimal policies while being safe both in the slippery grid world and in Pacman [25].

With focus on uncountably-infinite state-space MDPs, we have tested the LCRL architecture in a
mission planning task for an autonomous Mars-rover [24]. We have shown that, while keeping the sample
complexity significantly lower, LCRL succeeds to generate policies that are more reliable with better
expected reward, i.e. higher probability of satisfying the LTL property, as compared to other methods
such as Voronoi quantizer [34] and fitted-value iteration [17]. [63] makes a step forward and extends MDPs
with continuous states to encompass continuous actions, and incorporates deep learning architectures in
LCRL to solve an actual mission of the NASA Opportunity rover (Figure 2b).
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(a) (b)

Figure 2: (a) The agent successfully unlocks the door in Montezuma’s Revenge first stage, (b) Generated
path by LCRL around the Victoria crater replicating the actual NASA Opportunity rover traverse map.

5 Conclusions and Future Directions
LCRL has shown promising performance in all the benchmarks we have considered, and quite importantly
it is fully compatible with native RL algorithms, as well as with new ones that are at the core of recent
developments in the community, e.g. [36, 37]. Namely, LCRL is a general framework that can accept any
off-the-shelf model-free RL scheme. Hence, we believe that the proposed approach can open up to further
cross-fertilisation in the area.

For future work we are currently looking into a multi-agent setup, in which a set of agents attempts
(in coordinated or adversarial fashion) to satisfy a temporal property (or set thereof). Further, we would
like to extend this approach to partially observable MDPs to limit the knowledge of the agent even more.
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