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Abstract

Logics with belief, desire and intention attitudes (BDI logics) are among the
most widely studied formal languages for modelling rational agents. We consider
the logic Ctl∗bdi that augments the branching-time logic Ctl∗ with the BDI
modalities and adopt the possible-world semantics by Rao and Georgeff. In this
paper, we introduce the model-checking problem of Ctl∗bdi over finite-state models
that are described by tuples of Kripke structures (one for each world) and where
the BDI relations are captured by finite-state relations. We then solve the problem
by giving an exponential time decision algorithm that is obtained by adapting the
standard decision algorithm for Ctl∗.

1 Introduction
The use of rational agents for modeling real world systems has been heavily investigated and is now well
accepted. An architecture that has emerged sees the systems as rational agents having certain mental
attitudes of belief, desire, and intention (bdi agents). The beliefs express what the system knows about the
state of the environment, the desires capture the information about the objectives to be accomplished and
the intentions represent a high-level plan coming with the agent’s commitment to achieve it (intentions
force the agent to pursue certain desires) [6].

bdi agents, and the related specification languages denoted as bdi logics, have received different
formulations (see [12]). Their increasing use in the design and implementation of safety-critical applications
has also motivated several approaches to the verification of such models (see [4, 5, 3]).

Here, we adopt the approach by Rao and Georgeff [14, 15] based on a possible worlds semantics where
each possible world is not an instantaneous state but a transition system: possible worlds share (and
are synchronized over) a branching-time structure whose time points represent the instantaneous states.
Belief, desire and intentions are expressed through accessibility relations that relate the possible worlds at
each time point. These relations can possibly vary over time, which constitutes an important feature for
modeling systems (see [9] and references therein).

In this setting, system properties are expressed by using extensions of Ctl and Ctl∗ [8] with the belief,
desire, and intention modal operators. We denote these logics respectively as Ctlbdi and Ctl∗bdi. For
Ctlbdi, the model checking question, i.e., determining whether a given model satisfies a given specification,
and the satisfiability question, i.e., whether a formula admits a model where it is fulfilled, have been
studied respectively in [15] and in [16]. In particular, in [15] a polynomial time decision algorithm is given
by restricting the worlds of the system models to have only a finite number of time points.
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Although using only a finite number of time points suffices to model some realistic scenarios such as
those obtained from scenarios modeled as decision trees (see [16]), in general this seems to be a serious
restriction when dealing with reactive systems that exhibit non-terminating behaviors. In this paper, we
thus investigate the model-checking question for bdi branching-time logics and study the model-checking
problem for Ctlbdi and Ctl∗bdi over finite-state structures that can exhibit infinitely many time points.
We assume that models are described as tuples of Kripke structures (one for each world) and the bdi
relations are captured by finite-state automata.

Besides the introduction of this new model, as further contributions we give a decision algorithm for
the Ctlbdi and the Ctl∗bdi model-checking problems. The algorithms are based on the construction of a
finite graph obtained as the synchronous cross product of the Kripke structures that define the possible
worlds, and the finite automata that express the bdi-accessibility relations. For Ctlbdi, along the same
line as for the standard Ctl model-checking algorithm [7], our algorithm iteratively labels each node u of
such graph with the sub-formulas of the input formula that hold true at u. The formulas are processed
starting from the atomic propositions and then by increasing number of operators. The only additions to
the algorithm from [7] are the rules that handle the bdi operators. The resulting algorithm takes time
linear in the sizes of the graph and the input formula, and thus takes exponential time in the size of the
input. For Ctl∗bdi, we extend the algorithm just given for Ctl∗bdi similarly to how the standard decision
algorithm for Ctl∗ is obtained from that of Ctl [7]. The overall time taken by this algorithm is still
exponential in the input size.

2 Branching-time logic with BDI modalities
In this section, we briefly recall the syntax and the semantics of Ctl∗bdi [15].

In the rest of the paper, for an integer k > 0, [k] will denote the set {1, . . . , k}.
Syntax. A Ctl∗bdi formula can be a state or a path formula. State formulas are inductively defined
starting from atomic propositions by applying the logical connectives, the path quantifiers (to path
formulas) and the belief (bel), desire (des), and intention (int) operators. Path formulas are either state
formulas or obtained by applying temporal operators such as next (©) and until (U). The syntax of
Ctlbdi can be obtained from that of Ctl∗bdi by disallowing the nesting of Boolean and temporal operators
in path formulas. A formal definition for both logics can be found in [15].
Semantics. The meaning of the formulas from Ctl∗bdi, and thus Ctlbdi, is defined according to a possible
world semantics where each possible world is not an instantaneous state but a transition system. All
the worlds are synchronized over a shared branching-time structure whose time points (nodes) represent
the instantaneous states. The meaning of the belief-desire-intention (bdi) operators is given through
accessibility relations that relate the possible worlds at each time point and thus can possibly vary over
time. The meaning of temporal operators is instead related to the temporal accessibility relation defined
by the the branching-time structure.

We start recalling the notion of tree-structure.
For k > 0, a k-ary tree-structure is a pair (T ,R) where T ⊆ [k]∗ is a prefix-closed set and R = {(t, t′) |

t, t′ ∈ T and t′ = t.i for i ∈ [k]}. The empty word ε denotes the root of the tree. We assume T to be
infinite, and refer to the elements of T as time points.

Definition 1. A structure for Ctl∗bdi formulas is a tupleM = (AP, T ,R,W,B,D, I) where:

• AP is a set of atomic propositions; (T ,R) is a tree-structure;

• W is a set of possible worlds where each world w ∈ W is a tuple (Tw,Rw,Lw) where Tw ⊆ T , Rw is
the restriction of R to Tw, (Tw,Rw) is a tree-structure and Lw : Tw → 2AP assigns a set of atomic
propositions to each time point of w;

• for K ∈ {B,D, I}, K ⊆ W × T ×W is such that for (w, t, v) ∈ K, t ∈ Tw ∩ Tv must hold (i.e., bdi
accessibility relations are consistently defined with respect to the world time points).

R (resp., B, D, I) is called the temporal (resp., belief, desire, intention) accessibility relation.
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A path π in a world w = (Tw,Rw,Lw) is a sequence of time points t0t1 . . . such that (ti, ti+1) ∈ Rw

for i ≥ 0. The meaning of formulas is given by the satisfaction relation that is defined starting from a
time point for state formulas and along a path for path formulas. We omit here a formal definition which
can be obtained along the same lines as for Ctl∗ and just recall the case of bdi operators. For a structure
M = (AP, T ,R,W,B,D, I), w ∈ W and a time point t:

• M, w, t |= belϕ iff for all v ∈ W such that (w, t, v) ∈ B, it must hold M, v, t |= ϕ (similarly for
desϕ and intϕ);

We sayM satisfies a Ctl∗bdi formula ϕ at a world w, writtenM, w |= ϕ, iffM, w, root |= ϕ.
Model-checking. We assume that the reader is familiar with the notions of Kripke structure (a finite-
state transition system whose states are labeled with atomic propositions) and its tree-unrolling (see
[7]), and finite automaton (see [10]). For a finite automaton A and a state s, we denote with L(A, s)
the language accepted by A assuming s as the sole accepting state (i.e., the language accepted by A is
L(A) =

⋃
s∈F L(A, s) where F is the accepting set of A).

For the model-checking problem we consider (1) a finite number of possible worlds each corresponding
to the unrolling of a Kripke structure, and (2) each bdi relation defined by a finite automaton over the
paths of the corresponding tree-structures. We refer to such structures as finite-state structures.

We omit a formal definition of above notion and just observe that a finite-state structure M =
(AP, T ,R,W,B,D, I) has a finite representation of the form (AP, k,W, K̄, AB, AD, AI , µB, µD, µI) where:

• K̄ = {(Kw, sw) | w ∈ W} and sw is a state for a Kripke structure Kw of arity k for w ∈ W, and

• for K ∈ {B,D, I}, AK is finite automaton over time points, µK maps each state of AK to a subset of
W ×W, and denoting QK the set of states of AK, K =

⋃
s∈QK

{(w, t, w′) | (w,w′) ∈ µK(s) and t ∈
L(AK, s) ∩ T }.

In the following, we will denote finite-state structures through their finite representation.

Definition 2. Given a finite-state structureM = (AP, k,W, K̄, AB, AD, AI , µB, µD, µI), a world w and
a Ctl∗bdi formula ϕ, the Ctl∗bdi model-checking problem asks whetherM, w |= ϕ.

3 Decision algorithms
In this section, we discuss our solution to the introduced decision problems.

We start giving the construction of a finite graph that captures the entire input model. This graph
essentially consists of the synchronous cross product of the Kripke structures defining the possible worlds
along with the finite automata capturing the bdi-accessibility relations. For an input formula ϕ, the
decision procedure for Ctlbdi is then obtained by labeling each node of this graph with the ϕ sub-formulas
that hold true at it. For this, we adapt the decision algorithm given for the Ctl model-checking (see [8])
which iteratively label the states of a Kripke structure by considering sub-formulas of increasing sizes. We
conclude the section by arguing how to extend the Ctlbdi model-checking algorithm to decide the Ctl∗bdi
model-checking problem and then discussing the computational complexity of this approach.
Construction of the graph GM. For a set of worlds W = {w1, . . . , wn} for n > 0, and a finite-
state structure M = (AP, k,W, K̄, AB, AD, AI , µB, µD, µI) with K̄ = {(Kw, sw) | w ∈ W} and Kw =
(Sw, νw, λw), the graph GM is defined as follows (i, j range over the set {1, . . . , n}, and K ∈ {B,D, I}
unless otherwise specified).

The vertices of GM are of the form (wi, s1, . . . , sn, qB, qD, qI) where: (1) wi denotes the current world,
(2) sj either belongs to Kwj and is the current state of world wj or is a dummy state ⊥ denoting that the
current one is not a time point of world wj , and (3) qK is the current state of AK.

The edges of GM come from the accessibility relations ofM and are labeled consistently: edges derived
from the temporal accessibility relation are labeled with a corresponding index from [k] (recall that k is
the arity of the Kripke structures) while those derived from the accessibility relation K with a fresh symbol
σK for K ∈ {B,D, I}. Formally, denote ν̄w the total function obtained by completing νw by assigning ⊥
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whenever it is not defined, i.e., ν̄w(s, j) = ν(s, j) if νw(s, j) is defined and ν̄w(s, j) = ⊥ otherwise . For
vertices u = (wi, s1, . . . , sn, qB, qD, qI) and u′ = (wi′ , s′1, . . . , s

′
n, q
′
B, q
′
D, q

′
I) of GM, (u, γ, u′) is an edge of

GM iff either one of the following cases holds (we assume that components of u′ equals the corresponding
ones from u unless differently specified):

• γ ∈ [k], i′ = i, s′j = ν̄wi
(sj , γ) for j ∈ [n], and (qK, γ, q′K) is a transition of AK for K ∈ {B,D, I} (we

say that u′ is a γ-temporal successor of u);

• γ ⊆ {σB, σD, σI}, γ 6= ∅, and for σK ∈ γ, µK(qK) = (wi, wi′) [u′ is a K successor of u for each
σK ∈ γ.

Note that each vertex of GM has at most k + n successors.
Define λM(u) = λwi

(si), for each vertex u = (wi, s1, . . . , sn, qB, qD, qI) of GM. The labeled graph GM
is defined as GM with the labeling function λM. Note that GM differs from Kripke structures only for
the distinction of the transitions into temporal and bdi ones.
Properties of GM. We denote τ(GM, u) the tree-structure obtained from GM starting from u and by
unrolling the loops of GM.

By τ(GM, u), we can define the satisfiability of Ctl∗bdi (and hence of Ctlbdi) formulas w.r.t. GM by
treating a formula of the form Kϕ as the corresponding temporal logic formula ∀© ϕ where the universal
quantification is restricted to only the K successors of the current vertex. Analogously, standard path
quantifiers are restricted to only the temporal successors. The formal definition can be easily obtained
from semantics of Ctl∗bdi and the observations above. Thus, we omit it here, and again use GM, t |= ϕ
(resp., GM, π |= ϕ) meaning that ϕ holds in GM starting from time point t (resp., along path π).

Directly from the given semantics, we have that the Ctl∗bdi (resp., Ctlbdi) model-checking problem
reduces to the corresponding question on the labeled graph GM. For a world w, we define the initial
vertex of GM corresponding to w the only vertex of the form (w, sw1 , . . . , swn

, q0
B, q

0
D, q

0
I) where q0

K is the
initial state of AK for K ∈ {B,D, I} (recall that each swi

is the state coupled with the Kripke structure
Kwi

in the finite-state structure we have fixed earlier in this section).

Lemma 1. For a world w and a Ctl∗bdi formula ϕ, we get thatM, w |= ϕ iff GM, u |= ϕ, where u is the
initial state of of GM corresponding to w.

A crucial property of GM is that as for standard Kripke structures the truth of branching-time state
formulas depends only on the state, i.e., a state formula ϕ is true at a time point t of τ(GM, u) if and
only if it is true at any other time point t′ such that t and t′ correspond to the same vertex of GM. To
see this, for a k-ary tree-structure (T ,R), we define the abstract subtree rooted at t ∈ T as the k-ary
tree-structure (T ′,R′) where T ′ = {t′ | t.t′} and R′ = {(t′, t′.i) ∈ R | t′ ∈ T ′}. Thus, directly from the
definition of τ(GM, u), we get that the abstract sub-trees rooted at t and t′ coincide for all time points
t, t′ of τ(GM, u) that correspond to the same vertex of GM and hence the property stated above holds.

Lemma 2. Given a Ctl∗bdi state formula ϕ, for all time points t, t′ of τ(GM, u) that correspond to the
same vertex of GM we get: τ(GM, u), t |= ϕ iff τ(GM, u), t′ |= ϕ.

Decision algorithms. Lemma 2 allows us to give for our model-checking questions two fixed-point
decision algorithms in the style of those given for Ctl and Ctl∗. Such algorithms proceed bottom-up on
the syntactic structure of ϕ and starting from the labeling given by the truth of the atomic propositions,
progressively label each vertex u of the graph with the sub-formulas that holds true there. The rules of
the algorithm for Ctlbdi, denoted Alg-Ctlbdi, are given in Figure 1.

To get a decision algorithm for Ctl∗bdi we can reason similarly to how a decision algorithm Ctl∗ is
obtained from that for Ctl (see [7] for details). In particular, for a path formula ϕ denote with ϕ′ the
formula obtained by replacing in ϕ its state sub-formulas with new atomic propositions. Thus, the truth
of ϕ at a vertex u of GM is determined by a query to an Ltl model-checking algorithm on ϕ′ by taking for
the added atomic proposition the evaluation given by lab to the corresponding state formulas. We denote
with Alg-Ctl∗bdi the resulting algorithm. The correctness of algorithms Alg-Ctlbdi and Alg-Ctl∗bdi is a
consequence of Lemmas 1 and 2, and the above observations. Thus we have:
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LetM = (AP, k,W, K̄, AB, AD, AI , µB, µD, µI) where:
K̄ = {(Kw, sw) | w ∈ W} and Kw = (Sw, νw, λw).

Initialization.
For each vertex u of GM, set lab(u) = λM(u).

Update rules.
For each vertex u of GM:
1. if ϕ = ¬ψ, then ϕ ∈ lab(u) iff ψ 6∈ lab(u);
2. if ϕ = ϕ1 ∨ ϕ2 then ϕ ∈ lab(u) iff either ϕ1 ∈ lab(u) or ϕ2 ∈ lab(u);
3. if ϕ = ∃ © ψ, then ϕ ∈ lab(u) iff there is a temporal successor u′ of u such that

ψ ∈ lab(u′);
4. if ϕ = ∀© ψ, then ϕ ∈ lab(u) iff for all temporal successors u′ of u it holds that

ψ ∈ lab(u′);
5. if ϕ = ∃(ϕ1Uϕ2), then ϕ ∈ lab(u) iff either ϕ2 ∈ lab(u), or ϕ1 ∈ lab(u) and there is

a temporal successor u′ of u such that ϕ ∈ lab(u′);
6. if ϕ = ∀(ϕ1Uϕ2), then ϕ ∈ lab(u) iff either ϕ2 ∈ lab(u), or ϕ1 ∈ lab(u) and for all

temporal successors u′ of u it holds that ϕ ∈ lab(u′);
7. if ϕ = belψ, then ϕ ∈ lab(u) iff for all B successors u′ of u it holds that ψ ∈ lab(u′)

(similarly for desϕ and intϕ).

Figure 1: Fixed-point decision algorithm Alg-Ctlbdi for Ctlbdi model-checking.

Lemma 3. Given a Ctlbdi (resp., Ctl∗bdi) state formula ϕ, a finite-state structureM and a world w,
M, w |= ϕ iff ϕ ∈ lab(u) where lab is the labeling computed by Alg-Ctlbdi (resp., Alg-Ctl∗bdi) and u is
the initial state of of GM corresponding to w.

Computational complexity. We observe that the construction of GM causes an exponential blow-up
in the size ofM. In fact, the number of vertices of GM is O(n · χn · η3) where χ is the maximum number
of states over the n Kripke structures denoting the possible worlds ofM and η is the maximum number
of states over the finite-state automata denoting the bdi accessibility relations ofM. Moreover, for each
vertex of GM there are at most k + n outgoing edges where k is the arity of the Kripke structures. Thus,
the overall number of GM edges is O(k · n2 · χn · η3). For a formula ϕ the number of its sub-formulas is
linear in the size of ϕ (denoted |ϕ|). Thus the fixed-point algorithm Alg-Ctlbdi will converge in at most
O(|ϕ| · k · n2 · χn · η3) steps, and since each step require at most O(n) time, we get the following result.

Theorem 1. The Ctlbdi model-checking problem can be solved in time exponential in the number of the
worlds, and polynomial in the size of the formula and the size of the automata capturing the bdi relations.

Since Ltl model-checking can be solved in time exponential in the size of the formula and linear in
the size of the model [13], Alg-Ctl∗bdi requires exponential time also in the size of the formula.

Theorem 2. The Ctl∗bdi model-checking problem can be solved in time exponential in the number of
worlds and the size of the formula, and polynomial in the size of the automata capturing the bdi relations.

4 Conclusions
In this paper, we have presented some preliminary results on the model-checking problem of Ctlbdi
and Ctl∗bdi over finite-state models. We have shown that these decision problems are decidable in time
exponential in both the size of the input model and the size of the input formula. Our results extend the
decidability of the considered logics to systems that exhibit infinitely many time points resulting from the
unrolling of the finite-state models.
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As future research, we wish to investigate further the considered decision problems. First, we will
look deeper into their computational complexity and possibly show tight complexity bounds for the
problems stated in this paper. Second, we will consider modular descriptions of systems where each world
is composed of modules that can call each other possibly recursively, similarly to what is done for standard
temporal logics (see [1, 11, 2]). This will give a more faithful representation for many real systems and will
yield more succinct models (modules can be shared among worlds). Moreover, the presence of recursive
calls will extend further the class of models considered for the logics Ctlbdi and Ctl∗bdi.

References
[1] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Reps, and M. Yannakakis. Analysis of

recursive state machines. ACM Trans. Program. Lang. Syst., 27(4):786–818, 2005.

[2] B. Aminof, O. Kupferman, and A. Murano. Improved model checking of hierarchical systems. Inf.
Comput., 210:68–86, 2012.

[3] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking multiagent systems. J. Log. Comput.,
8(3):401–423, 1998.

[4] J. Blee, D. Billington, G. Governatori, and A. Sattar. Levels of modality for BDI logic. J. Applied
Logic, 9(4):250–273, 2011.

[5] R. H. Bordini, M. Fisher, W. Visser, and M. J. Wooldridge. Verifying multi-agent programs by model
checking. Autonomous Agents and Multi-Agent Systems, 12(2):239–256, 2006.

[6] M. E. Bratman. Intentions, plans, and practical reason. Harvard University Press, 1987.

[7] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science, Volume
B: Formal Models and Sematics (B), pages 995–1072. The MIT Press/Elsevier, 1990.

[8] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize synchronization
skeletons. Sci. Comput. Program., 2(3):241–266, 1982.

[9] J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowledge and time. i. lower
bounds. J. Comput. Syst. Sci., 38(1):195–237, 1989.

[10] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory, languages, and
computation - (2. ed.). Addison-Wesley series in computer science. Addison-Wesley-Longman, 2001.

[11] S. La Torre, M. Napoli, M. Parente, and G. Parlato. Verification of scope-dependent hierarchical
state machines. Inf. Comput., 206(9-10):1161–1177, 2008.

[12] J.-J. C. Meyer, J. Broersen, and A. Herzig. Bdi logics. In Handbook of Epistemic Logic, pages 453–498.
College Publications, 2015.

[13] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer
Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 46–57, 1977.

[14] A. S. Rao and M. P. Georgeff. Modeling rational agents within a bdi-architecture. In J. F. Allen,
R. Fikes, and E. Sandewall, editors, Proceedings of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning (KR’91). Cambridge, MA, USA, April 22-25, 1991., pages
473–484. Morgan Kaufmann, 1991.

[15] A. S. Rao and M. P. Georgeff. A model-theoretic approach to the verification of situated reasoning
systems. In R. Bajcsy, editor, Proceedings of the 13th International Joint Conference on Artificial
Intelligence. Chambéry, France, August 28 - September 3, 1993, pages 318–324. Morgan Kaufmann,
1993.

[16] A. S. Rao and M. P. Georgeff. Decision procedures for BDI logics. J. Log. Comput., 8(3):293–342,
1998.


	Introduction
	 Branching-time logic with BDI modalities
	Decision algorithms
	Conclusions

