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Abstract

Multistage systems are systems characterized by n stages, where each stage
has a precise parametric evolution law. We propose a procedure to reduce the
optimal parameter synthesis on a multistage system to the optimal control design
on an automaton with a DAG structure that we will call multistage automaton.
We describe the procedure using a thawing system as a case study. We address the
optimization problem as a reachability problem and we use backtrack strategy to
obtain a feasible solution in the linear case.
Keywords: Hybrid Automata, Cyber-physical systems, Optimal Parameter Synthe-
sis, reachability, backtraking.

1 Introduction
Hybrid systems are dynamical systems combining both discrete and continuous dynamics. This type of
systems arise in a large number of application areas and their analysis is a well-established tool in both
academic and industry researches.

The system we want to analyse in this paper is a multistage cooking program and (qualitatively/
quantitatively) governing this kind of processes is fundamental for most professional food appliances.
Professional chefs, in fact, use different heating methods to bring more flavour to the food or to control
the final results. For example, they may start with a short grill for searing a steak and then continue the
process at low temperature for a long time. Professional appliances allow to program a cooking cycle by
setting up one or more modes, instead of setting different heating stages manually.

Lifting up our view from the single application, we want to focus on the problem of parametrically
designing what we can call multistage systems, that are systems characterized by n stages, where each stage
has a precise—albeit parametric—evolution law. We give multistage systems as a single hybrid automaton
[2], whose states are grouped in layers and states are characterized by a continuous (parametric) evolution
law. Each layer qualitatively represents a stage of the entire process and the discrete transition represents
the switching instant from one stage to the next one. The underlying structure of the automaton will
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be that of a Directed Acyclic Graphs (DAG) and global properties of the process will be optimized with
respect to full paths in such a DAG.

A multistage system is, ultimately, a parametrized hybrid system. In the literature we can find two
main classes of problems analyzed on these systems: parameter synthesis and optimal control design.
Parameter synthesis is simply the problem of choosing a set of parameters in order to ensure a given
property. In [9, 8, 7] (among many others) we can find possible approaches to solve this problem. Optimal
control design is the problem of choosing the best trajectory that satisfies a given property, where with
trajectory we mean a possible (full) evolution of the system. Also here we have many examples of possible
approaches, such as [12, 4, 10]. The problem we are considering in this paper is a combination of the
two: we want to select a setting of parameters suitable to obtain the best trajectory that satisfies a given
property.

In the literature this problem goes under the name of optimal parameter synthesis (or safe reachability
problem) and is tackled specifically in [3, 5]. In [5] the authors perform optimal parameter synthesis but
they are working with transient systems and not with multistage systems as in our case. In a transient
system you just have the set of states (finite or infinite) and a transition relation expressed with a formula,
that in [5] is a linear arithmetic formula. They use model-checking to obtain the set of all admissible
solutions and they illustrate different methods to explore the solution-space in order to find the best
solution. [3], instead, are addressing a scheduling problem for a reducing peak power demand of the
heating system of multiple zones for a commercial building [13]. In this problem a solution is an unordered
list of parameters with the associated duration. The authors are not interested in the specific stage for
which we select a given parameter, for this reason they can reduce the optimal parameter synthesis to a
linear optimization problem.

In this paper we propose a procedure to solve optimal parameter systhesis problem working directly
on the hybrid automaton. We work on the structure of the automaton in order to reduce the optimal
parameter synthesis on a multistage system to the optimal control design on an automaton with an
augmented number of locations—that we will call multistage automaton. Doing this we address the
optimization problem as a reachability problem and we use a backtrack strategy [1] to obtain a feasible
solution in the linear case.

2 Definitions for Hybrid Automata
The notion of hybrid automata was introduced in [2] as a model and specification language for hybrid
systems. The following definitions are standard notations of hybrid automata (see [2, 6] for more details).

Definition 2.1. An Hybrid Automaton H = 〈Z,Z′,V, E , Inc,Dyn,Act,Reset〉 consists of the following
components: Z = (Z1, . . . , Zk) ∈ Rk and Z′ = (Z ′1, . . . , Z ′k) ∈ Rk are two vectors of variables; 〈V, E〉 is a
finite directed graph: the vertices in V are called locations and the edges in E are called transitions.

Each vertex v ∈ V is labelled by two formulas: Inv(v)[Z] that is an invariant, i.e. a constraint that the
variables Z must respect during their evolution; Dyn(v)[Z,Z′, t] that is the dynamic law, in particular for
each v ∈ V there is a continuous function fv : Rk × R≥0 → Rk such as Dyn(v)[Z,Z′, t] is Z′ = fv(Z, t)
where the variable t represents the time of the system and range over R≥0.

Each edge e ∈ E is labelled by other two formulas: Act(e)[Z′] is the activation, i.e. a constraint on the
activation of the edge e; Reset(e)[Z,Z′] is the reset of the variables while we are using the edge e.

Definition 2.2 (State). A state σ is a pair (v,x) considering a location v ∈ V and a valuation x ∈ Rk

for the variables Z such as Inv(v)[x] holds.

Definition 2.3 (Transition relations). Let H be a hybrid automaton. We have two type of transition
relations between two states σ = (v,x) and δ = (w,y):

continuous transition relation σ →t δ ⇔ v = w and there exists f : R≥0 → Rk continuous function such
that x = f(0), y = f(t) and for each t′ ∈ [0, t] holds Inv(v)[f(t′)] and Dyn(v)[x, f(t′), t′]

discrete transition relation σ →e δ ⇔ e ∈ E such that e = (v, w) and holds Inv(v)[x], Inv(w)[y],
Act(e)[x] and Reset(e)[x,y]
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Definition 2.4 (Trajectory). Let H be a hybrid automaton. A trajectory is a sequence (σj)j∈J of states
such that: ∀j ∈ J \ {0} we have σj−1 →e σj with e ∈ E or σj−1 →t σj with t > 0 and if |J | > 2 we can
not have two continuous transition relations between three consecutive states.

Definition 2.5 (Reachability). Let σ and δ be two states of a hybrid automaton H. The state δ is
reachable from the state σ if there is a trajectory of H that starts in σ and ends in δ. Given an automaton
H, a set of starting states ΣS and a set of ending states ΣE, the reachability problem is the problem to
decide whether there exists a state σ ∈ ΣS from which a state in ΣE is reachable.

3 Thawing Optimization Problem
The target is to solve the optimal parameter synthesis for a multistage cooking program. The procedure
we describe is very general and can be applied to every multistage system. For example, we can create a
continuous “cutting-stock” problem thinking of a painting product-line of a metal tube factory, where we
want to maximize the overall length of tubes produced, while keeping the paint consumption for each
primary color under a supply limit threshold. As another example, we can apply our methodology to find
an ordered solution for the peak power demand problem described in [13].

Here we want to focus on a special multistage heating process, the thawing process, that is the process
of safely heat up a frozen foodstuff to just above 0◦C. In professional applications, the thawing process
can be executed inside a specific appliance able to keep the temperature of its cavity within the range
4◦C - 16◦C. We can set n different stages, namely n different temperatures of the cavity in the form of a
vector Tset ∈ [4, 16]n with the temperatures expressed in Celsius unit. In addition we require how long
we want to keep these temperatures, so we fix another vector timeset with n− 1 duration expressed in
seconds. We define as thawing cycle the system obtained by specifying these parameters. A thawing cycle
ends when the minimum temperature of the foodstuff reaches 0◦C.

In this process food safety becomes particularly important because the bacteria that cause food
poisoning are found on the surfaces of many foods and they start growing due to the continuous arise of
the temperature of these areas. There are different evolution models that take into account the bacterial
growth depending on the temperature and the duration, mostly variants of the logistic evolution model
or piecewise exponential growth curves obtained with empirical methods [14]. We are going to consider
the easiest and the strictest constraint that we can impose. The same construction can be extended to
more complex models. In summary, we want keep the maximum temperature Tmax of the product below
a Tsafe temperature of 7◦C following the codex alimentarius for fish fillet [11].

The aim is to select a thawing cycle in order to minimize the total duration of the process keeping
bacterial growth under control by looking at the maximum temperature of the foodstuff.

The optimization problem described is quite general. We have a multistage system with m(m− 1)
variables and we want to minimize the total time having an end condition—in the thawing case is a
minimum threshold that we have to reach (Tmin = 0◦C)—and satisfying a constraint that in this case is a
maximum threshold that we do not want to overpass (Tmax ≤ 7◦C).

Example 3.1 (Linear multistage system). We introduce the following simplified (linear) version of the
thawing cycle. Suppose we have only 3 stages and suppose we deal with two variables x1, x2 only, evolving
linearly. x1 is the minimum temperature and x2 is the maximum temperature. Suppose Tset ∈ {4, 8, 12, 16}3,
so we have to select one of these temperature for each of the 3 stages. If we are in the stage i we select the
temperature Tset(i) and we have:

x1(t) = x1(0) + Tset(i)
8000 t; x2(t) = x2(0) + (Tset(i)− 2)

4000 · t (1)

The starting values x1(0) and x2(0) for the first stage are −18◦C (typically the freezer temperature). The
starting value in the second and third stage are the last value of the previous stage. In this example
choosing Tset and timeset we obtain a trajectory for x1 and a trajectory for x2 that are piecewise linear
functions.
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4 Hybrid Automaton model
A multistage system with n stages is inherently an hybrid model and the natural way to model it is with an
hybrid automaton with n+ 1 locations: n locations for the n stages of the system, plus an extra location
for the end condition. Our strategy will consist in increasing (step by step) the number of locations of a
hybrid automaton till we reach what we call a multistage automaton appropriately modeling our scenario.

Definition 4.1 (Multistage automaton). A multistage automaton (H,K, g) consists of the following
components:

K a finite set of real parameters;

H = 〈Z,Z′,V, E , Inv,Dyn,Act,Reset〉 is an hybrid automaton;

〈V, E〉 is a Direct Acyclic Graph (DAG) and V = S ∪ V ∪ E a partition of V in three not empty sets,
such that s ∈ S has only outgoing edges, e ∈ E has only incoming edges, and v ∈ V has at least one
outgoing edge and at least one incoming edge;

g : V → K is a labeling function;

Z = (Z1, . . . , Zn) ∈ Rn, Z′ = (Z ′1, . . . , Z ′n) ∈ Rn and there exists a function f : Rn × R≥0 × K → Rn

such that Dyn(v), for v ∈ V , has the following form: Dyn(v)[Z,Z′, t] ≡ (Z′ = f(Z, t, g(v))).

We work with the linear multistage system in the Example 3.1 to illustrate the associated multistage
automaton. Set K = {k1, k2, k3, k4} = {4, 8, 12, 16}. If we fix the parameter vector Tset, we can define a
simple linear hybrid automaton HL = 〈Z,Z′,V, E , Inv,Dynf , Act,Reset〉 as in Figure 1.

v1

x′1 = x1 + Tset(1)
8000 t

x′2 = x2 + T̂set(1)t
x1 ≤ 0 ∧ x2 ≤ 7

v2

x′1 = x1 + Tset(2)
8000 t

x′2 = x2 + T̂set(2)t
x1 ≤ 0 ∧ x2 ≤ 7

v3

x′1 = x1 + Tset(3)
8000 t

x′2 = x2 + T̂set(3)t
x1 ≤ 0 ∧ x2 ≤ 7

end
x1 = −18
x2 = −18 x1 = x′1

x2 = x′2

x1 = x′1
x2 = x′2

x1 ≥ 0
x1 = x′1
x2 = x′2

Figure 1: Linear Hybrid Automata HL. We indicate with T̂set(i) the value (Tset(i)−2)
4000 . Above each arrow (except

the initialization) we indicate the activation condition (if it is no T rue), below we indicate the reset condition.

First of all we are going to explicit the role of the variables Tset(i). These constants change the
evolution of our variables but we have only a finite number of values to take into account, since the
dimension of K is finite.

We split each stage of HL in 4 different locations, one for each possible evolution. We add also a
dummy starting node to initialize the variables. What we obtain is a graph with 3 internal layers as in
Figure 2. We denote by vi,j a location on layer i = 1, 2, 3 with constant kj ∈ K. Every location at layer i
is connected to all the locations at layer i+ 1. The layered hybrid automaton L in Figure 2 has:

Z = (x1, x2), Z′ = (x′1, x′2); (V, E) as in Figure 2;

Reset(e)[Z,Z′] ≡ (x1 = x′1 ∧ x2 = x′2) for e ∈ E ;

Inv(vi,j)[Z] ≡ (x1 ≤ 0 ∧ x2 ≤ 7) for i = 1, 2, 3 j, k = 1, . . . , 4; Inv(v)[Z] ≡ True for v = s, e;

Dyn(vi,j)[Z,Z′, t] ≡ (x′1 = x1 + kj

8000 t ∧ x
′
2 = x2 + (kj−2)

4000 t for i = 1, 2, 3 j = 1, . . . , 4;
Dyn(s)[Z,Z′, t] ≡ (x′1 = −18 ∧ x′2 = −18) and Dyn(e)[Z,Z′, t] ≡ (x′1 = x1 ∧ x′2 = x2);

Act((v3,j , e))[Z′] ≡ (x′1 ≥ 0) for j = 1, . . . , 4 and the activation is True for all the other edges.
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For each internal location vi,j ∈ V we can define the function g(vi,j) = kj with kj ∈ K. It is evident
by construction that the couple (L,K, g) is a multistage automaton.

If we consider the multistage automaton L in Figure 2 and we solve a reachability problem from the
location s to the location e we find just a feasible solution for the optimal parameter synthesis but not the
optimal one. We need to make a step ahead adding the information of the total duration. In L we know
that the final duration of our system can vary from 2.5 hours to 10 hours so we can split the location end
in 9 locations, one per each hour (or more if we want to refine the interval). We obtain the multistage
automaton L̄ as in Figure 3. We call e3 the end location associated with t = 3 hours and in general eh for
the end location associated with t = h hours.

s

v1,2

v1,1

v1,3

v1,4

v2,1

v2,2

v2,3

v2,4

v3,1

v3,2

v3,3

v3,4

e

Figure 2: Layer Hybrid Automaton L with 3 layers

s

v1,2

v1,1

v1,3

v1,4

v2,1

v2,2

v2,3

v2,4

v3,1

v3,2

v3,3

v3,4

e3

...

e10

Figure 3: Layer Hybrid Automata L̄ with 3 layers

What we have to modify is the activation constraint adding the time bound:
Act((v3,j , e3))[Z′] ≡ (x′1 ≥ 0 ∧ t ≤ 3 · 3600);

Act((v3,j , e10))[Z′] ≡ (x′1 ≥ 0 ∧ 9 · 3600 < t) ;

Act((v3,j , eh))[Z′] ≡ (x′1 ≥ 0 ∧ (h− 1) · 3600 < t ≤ h · 3600)
If the reachability problem from the location s with x1 = −18◦C and x2 = −18◦C to the location e3 have
a solution, we have the existence of a feasible solution for the optimal parameter synthesis with a total
duration ≤ 3 hours, vice versa if the reachability problem is empty we know that if a solution exists the
optimal value is greater than 3 hours. In general solving the reachability problem on the automaton L̄
give us the existence of a feasible solution for the optimal parameter synthesis problem with a lower/upper
bound to the optimal solution.

To conclude we need to be able to solve the reachability problem. In general, if the evolution are
linear, we can solve the reachability problem from the set of starting states ΣS to the set of ending states
ΣE using the backward approach introduced in [2, 1]. The procedure is effective and we can, for example,
prove that the automaton L̄ does not have feasible trajectories with a duration less than 6 hours, hence
all the reachability problems from s to e3, . . . , e6 have a negative solution.

5 Conclusions and future works
We showed how we can reformulate a optimal parameter synthesis problem for a class of hybrid systems
that we called multistage systems. For general multistage systems we obtain a multistage automaton, a
hybrid automata with a layered DAG as underlying discrete structure. The key point was to reformulate
the optimization problem as a reachability problem, use the backtrack technique introduced by Alur [2, 1]
to prove the existence of a feasible solution, and obtain a lower/upper-bound to an optimal solution.

True thawing is, in fact, non-linear. The graph construction presented here is applicable to the
non-linear case but additional ideas are needed to solve the reachability problem in that case. A further
interesting direction consists, therefore, in studying the temperature-evolution in order to approximate its
law—to start—with a piece-wise linear function.
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