CEUR-WS.org/Vol-2510/sattose2019_paper_4.pdf

COOQOP - automatiC validatiOn of
evOlving microservice comPositions

Olga Groh, Harun Baraki, Alexander Jahl, and Kurt Geihs

Distributed Systems Group
University of Kassel
Kassel, Germany
{groh, baraki, jahl, geihs}@vs.uni-kassel.de

Abstract

Current change management solutions apply
versionized interfaces to ensure coherent evo-
lution in service environments. This leads to
several drawbacks such as an increasing num-
ber of service versions and time-consuming
testing of backward compatibilities in case of
drastic changes. In this paper, we present an
approach with continuous integration that au-
tomatically validates interfaces for compati-
bility. Developers are relieved from keeping
track of multiple versions of different services.
This guarantees that dependent parties co-
evolve accordingly to the interface changes.
Our solution is based on the automatic gener-
ation of declarative logic programs for validat-
ing compatibilities and extracting changes.

1 Introduction

After the first mentioning of the term Microservice in
2011 [LF14], the new style of architecture emerged
quickly. Instead of creating single layered systems,
the development shifted towards a composition of Mi-
croservices, connected through well-defined interfaces.

Microservices are developed independently from
each other and, thus, allow separate development cy-
cles. However, this may cause conflicts due to ser-
vice changes. A typical measure is to apply service
versioning. This requires to preserve all previous ver-
sions and leads to an increasing number of services,

Copyright © 2019 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

In: Anne Etien (eds.): Proceedings of the 12th Seminar on Ad-
vanced Techniques Tools for Software Evolution, Bolzano, Italy,
July 8-10 2019, published at http://ceur-ws.org

which still have to be maintained. In case of a model
change, the old versions need to be adapted as well
to adhere to updates. With an increasing number of
services, the complexity of version management rises
drastically [Byal3]. This is especially true for projects
with short development cycles. In other words, scala-
bility of change management is not fostered.

We present in this paper our framework COOP that
provides management for semantic, syntactic and pro-
tocol changes. Syntactic changes are changes in the
interface structure while semantic changes consider
changes in the meaning and context, e. g., of a return
value or a parameter. The latter requires an ontology
that is referenced by the interface.

By employing the declarative logic programming
language ASP (Answer Set Programming) [GK14] in-
stead of OWL (Web Ontology Language) [Bec09], not
only changes with respect to the interface are possible,
but also changes regarding the ontology definition.

In contrast to existing change management frame-
works, such as [FS14] and [RP12], COOP is not bound
to a specific protocol. Depending on the applied pro-
tocol and the used programming language, the frame-
work generates the client stubs accordingly.

Furthermore, COOP provides a notification mech-
anism for informing service providers whether prior
versions have any active clients. This prevents inter-
ruptions and failures during runtime and reduces the
resource consumption since unused versions are iden-
tified and deleted safely.

The paper is organized as follows. COOP and its
components are presented in Section 2. The underly-
ing architecture comprises a central repository and the
three main modules Service Description, Client Inte-
gration, and Change Detection. Section 3 describes an
example workflow for our framework. Relevant related
works are summarized in Section 4. Finally, the main
findings of this paper are concluded in Section 5.

2 Architecture of COOP

COOQOP is composed of a central repository and the
three modules Service Description, Client Integration,
and Change Detection. While the Service Description
module extracts interface details to capture the seman-
tic and syntactic facets of the service, the Client In-
tegration module utilizes the description through the
central repository to generate a client stub accord-
ingly and to check for new versions regularly. In case
of an interface change, the Client Integration module
triggers the Change Detection module to identify in-
compatibilities. By applying COOP, developers gain
a threefold benefit. Firstly, service can be enriched
with semantic information by annotating the respec-
tive methods in the implementation. The annotation
is resolved automatically by means of incooperated on-
tologies. Secondly, ontologies and interfaces are repre-
sented in ASP, which is partcularly siuted for dynamic
environments. In contrast to OWL, ASP ontologies al-
low adaptations of existing knowledge during runtime
by employing defaults and externals [GK14]. Thirdly,
COOP checks automatically for semantic and syntac-
tic of different versions during development time.

While the Service Description module has to be in-
tegrated in the service implementation, the Client In-
tegration and Change Detection modules are included
in the client application. However, all modules are
available on both, the server and the client side, as
both may consume or provide further services. It is
thus applicable for Microservice compositions. The
framework is depicted in Figure 1. The following sec-
tions dive into each component and explain the inter-
play between them.

Repository
< Version ASP JSON
c;’ Registration Programs Description
[}
£
©
[T
Service Change Client
Description Detection Integration
| . |
Service Client
Provider Developer

Figure 1: Framework Overview

2.1 Service Description Module

The Service Description module is platform-specific as
it is responsible for extracting essential information re-
garding the syntactic, semantic and protocol aspects
from a given service implementation. Thereafter, it
creates an intermediate, comprehensive and platform-
independent service description. Therefore, the mod-
ule scans the service implementation and searches for
interfaces with specific annotations. This means in
particular that the developer has to follow certain im-
plementation guidelines in order to flag the respective
interfaces and to enrich them with additional semantic
information.

As a clarifying example, the COOP Service Descrip-
tion module for Java shall be considered here. By
means of the build tools Maven or Gradle it gets inte-
grated into the build lifecycle of a service. The module
searches for typical annotations for service interfaces
in Java such as @RestController (Spring Framework!),
@Path (Java EE?), @WebService (Java EE?) and oth-
ers. The annotated interface is then analyzed further
for additional details. Assuming that a @RestCon-
troller annotation is present, the Service Description
module looks out for annotations such as @GetMap-
ping and @PostMapping. The attributes of these an-
notations reveal how a service method is accessed. In
particular, this includes the used protocol, the path,
and the data format. Further technical details relate to
the syntax of parameters and return values. For both,
the protocol and the syntax information, the Service
Description module applies existing tools to transform
the technical details to a JSON representation. If the
interface contains complex data types, the module will
map them as well. In case of a REST service, the gen-
erated JSON section adheres to the OpenAPI spec-
ification®. By using a widespread specification, the
Client Integration module, in turn, is enabled to gen-
erate a client stub in different programming languages
by third-party tools.

While the previous annotations were required by
the respective framework to configure and provide the
service, semantic annotations are specific to COOP.
For each identified and extracted method, the Service
Description module expects semantic information with
respect to the parameters, the return value, and the
method itself. These information are added by the
developer by means of the @SemanticContexrt anno-
tation. The semantic values used in the annotation
have to be terms that are defined by the developer
or another party in an ASP (Answer Set Program-
ming) dictionary, which is also called an ASP program

Ihttps://spring.io/
’https://javaee.github.io/javaee-spec/javadocs/
Shttps://github.com/0AI/OpenAPI-Specification

[GK14, BET11]. In contrast to OWL (Web Ontology
Language) [Bec09], ASP programs are non-monotonic
and, thus, can be extended and updated at runtime
without discarding the current knowledge base. Fur-
thermore, they support unique names, which is essen-
tial for deriving ASP code from the interface descrip-
tion with our Change Detection module in Section 2.3.
Besides that, closed-world reasoning and defaults are
supported. The latter allows to assume standard val-
ues, if certain details are currently missing. For exam-
ple, we could express that temperature is measured in
Celsius by default, but that Fahrenheit and Kelvin are
allowed as well.

The developer associates, preferably, each method,
parameter and return type with a semantic annota-
tion. However, defaults in the ASP program may sup-
port the developer. A method annotated with @Se-
manticContext(”get Weather”) might assume the coun-
try code as default parameter and a temperature as
response.

The Service Description module adds the semantic
annotations and a reference to the ASP program to the
JSON description of the service and submits it to the
repository. The repository creates an entry in the ver-
sion registry and provides then the JSON description
to other developers.

2.2 Client Integration Module

A developer on client side will employ the Client In-
tegration module to obtain the JSON description of
the requested service. Subsequently, the module gen-
erates a client stub in the needed language. The stub
is integrated in the project and used for development.
Developers neither need to worry about the structure
of the service used nor do they need to deal with the
protocol. Here again, developers should integrate the
module in the build lifecycle of their project. After
each built, the module triggers a check against the
newest version of the service registered at the Ver-
sion Registration of the repository. If a new version
is available, the Change Detection module is executed
to determine the deltas between the used and the most
current version and whether any incompatibilities ex-
ist.

2.3 Change Detection Module

The Change Detection module operates on the client
side and is triggered whenever a new version of an
involved service is available.

The JSON description will be translated into an
ASP program. For example, the JSON structure in
Listing 2 is translated to the ASP program in List-
ing 1. This program will be compared with the locally

available version of the service description, which is
likewise translated into ASP.

Listing 1: ASP example

service (holidayService).

protocol (holidayService ,rest).

path (holidayService ,” /api/holidays”).
method (holidayService , getHolidays).
context (getHolidays , holiday).

return (getHolidays ,” list <string>").
returnContext (getHolidays , date).
parameter (getHolidays ,country ,string).
context (getHolidays ,country ,countryName).
parameter (getHolidays ,year ,int).
context (getHolidays ,year ,date).

H O © 000 Ui WK

—_

Since the JSON description contains syntactic, se-
mantic and protocol information, the generated ASP
program allows to identify changes in any of these di-
mensions. Syntactic information cover the data types
of parameters and return values. Incorporating only
the syntax, may lead to a successful build process,
but omits crucial information with respect to the con-
text. For example, the HolidayService in Listing 2
accepts the parameter country with the full country
name as value. After an update, the parameter ex-
pects a two character country code as defined in ISO
3166 ALPHA-2. The value ”Germany” would change
to "DE”. While the syntactic representation remains
the same, i.e. a String, the semantic annotation would
be changed accordingly by the developer to @Se-
manticContext(”iso3166ALPHA2”). The context in
Line 9 (Listing 1) would automatically be transformed
to context (getHolidays, country,iso3166ALPHA2).

Regarding the protocol, the Client Integration mod-
ule generates the client stub. A change in the protocol
would be catched automatically by generating a new
stub. An alternative protocol would neither affect the
syntax nor the semantic and, thus, would relieve de-
velopers from taking any further action.

2.4 Repository

The repository stores received ASP programs and
JSON descriptions. Besides, it provides the Ver-
sion Registration. The Service Description module
announces new versions to the Version Registration,
which, in turn, creates an entry to keep track of the
number of registered clients per service version. A
developer may trigger through the Client Integration
module a registration for the used version. Whenever
no more clients are associated to a previous version,
the Version Registration informs the respective ser-
vice provider. This allows the provider to delete the
unused version safely.

3 Exemplary Workflow

A Microservice environment typically consists of sev-
eral projects. Therefore, our solution operates on the
complete composition of services. In the following, we
provide an example scenario that contains the two sep-
arate Microservices HolidayService and OrganizerSer-
vice. HolidayService provides the dates and names of
holidays that are leveraged by the OrganizerService to
enter them in a calendar.

The development cycles of both Microservices are
depicted in Figure 2. After a first version of Holiday-
Service is developed and deployed, COOP generates a
JSON description of the Microservice, which is kept in
a repository. Listing 2 shows an excerpt for Holiday-
Service V1. This includes, inter alia, the used proto-
col, the provided interface and semantic information
about the method and the communicated parameters
and return values.

HolidayService

develo generate register --------1
0P L 5| "USON [—>ffirst version 0
service s ? !
description of service .
register ,
update H
second | | jooN] change ;
version of e service '
: description '
service '
yes keep 'old delete_ old '
old service service '
version still 0
. o '
in use? e A :
OrganizerService :
register --------- !
get JSON generate
description | | client stub |] 4529 of
service
dereglster gener'ate ye
old service new client
v A
register
usage of adapt [«——n
! changes
new service

Figure 2: Development Cycle

At the OrganizerService, the Client Integration
module of COOP fetches the JSON description to gen-
erate the client stub for HolidayService V1. The stub
is automatically included in the dependencies and can
be employed by the developer. At the same time, the
Client Integration module registers the usage of the
current version of HolidayService.

By using the provided JSON description of Holiday-
Service, OrganizerService can detect changes of Holi-
dayService. Let us assume, HolidayService is extended

with the parameter state of type String. This change is
reflected subsequently in the respective JSON descrip-
tion in the repository. Since the Client Integration
module of OrganizerService registered for version V1
of HolidayService, both versions of HolidayService are
kept.

Listing 2: JSON example

1 “service”: {

2 "name” : " HolidayService”

3 ?protocol”: "REST”

4 7methods”: |

5 {”path”: ”/api/holidays”,

6 "name” : " getHolidays”,

7 ”context”: ”holiday”,

8 ?returnType”: ”list <string >7,
9 ?returnTypeContext” : ”date”,
10 ”parameters”: |
11 ”name” : ”country”,
12 Ptype”: "string”,
13 ”context”: ”countryName”},
14 ”name” : ”year”,
15 ” type77 : 77int ” s
16 ?context”: ”date”}]}]}}

On client side, the developer of the OrganizerSer-
vice is informed about the update of HolidayService.
COOP informs the developer about the type of change
and whether the old client stub is compatible to Hol-
idayService V2. In case of a compatible change, the
developer can switch directly to HolidayService V2 by
generating a new client stub through the JSON de-
scription from the repository. In parallel, the usage
of HolidayService V1 is deregistered. Accordingly, the
developers of HolidayService are informed about no
registered clients and, hence, may delete V1 safely.

Assuming that the change is incompatible, Holiday-
Service V1 would be kept as long as the client is reg-
istered for. The developers of OrganizerService first
have to adapt before switching to V2. Again, the dele-
tion of V1 can be executed when no further clients are
registered.

4 Related Work

Providing automated tools for analyzing service be-
haviour and its changes during the application lifecycle
is essential for both change analysis and change man-
agement. These tools may detect semantic, syntactic,
and protocol changes and inform dependent clients in
case of significant changes. This section reviews major
approaches of service change detection.

Fokaefs et al. present in [FMTT11] VTracker, a
tool for analysing WSDL interfaces. The application
identifies differences between two WSDL service de-
scriptions. In particular, the authors created an inter-
mediate XML representation to reduce the verbosity
of the WSDL specification. In [FS14], Fokaefs et al.
propose the WSDarwin tool. The tool detects and ex-

tracts structural changes in the specification of a ser-
vice by identifiying changes between different versions
of WSDL descriptions. Unlike VTracker, the approach
identifies differences between any pair of XML-based
documents by comparing all elements with each other.
This leads to the computation of the mapping based
on their structural similarity. However, WSDarwin is
a maintenance support tool that operates exclusively
at development time and did not consider semantic
service changes.

Similarly, Romano et al. [RP12] present in their
work an application called WSDLDIff that recognises
more fine-grained changes in WSDL descriptions, by
comparing the subsequent versions of WSDL specifi-
cations. This approach takes into account the syntax
of the WSDL file and the schema file XSD that is used
to define the data types of the WSDL interface and
enable the developer to analyse how a particular Web
service evolves.

In [SAR"16, NKKMO04], the authors compare the
semantic service description of subsequent versions to
extract differences between them. The client develop-
ers are relieved due to the automatic extraction of the
semantic description of the service implementation.
The presented framework assesses semantic change in
terms of semantic concept drift using text and struc-
tural similarity methods to provide valuable insights.
We provide therefore the Service Description Module.

Tran et al. discuss in [TBKT16] an agent-based no-
tification mechanism that focuses on coordinated co-
evolution within resource-constrained environments.
It detects and informs dependent clients automati-
cally about service changes by means of the analysis of
ontology-based service descriptions. The paper mainly
emphasizes the need for a notification mechanism, but
does not dive into change detection and management.

5 Conclusion

In this paper, we present our COOP framework.
COOP automatically validates service compositions
with respect to their syntactic, semantic, and proto-
col compatibility. Therefore, it tracks service changes
on behalf of the client and supports the version man-
agement of service providers. Furthermore, it enables
that dependent parties co-evolve in case of a service
change.

Currently, COOP comprises of the Service Descrip-
tion and Client Integration modules, while the first
prototype implementation of the Change Detection
and Repository are still ongoing. Although the frame-
work is tailored for Microservices, the mechanism can
be applied to service-oriented architectures in general.

Acknowledgment

This work is supported by the German Research Foun-
dation (DFG) under the project PROSECCO, grant
number 5534111. The authors would like to thank the
DFG for supporting their participation in worldwide
research networks.

References

[Bec09] Sean Bechhofer. Owl: Web ontology lan-
guage. In Encyclopedia of Database Sys-

tems, pages 2008-2009. Springer, 2009.

[BET11] Gerhard Brewka, Thomas Eiter, and
Mirostaw Truszczyniski. Answer set pro-
gramming at a glance. Communications
of the ACM, 54(12):92-103, 2011.

[Byal3] Brandon Byars. Enterprise integration
using rest. http://martinfowler.
com/articles/enterpriseREST.html#

versioning, Accessed: May 2018, 2013.

[FMT*11] Marios Fokaefs, Rimon Mikhaiel, Nikolaos
Tsantalis, Eleni Stroulia, and Alex Lau.
An empirical study on web service evolu-
tion. In 2011 IEEE International Confer-
ence on Web Services, pages 49-56. IEEE,

2011.

[FS14] Marios Fokaefs and Eleni Stroulia. Wsdar-
win: Studying the evolution of web service
systems. In Advanced Web Services, pages

199-223. Springer, 2014.

[GK14] Michael Gelfond and Yulia Kahl. Knowl-
edge representation, reasoning, and the
design of intelligent agents: The answer-
set programming approach. Cambridge

University Press, 2014.

James Lewis and Martin Fowler. Mi-
croservices - a definition of this new archi-
tectural term. https://martinfowler.
com/articles/microservices.html#
footnote-etymology, Accessed: May
2018, 2014.

[LF14]

[NKKMO04] Natalya F Noy, Sandhya Kunnatur,
Michel Klein, and Mark A Musen. Track-
ing changes during ontology evolution. In
International Semantic Web Conference,
pages 259-273. Springer, 2004.

[RP12] Daniele Romano and Martin Pinzger. An-
alyzing the evolution of web services us-

ing fine-grained changes. In 2012 IEEE

[SAR*+16]

[TBK*16]

19th International Conference on Web
Services, pages 392—-399. IEEE, 2012.

Thanos G Stavropoulos, Stelios An-
dreadis, Marina Riga, Efstratios Kon-
topoulos, Panagiotis Mitzias, and Ioannis
Kompatsiaris. A framework for measuring
semantic drift in ontologies. In SEMAN-
TiCS (Posters, Demos, SuCCESS), 2016.

Huu Tam Tran, Harun Baraki,
Ramaprasad Kuppili, Amir Taherko-
rdi, and Kurt Geihs. A notification
management architecture for service
co-evolution in the internet of things. In
2016 IEEE 10th International Symposium
on the Maintenance and Evolution of
Service-Oriented and Cloud-Based FEnuvi-
ronments (MESOCA), pages 9-15. IEEE,
2016.

