
Towards Automated Refactoring of Code Clones in

Object-Oriented Programming Languages

Simon Baars
University of Amsterdam
Amsterdam, Netherlands
simon.j.baars@gmail.com

Ana Oprescu
University of Amsterdam
Amsterdam, Netherlands
A.M.Oprescu@uva.nl

Abstract

Duplication in source code can have a ma-
jor negative impact on the maintainability of
source code, as it creates implicit dependen-
cies between fragments of code. Such im-
plicit dependencies often cause bugs and in-
crease maintenance efforts. In this study, we
look into the opportunities to automatically
refactor these duplication problems for object-
oriented programming languages. We propose
a method to detect clones that are suitable for
refactoring. This method focuses on the con-
text and scope of clones, ensuring our refac-
toring improves the design and does not create
side effects.

Our intermediate results indicate that more
than half of the duplication in code is re-
lated to each other through inheritance, mak-
ing it easier to refactor these clones in a clean
way. About 40 percent of the duplication
can be refactored through method extraction,
while other clones require other refactoring
techniques or further transformations. Future
measurements will provide further insight into
what clones should be refactored to improve
the design of software systems.

1 Introduction

Duplication in source code is often seen as one of
the most harmful types of technical debt. In Martin

Copyright c© 2019 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

In: Anne Etien (eds.): Proceedings of the 12th Seminar on Ad-
vanced Techniques Tools for Software Evolution, Bolzano, Italy,
July 8-10 2019, published at http://ceur-ws.org

Fowler’s “Refactoring” book [Fow99], he claims that
“If you see the same code structure in more than one
place, you can be sure that your program will be bet-
ter if you find a way to unify them.”. Bruntink et
al. [BVDVET05] show that code clones can contribute
up to 25% of the code size, which has a negative im-
pact on the maintainability.

Refactoring is used to improve the quality-related
attributes of a codebase (maintainability, performance,
etc.) without changing the functionality. Many meth-
ods were introduced to aid the process of refactor-
ing [Fow99, Wak04], and are integrated into most mod-
ern IDE’s. However, most of these methods still re-
quire a manual assessment of where and when to ap-
ply them. This means refactoring is either a signifi-
cant part of the development process [LST78, MT04],
or does not happen at all [MVD+03]. For a large part,
proper refactoring requires domain knowledge. How-
ever, there are also refactoring opportunities that are
rather trivial and repetitive to execute. Our goal is
investigating to what extend code clones can be auto-
matically refactored.

A survey by Roy et al. [RC07] describes various
ways in which clones can be identified. Most clone
detection tools focus on finding clones that align with
these definitions. In this paper, we outline challenges
with these clone type definitions when considered in
a refactoring context. We next propose solutions to
these problems that would enable the detection of
clones that can and should be refactored, rather than
fragments of code that are just similar.

We focus mainly on the Java programming language
as refactoring opportunities feature paradigm and
programming language dependent aspects [CYI+11].
However, most practices featured currently in our work
will also be applicable to other object-oriented lan-
guages, like C# and Python. This is because these
programming languages share many similarities re-
garding refactoring opportunities.

1

Our end goal is to improve upon the current state-
of-the-art in clone research [FZ15, Alw17] by building
a clone refactoring tool that can analyze the context of
code clones to get a profile of how a clone can be refac-
tored. This tool then automatically applies refactor-
ings to a large percentage of clones found. The design
decisions for this tool are made on basis of data gath-
ered from a large corpus of software systems together
with our own experience and findings from literature.

1.1 Research questions

We have formalized the following research questions
in order to improve upon the state-of-the-art in code
duplication refactoring:

RQ1. How can we define clone types such that
they can be automatically refactored?
RQ2. What are the discriminating factors to decide
when a clone should be refactored?
RQ3. To what extent can we automate the process
of refactoring clones?

For RQ1 we look into current clone definitions and
clone detection methods and assess their suitability
for refactoring purposes. For RQ2 we look into what
thresholds we should use to identify clones that, when
refactored, improve the design of the system. RQ3 is
currently work in progress.

2 Background

As code clones are seen as one of the most harmful
types of technical debt, they have been studied ex-
tensively. A survey by Roy et al. [RC07] states defi-
nitions of important concepts in code clone research.
For instance, “clone pair” is defined as a set of two
code portions/fragments which are identical or simi-
lar to each other ; “clone class” as the union of all
clone pairs; “clone instance” as a single code por-
tion/fragment that is part of either a clone pair or
clone class.

2.1 Advantages of clone classes over clone
pairs

Regarding clone detection, there is a lot of variability
in literature whether clone pairs or clone classes should
be considered for detection. We decided to focus on
clone classes, because of the advantages for refactoring.
Clone pairs do not provide a general overview of all en-
tities containing the clones, with all their related issues
and characteristics [FZZ12]. Although clone classes
are harder to manage, they provide all information
needed to plan a suitable refactoring strategy, since
this way all instances of a clone are considered. An-
other issue that results from grouping clones by pairs:

the amount of clone references increases according to
the binomial coefficient formula (two clones form a
pair, three clones form three pairs, four clones form
six pairs, and so on), which causes a heavy informa-
tion redundancy [FZZ12].

2.2 Clone types

In a 2007 survey by Roy et al. [RC07] he defines
several types of clones:

Type 1: Identical code fragments except for
variations in whitespace (may also be variations in
layout) and comments.
Type 2: Structurally/syntactically identical frag-
ments except for variations in identifiers, literals,
types, layout and comments.
Type 3: Copied fragments with further modifica-
tions. Statements can be changed, added or removed
in addition to variations in identifiers, literals, types,
layout, and comments.

A higher type of clone means that it is harder to
detect. It also makes the clone harder to refactor, as
more transformations would be required. Higher clone
types also become more disputable whether they actu-
ally indicate a harmful anti-pattern (as not every clone
is harmful [JX10, KG08]).

There also exists a type 4 clone, denoting function-
ally equal code. We decided not to consider these
clones in this study, because of the serious challenges
in their detection and refactoring.

2.3 Related work in clone refactoring tools

The Duplicated Code Refactoring Advisor (DCRA)
looks into refactoring opportunities for clone
pairs [FZZ12, FZ15]. DCRA only focuses on
refactoring clone pairs, with the authors arguing that
clone pairs are much easier to manage when consid-
ered singularly. As intermediate steps, the authors
measure a corpus of Java systems for some clone-
related properties of the systems, like the relation (in
terms of inheritance) between code fragments in a
clone pair. We further look into these measurements
in Sec. 6.4.1.

A tool named Aries [HKK+04, HKI08] focuses on
the detection of refactorable clones. They do this
based on the relation between clone instances through
inheritance, similar to Fontana et al. [FZZ12]. This
tool only proposes a refactoring opportunity and does
not provide help in the process of applying the refac-
toring.

We investigated several research efforts that look
into code clone refactoring [Alw17, CKS18, KN01].
However, all of these tools only support a subset of all

2

harmful clones that are found. Also, these tools are
limited to suggesting refactoring opportunities, rather
than actually applying refactorings where suitable. Fi-
nally, all published approaches have limitations, such
as false positives in their clone detection [CKS18] or
being limited to clone pairs [HKI08].

3 Addressing problems with clone type
definitions

For each of type 1-3 clones [RC07] (further explain in
Sec. 2.2) we list our solutions to their shortcomings
to increase the chance that we can refactor the clone
while improving the design.

4 Shortcomings of clone types

Clone type 1-3 [RC07] allow reasoning about the du-
plication in a software system. Clones by these defini-
tions can relatively easily and efficiently be detected.
This has allowed for large scale analyses of duplica-
tion [LHMI07]. However, these clone type definitions
have shortcomings which make the clones detected in
correspondence with these definitions less valuable for
(automated) refactoring purposes.

In this section, we discuss the shortcomings of the
different clone type definitions. Because of these short-
comings, clones found by these definitions are often
found to require additional judgment whether they
should and can be refactored.

4.1 Type 1 clones

Type 1 clones are identical clone fragments except for
variations in whitespace and comments [RC07]. This
allows for the detection of clones that are the result
of copying and pasting existing code, along with other
reasons why duplicates might get into a codebase.

Type 1 clones are by most clone detection
tools [KKI02, SYCI17, RC08, SR16, SR14] imple-
mented as textual equality between code fragments
(except for whitespace and comments). Although tex-
tually equal, method calls can still refer to different
methods, type declarations can still refer to different
types and variables can be of a different type. In such
cases, refactoring opportunities could be invalidated.
This can make type 1 clones less suitable for refactor-
ing purposes, as they require additional judgment re-
garding the refactorability of such a clone. When aim-
ing to automatically refactor clones, applying refactor-
ings to type 1 clones is bound to be error prone and
can result in an uncompilable project or a difference
in functionality.

Because of this, not all type 1 clones may be sub-
ject to refactoring. In section we describe an alterna-

tive approach towards detecting type 1 clones, which
results in only clones that can be refactored.

4.2 Type 2 clones

Type 2 clones are structurally/syntactically identical
fragments except for variations in identifiers, literals,
types, layout and comments [RC07]. This definition al-
lows for the reasoning about code fragments that were
copied and pasted, and then slightly modified. For
refactoring purposes, this definition is unsuitable; if
we allow any change in identifiers, literals, and types,
we cannot distinguish between different variables, dif-
ferent types and different method calls anymore. This
could render two methods that have an entirely differ-
ent functionality as clones. Merging such clones can
be harmful instead of helpful.

Figure 1: Example of a type 2 clone.

The example in Fig. 1 shows a type 2 clone that
poses no harm to the design of the system. Both
methods are, except for their matching structure, com-
pletely different in functionality. They operate on dif-
ferent types, call different methods, return different
things, etc. Having such a method flagged as a clone
does not provide much useful information.

When looking at refactoring, type 2 clones can be
difficult to refactor. For instance, if we have variability
in types, the code can describe operations on two com-
pletely dissimilar types. Type 2 clones do not differ-
entiate between primitives and reference types, which
further undermines the usefulness of clones detected
by this definition.

4.3 Type 3 clones

Type 3 clones are copied fragments with further mod-
ification (having added, removed or changed state-
ments) [RC07]. Detection of clones by this definition
can be hard, as it may be hard to detect whether a
fragment was copied in the first place if it was severely
changed. Because of this, most clone detection im-
plementations of type 3 clones work on basis of a
similarity threshold [RC08, RK19, JMSG07, SYCI17].
This similarity threshold has been implemented in
different ways: textual similarity (for instance us-
ing Levenshtein distance) [LM11], token-level similar-
ity [SSS+16] or statement-level similarity [KS17].

Having a definition that allows for any change in
code poses serious challenges on refactoring. A Leven-
shtein distance of one can already change the meaning
of a code fragment significantly, for instance, if the

3

name of a type differs by a character (and thus refer-
ring to different types).

4.4 Refactoring-oriented clone types

To resolve the shortcomings of clone types as outlined
in the previous section, we propose alternative defini-
tions for clone types directed at detecting clones that
can and should be refactored. We have named these
clones T1R (type 1R), T2R and T3R clones. These
definitions address problems of the corresponding lit-
erature definitions. The “R” stands for refactoring-
oriented.

4.4.1 Type 1R clones

To solve the issues identified in Sec. 4.1, we introduce
an alternative definition: cloned fragments have to be
both textually and functionally equal. Therefore, T1R
clones are a subset of type 1 clones.

We check functional equality of two fragments by
comparing the equality of the fully qualified identi-
fier (FQI) for referenced types, methods and vari-
ables. If an identifier is fully qualified, it means
we specify the full location of its declaration (e.g.
com.sb.fruit.Apple for an Apple object). For
method calls, we also compare the equality of the FQI
of the type of each of its arguments, to differentiate
between overloaded method variants.

4.4.2 Type 2R clones

To solve the issues identifier in Sec. 4.2, we intro-
duce an alternative definition. All rules that apply
to T1R clones also apply to T2R clones. Additionally,
T2R clones allow variability in literals, variables and
method calls. Furthermore, T2R clones allow variabil-
ity in method names and class/enum/interface names.

When refactoring two fragments that differ by liter-
als, called methods or used variables, we are faced with
a design tradeoff. When replacing the cloned frag-
ments by a new method, we need an extra argument
for each literal, called method or used variable that
differs. This can be done as long as the type of used
literals/variables and the signature of called methods
are equal.

To limit the negative impact of this tradeoff on the
design of the system, we formalized a threshold for the
variability between fragments. The formula by which
this threshold is calculated is displayed in equation 1.
In this formula, different expressions refers to the num-
ber of literals, variables and method calls that differ
from other clone instances in a clone class. We di-
vide this by the total number of tokens in the clone
instance. Based on this threshold, we decide whether

a clone should be considered for refactoring.

T2R Variability =
Different expressions

Total tokens
∗ 100 (1)

4.4.3 Type 3R clones

Type 3 clones allow any change in statements (added,
removed and changed statements). When looking at
how we can refactor a statement that is not included
by one clone instance but is in another, we find that
we require a conditional block to make up for the dif-
ference in statements. This is a tradeoff, as an added
conditional block increases the complexity of the sys-
tem. Because of that, we defined T3R clones in such a
way that they are directed towards finding clones that
are worth this tradeoff.

All rules that apply to T2R clones also apply to T3R
clones. Additionally, T3R clones allow a gap between
two clone classes of statements that are not cloned.
The following rules apply to this gap:

• The difference in statements must bridge a
gap between two clones that were valid by
the original thresholds. This entails that, dif-
ferent from type 3 clones, the difference in state-
ments cannot be at the beginning or the end of a
cloned block. It is rather somewhere within, as it
must bridge two existent clones.

• The size of the gap between two clones is
limited by a threshold. This threshold is cal-
culated by taking the percentage of the number of
statements in the gap over the number of state-
ments that both clones that are being bridged
span. This is displayed in equation 2.

• The gap may not span a partial block. To
make sure that the T3R clone can be refactored,
we do not allow the gap to span a part of a block,
for instance, the declaration and a part of the
body of a for-loop. The reason for this is that it is
not possible to wrap a partially spanned block in a
single conditional statement. We could, however,
use multiple conditional blocks (one for each block
spanned), but due to the detrimental effect on the
design of the code (as each conditional block adds
a certain complexity), we decided not to allow this
for T3R clones.

T3R Gap Size =
Statements in gap

Statements in clones
∗ 100 (2)

4

4.4.4 The challenge of detecting these clones

To detect each type of clone, we need to parse the FQI
of all types, method calls, and variables. This comes
with challenges, regarding both performance and im-
plementation. To trace the declarations of variables,
methods, and types, we might need to follow cross-file
references. The referenced types/variables/methods
might even not be part of the project, but rather of an
external library or the standard libraries of the pro-
gramming language. All these factors need to be con-
sidered for the referenced entity to be found, on basis
of which an FQI can be created.

5 Clone Detection

As duplication in source code is a serious problem in
many software systems, many tools have been pro-
posed to detect various types of code clones [SK16,
SR14]. However, these tools were not yet assessed in
terms of automatically refactoring clones. In this sec-
tion, we first assess a set of modern clone detection
tools for their applicability to this domain. Next, we
introduce our own tool geared towards automatic clone
refactoring, CloneRefactor.

5.1 Survey on Clone Detection Tools

We conducted a short survey on (recent) clone detec-
tion tools that we could use to analyze refactoring pos-
sibilities. The results of our survey are displayed in
table 1. We chose a set of tools that are open source
and can analyze a popular object-oriented program-
ming language. Next, we formulate the following four
criteria by which we analyze these tools:

1. Should find clones in any context. Some
tools only find clones in specific contexts, such as
only method level clones. We want to perform an
analysis of all clones in projects to get a complete
overview.

2. Finds clone classes in control projects. We
assembled a number of control projects to assess
the validity of clone detection tools.

3. Can analyze resolved symbols. When detect-
ing the types proposed in Sec. 4.4, it is important
that we can analyze resolved symbols (for instance
a type reference). The rationale for this is further
explained in 4.4.4.

4. Extensive detection configuration. Detect-
ing our clone definitions, as proposed in Sec. 4.4,
require to have some understanding about the
meaning of tokens in the source code (whether
a certain token is a type, variable, etc.). The tool

should recognize such structures, in order for us
to configure our clone type definitions in the tool.

Table 1: Our survey on clone detection tools.

Clone Detection Tool (1) (2) (3) (4)
Siamese [RK19]
NiCAD [RC08, CR11]
CPD [RCK09]
CCFinder [KKI02]
D-CCFinder [LHMI07]
CCFinderSW [SYCI17]
SourcererCC [SSS+16]
Oreo [SFL+18]
BigCloneEval [SR16]
Deckard [JMSG07]
Scorpio [HMK13, KS17]

Apart from these criteria, we found that the output
of these clone detection tools cannot be post-processed
to find the clone types proposed in Sec. 4.4. This is
mainly because the clones of T2R are not a subset of
type 2 clones and will thus require an analysis of the
entire system.

5.2 CloneRefactor

None of the state-of-the-art tools we identified imple-
ment all our criteria, so we decided to implement our
own clone detection tool: CloneRefactor1. In this tool,
we implemented both the literature clone types [RC07]
and our refactoring-oriented clone types as described
in Sec. 4.4.

Our tool is based on the JavaParser li-
brary [SvBT18]. This library can parse Java
source code to an AST representation. This AST can
then be analyzed, modified and eventually written
back to source code. This allows us to perform
AST-based clone detection and apply transformations
to the AST based on the clones found.

CloneRefactor walks the AST and collects each dec-
laration and statement (similar to the Scorpio clone
detection tool [HMK13]). It then builds a graph rep-
resentation on basis of this AST, in which each dec-
laration and statement becomes a node. This graph
representation maps the following relations for each
declaration and statement:

• The declaration/statement preceding it

• The declaration/statement following it

• The previous statement/declaration that is cloned

1CloneRefactor is available on GitHub: https://github.

com/SimonBaars/CloneRefactor

5

https://github.com/SimonBaars/CloneRefactor
https://github.com/SimonBaars/CloneRefactor

Whether a node is considered a clone depends on
the clone type that is being analyzed. On basis of
this graph, we detect clone classes. We compare clone
classes against thresholds and remove the clone classes
that do not pass the test.

6 Experiments

This section outlines the conducted experiments to de-
termine refactoring opportunities for code clones. We
show the corpus on which we have performed our mea-
surements in Sec. 6.1. Next, we look into the thresh-
olds that determine whether duplicated fragments are
considered a clone in Sec. 6.2. We then show a com-
parison between the different proposed clone types in
Sec. 6.3. Afterward, we perform an analysis of the
context of code clones in Sec. 6.4. Finally, we map
refactoring opportunities for clones in Sec. 6.5.

All experiments were conducted using CloneRefac-
tor, which contains scripts for running large scale clone
detection over the indicated corpus.

6.1 The corpus

For our experiments, we use a large corpus of open
source projects [AS13]. This corpus has been assem-
bled to contain relatively higher quality projects. Also,
any duplicate projects and files were removed from
this corpus. This results in a variety of Java projects
that reflect the quality of average open source Java
systems and are useful to perform measurements on.
We filtered this corpus further to only include projects
that use Maven, which is a build tool which is mainly
used to manage dependencies in the Java ecosystem.
We then filtered the corpus further to only include
projects for which all external dependencies are avail-
able, as CloneRefactor requires all dependencies of a
project in order to accurately resolve all its symbols.
This resulted in 1.343 projects of varying sizes averag-
ing at 980 source lines of code (omitting whitespace,
comments) per project.

6.2 Thresholds

Thresholds are a tool that aid in the process of de-
ciding whether a clone should be refactored. Many
clone detection tools focus on either the number
of lines [KKI02, SR16], number of tokens [RC08,
SSS+16, RK19] and/or number of nodes (declara-
tions/statements) [HMK13] to decide whether code
fragments should be considered clones of each other.
A comparison of clone detection tools by Bellon et
al. [BKA+07] shows that most clone detection tools
choose a minimum of 6 lines of code to be duplicate
to consider code fragments a clone. The Scorpio clone
detection tool uses this same number as minimum the

number of nodes [HMK13]. Many token based tools
use a threshold of 50 tokens for fragments to be con-
sidered a clone [SSS+16].

We would argue that going with this “magic num-
ber 6” eliminates a lot of harmful clones that should
be refactored. For instance, a single 100-token state-
ment will not be considered by such a threshold, which
can still be harmful to the system design when cloned.
Because of that, we decided to perform our measure-
ments using thresholds that will include most clones
that should be refactored, while eliminating most of
the noise. With “noise” we mean duplication that has
no relevancy towards refactoring, like a single token
that is duplicated elsewhere.

To find such a threshold, we measured the num-
ber of clone classes found for a certain number of to-
kens. We then looked at the number of nodes (state-
ments/declarations) that these clones span. The re-
sulting chart is displayed in Fig. 2.

Figure 2: Amount of times a clone with a certain num-
ber of tokens has a certain number of nodes.

0

10000

20000

30000

40000

50000

60000

70000

1 6 11 16 21 26

Am
ou

nt
 o

f c
lo

ne
 c

la
ss

es

Amount of tokens

1 node 2 nodes 3 nodes 4 nodes 5 nodes 6 nodes

In this chart, we see that when seeking clones with
a minimum of 10 tokens, there are more clones that
span 2 statements than clones that span one state-
ment. We manually assessed these clones, and mainly
the two-statement clones contain many clones that we
classified as “should be refactored”. Because of this,
we decided to go with a minimum of 10 tokens thresh-
old for our experiments.

6.3 Clone types

In this section we display the differences between clone
type 1-3 [RC07] and type 1R-3R as proposed in Sec.
4.4. When running our clone detection script over the
corpus, we get the results displayed in Fig. 3.

6

Figure 3: Number of cloned declarations/statements.

149,569
167,913

196,123

300,353

196,788

301,326

T1R T1 T2R T2 T3R T3
0

50,000

100,000

150,000

200,000

250,000

300,000

350,000
Am

ou
nt

 o
f c

lo
ne

d
no

de
s

In this figure, the number of cloned nodes per clone
type are displayed. The difference between T1R and
T1 is small (10.9%), because most often textually
equal code is also functionally equal. The difference
between T2R and T2 is bigger (34.7%) because the
T2R definition is more strict. T3R and T3 are similar
to T2R and T2 because our dataset does not have so
many gapped clones for the thresholds used.

We also measured the duration of finding clones by
the different clone types. Fig. 4 shows the duration of
detecting all clones in the corpus using CloneRefactor
for different clone types. Although this data is partly
dependent on our implementation of the clone types,
there is a notable difference between the refactoring-
oriented clone types and the literature clone types.
The reason for this is further explained in Sec. 4.4.4.

Figure 4: Duration in minutes of identifying clones for
clone type definitions.

20.83

1.58

29.41

6.80

29.51

6.96

T1R T1 T2R T2 T3R T3
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

D
ur

at
io

n
(m

in
ut

es
)

6.4 Context Analysis of Clones

To be able to refactor code clones, it is important to
consider the context of the clone. We define the fol-
lowing aspects of the clone as its context:

1. Relation: The relation of clone instances among
each other through inheritance.

2. Location: Where a clone instance occurs in the
code.

3. Contents: The statements/declarations of a
clone instance.

We perform experiments on each of these aspects,
defining categories and measuring these categories over
the corpus.

Figure 5: Abstract representation of clone classes and
clone instances.

Clone Class
● Inheritance relation

Clone instance
● Location (file & range)

● Contents (declarations
& statements)

Clone instance
● Location (file & range)

● Contents (declarations
& statements)

Clone instance
● Location (file & range)

● Contents (declarations
& statements)

Fig. 5 shows an abstract representation of clone
classes and clone instances. The relation of clones
through inheritance is measured for each clone class.
The location and contents of clones are measured for
each clone instance.

All data shown in this section is measured using the
T1R clone definition. We have performed the same
measurements for the other type definitions and found
that they follow similar trends. Because of that, we
decided not to further show them in this section.

6.4.1 Relations Between Clone Instances

When merging code clones in object-oriented lan-
guages, it is important to consider the inheritance re-
lation between clone instances. This relation has a big
impact on how a clone should be refactored.

Fontana et al. [FZ15] describe measurements on 50
open source projects on the relation of clone instances
to each other. To do this, they first define several
categories for the relation between clone instances in
object-oriented languages. These categories are as fol-
lows:

1. Same method: All instances of the clone class
are in the same method.

7

2. Same class: All instances of the clone class are
in the same class.

3. Superclass: All instances of the clone class are
child or parent of each other.

4. Ancestor class: All instances of the clone class
are superclasses except for the direct superclass.

5. Sibling class: All instances of the clone class
have the same parent class.

6. First cousin class: All instances of the clone
class have the same grandparent class.

7. Common hierarchy class: All instances of the
clone class belong to the same inheritance hierar-
chy, but do not belong to any of the other cate-
gories.

8. Same external superclass: All instances of the
clone class have the same superclass, but this su-
perclass is not included in the project but part of
a library.

9. Unrelated class: There is at least one instance
in the clone class that is not in the same hierarchy.

Figure 6: Abstract figure displaying relations of clone
classes. Arrows represent superclass relations.

Same Class

Superclass

Sibling

Ancestor

Same
Hierarchy

First CousinFirst Cousin

We use a similar setup to that used by Fontana
et al. (Table 3 of Fontana et al. [FZ15]). Fontana
et al. measure clones using their own tool (DCRA).
As explained in Sec. 5.1, we chose to implement our
own tool, CloneRefactor. Therefore, the setup for our
measurements differs as follows from Fontana et al.:

• We consider clone classes rather than clone pairs.
The rationale for this is given in Sec. 2.1.

• We use different thresholds regarding when a
clone should be considered. Fontana et al. seek
clones that span a minimum of 7 source lines of
code (SLOC). We seek clones with a minimum size
of 6 statements/declarations. This is explained
detail in Sec. 6.2.

• We seek duplicates by statement/declaration
rather than SLOC. This makes our analysis de-
pend less on the coding style (in terms of newline
usage) of the author of the software project.

• We test a broader range of projects. Fontana et
al. use a set of 50 relatively large projects. We
use the corpus as explained in 6.1, which contains
a diverse set of projects (diverse both in volume
and code quality).

Table 2 contains our results regarding the relations
between clone instances.

Table 2: Clone relations

Relation # %
Unrelated 12,368 34.88
Same Class 11,483 32.38
Same Method 5,056 14.26
Sibling 4,182 11.79
External Superclass 1,066 3.01
Superclass 558 1.57
First Cousin 489 1.38
Common Hierarchy 206 0.58
Ancestor 54 0.15

The most notable difference when comparing it to
the results of Fontana et al. [FZ15] is that in our re-
sults most of the clones are unrelated (34.44%), while
for them it was only 15.70%. This is likely due to the
fact that we consider clone classes rather than clone
pairs, and mark the clone class “Unrelated” even if
just one of the clone instances is outside a hierarchy.
It could also be that the corpus which we use, as it has
generally smaller projects, uses more classes from out-
side the project (which are marked “Unrelated” if they
do not have a common external superclass). About a
third of all clone classes have all instances in the same
class, which is generally easy to refactor. On the third
place come the clones that are in the same method,
which are similarly easy to refactor.

6.4.2 Clone instance location

After mapping the relations between individual clones,
we considered at the location of individual clone in-
stances. A paper by Lozano et al. [LWN07] discusses
the harmfulness of cloning. The authors argue that

8

98% are produced at method level. However, this
claim is based on a small dataset and based on hu-
man copy-paste behavior rather than static code anal-
ysis. We validated this claim over our corpus, using
the following categories:

1. Method/Constructor Level: A clone instance
that does not exceed the boundaries of a single
method or constructor (optionally including the
declaration of the method or constructor itself).

2. Class Level: A clone instance in a class, that
exceeds the boundaries of a single method or con-
tains something else in the class (like field decla-
rations, other methods, etc.).

3. Interface/Enumeration Level: A clone that is
(a part of) an interface or enumeration.

The results are shown in Table 3. Our results indi-
cate that, quite significantly, most clones are found at
methodlevel. The number of clones found in interfaces
and enumerations is very low.

Table 3: Clone instance locations

Location # %
Method Level 83,813 82.62
Class Level 12,534 12.35
Constructor Level 4,391 4.33
Interface Level 567 0.56
Enum Level 145 0.14

6.4.3 Clone instance contents

Finally, we looked at the contents of individual clone
instances: what combination of declarations and state-
ments they span. We selected the following categories
to be relevant for refactoring:

1. Full Method/Class/Interface/Enumeration:
A clone that spans a full class, method, con-
structor, interface or enumeration, including its
declaration.

2. Partial Method/Constructor: A clone that
spans a method partially.

3. Several Methods: A clone that spans over two
or more methods, either fully or partially.

4. Only Fields: A clone that spans only global vari-
ables.

5. Includes Fields/Constructor: A clone that
spans fields/constructors, but can also span other
statements or declarations.

6. Method/Class/Interface/Enumeration
Declaration: A clone that contains the decla-
ration (usually the first line) of a class, method,
interface or enumeration.

The results for these categories are displayed in Ta-
ble 4.

Table 4: Clone instance contents

Contents # %
Partial Method 79,945 78.80
Several Methods 7,323 7.22
Partial Constructor 4,385 4.32
Full Method 3,868 3.81
Only Fields 3,039 3.00
Includes Constructor 1,522 1.50
Includes Field 616 0.61
Includes Class Declaration 376 0.37
Other Categories 376 0.37

Unsurprisingly, most clones span a part of a
method. The most used refactoring technique for
clones that span part of a method is “Extract
Method”. Because of that, we focus our research ef-
forts on refactoring such clones.

6.5 Method extraction opportunities

The most used technique to refactor clones is method
extraction (creating a new method on basis of the con-
tents of clones). However, method extraction cannot
be applied in all cases. In these instances, more con-
ditions may apply to be able to conduct a refactoring,
if beneficial at all.

We measured the number of clones that can be
refactored through method extraction (without addi-
tional transformations being required). Our results are
displayed in Table 5. In this table we use the following
categories:

• Can be extracted: This clone is a fragment of
code that can directly be extracted to a method.
Then, based on the relation between the clone
instances, further refactoring techniques can be
used to refactor the extracted methods (for in-
stance “pull up method” for clones in sibling
classes).

• Complex control flow: This clone contains
break, continue or return statements, obstruct-
ing the possibility of method extraction.

• Spans part of a block: This clone spans a part
of a statement.

9

• Is not a partial method: If the clone does not
fall in the “Partial method” category of Table 4,
the “extract method” refactoring technique can-
not be applied.

Table 5: Refactorability through method extraction

%
Can be extracted 14,664 41.35
Spans part of a block 10,801 30.46
Is not a partial method 8,074 22.77
Complex control flow 1,922 5.42

From Table 5, we can see that 41% of the clones can
directly be refactored through method extraction (and
possibly other refactoring techniques based on the re-
lation of the clone instances). For the other clones,
other techniques or transformations will be required.

7 Threats to validity

We noticed that, when doing measurements on a cor-
pus of this size, the thresholds that we use for the
clone detection have a big impact on the results. There
does not seem to be one golden set of thresholds, some
thresholds work in some situations but fail in others.
We have chosen thresholds that, according to our ex-
periments and assessments, seemed optimal. However,
by using these, we might have some “noise” in our re-
sults of clones that should not be considered for refac-
toring.

8 Conclusion and next steps

In this research we made three novel contributions:

• We proposed a method with which we can detect
clones that can/should be refactored.

• We mapped the context of clones in a large corpus
of open source systems.

• We mapped the opportunities to perform the “Ex-
tract Method” refactoring technique on clones
this corpus.

We have looked into existing definitions for differ-
ent types of clones [RC07] and proposed solutions for
problems that these types have with regards to au-
tomated refactoring. We propose that fully qualified
identifiers (FQIs) of method call signatures and type
references should be considered instead of their plain
text representation, to ensure refactorability. Further-
more, we propose that one should define a threshold
for variability in variables, literals, and method calls,
in order to limit the number of parameters that the
refactored method will have.

We analyzed the context of different kinds of clones
and prioritized their refactoring. Firstly, we looked at
the inheritance relation of clone instances in a clone
class. We found that a little more than a third of
all clone classes are flagged unrelated, which means
that they have at least one instance that has no rela-
tion through inheritance with the other instances. For
about a third of the clone classes all of their instances
are in the same class.

Secondly, we looked at the location of clone in-
stances. Most clone instances (79 percent) are found
at method level. Because of that, we concluded that
our main refactoring focus should be aimed at method
level clones. A common method to refactor such clones
is by extracting a new method on basis of the contents
of the clone. However, method extraction cannot be
applied in all cases. According to our experiments,
about 40 percent of the clones can be refactored by
extracting them to a new method.

8.1 Next steps

Our next step is to implement the “Extract Method”
refactoring for the identified automatic refactoring op-
portunities. On basis of the resulting code, we can
perform experiments that compare the maintainabil-
ity index of the refactored code to the original code.
The maintainability index of a system is an aggrega-
tion of various metrics that test a systems’ maintain-
ability (like volume, complexity, duplication, etc.). If
we can automatically apply refactorings to the identi-
fied clones, this maintainability index can be used to
select more optimal threshold values.

Acknowledgements

We would like to thank the Software Improvement
Group (SIG) for their continuous support in this
project.

References

[Alw17] Asif Alwaqfi. A Refactoring Technique
for Large Groups of Software Clones.
PhD thesis, Concordia University, 2017.

[AS13] Miltiadis Allamanis and Charles Sut-
ton. Mining Source Code Repositories
at Massive Scale using Language Mod-
eling. In The 10th Working Conference
on Mining Software Repositories, pages
207–216. IEEE, 2013.

[BKA+07] Stefan Bellon, Rainer Koschke, Giulio
Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and evaluation
of clone detection tools. IEEE

10

Transactions on software engineering,
33(9):577–591, 2007.

[BVDVET05] Magiel Bruntink, Arie Van Deursen,
Remco Van Engelen, and Tom Tourwe.
On the use of clone detection for identi-
fying crosscutting concern code. IEEE
Transactions on Software Engineering,
31(10):804–818, 2005.

[CKS18] Zhiyuan Chen, Young-Woo Kwon, and
Myoungkyu Song. Clone refactoring in-
spection by summarizing clone refactor-
ings and detecting inconsistent changes
during software evolution. Journal
of Software: Evolution and Process,
30(10):e1951, 2018.

[CR11] James R Cordy and Chanchal K Roy.
The nicad clone detector. In 2011 IEEE
19th International Conference on Pro-
gram Comprehension, pages 219–220.
IEEE, 2011.

[CYI+11] Eunjong Choi, Norihiro Yoshida,
Takashi Ishio, Katsuro Inoue, and
Tateki Sano. Extracting code clones
for refactoring using combinations of
clone metrics. In Proceedings of the 5th
International Workshop on Software
Clones, pages 7–13. ACM, 2011.

[Fow99] Martin Fowler. Refactoring: improving
the design of existing code. Addison-
Wesley Professional, 1999.

[FZ15] Francesca Arcelli Fontana and Marco
Zanoni. A duplicated code refactoring
advisor. In International Conference on
Agile Software Development, pages 3–
14. Springer, 2015.

[FZZ12] Francesca Arcelli Fontana, Marco
Zanoni, and Francesco Zanoni. Du-
plicated Code Refactoring Advisor
(DCRA): a tool aimed at suggest-
ing the best refactoring techniques
of Java code clones. PhD thesis,
UNIVERSIT DEGLI STUDI DI
MILANO-BICOCCA, 2012.

[HKI08] Yoshiki Higo, Shinji Kusumoto, and
Katsuro Inoue. A metric-based ap-
proach to identifying refactoring op-
portunities for merging code clones in
a java software system. Journal of
Software Maintenance and Evolution:

Research and Practice, 20(6):435–461,
2008.

[HKK+04] Yoshiki Higo, Toshihiro Kamiya,
Shinji Kusumoto, Katsuro Inoue, and
K Words. Aries: Refactoring support
environment based on code clone anal-
ysis. In IASTED Conf. on Software
Engineering and Applications, pages
222–229, 2004.

[HMK13] Yoshiki Higo, Hiroaki Murakami, and
Shinji Kusumoto. Revisiting capability
of pdg-based clone detection. Technical
report, Citeseer, 2013.

[JMSG07] Lingxiao Jiang, Ghassan Misherghi,
Zhendong Su, and Stephane Glondu.
Deckard: Scalable and accurate tree-
based detection of code clones. In Pro-
ceedings of the 29th international con-
ference on Software Engineering, pages
96–105. IEEE Computer Society, 2007.

[JX10] Stan Jarzabek and Yinxing Xue. Are
clones harmful for maintenance? In
Proceedings of the 4th International
Workshop on Software Clones, IWSC
’10, pages 73–74, New York, NY, USA,
2010. ACM.

[KG08] Cory J Kapser and Michael W God-
frey. cloning considered harmful con-
sidered harmful: patterns of cloning in
software. Empirical Software Engineer-
ing, 13(6):645, 2008.

[KKI02] Toshihiro Kamiya, Shinji Kusumoto,
and Katsuro Inoue. Ccfinder: a multi-
linguistic token-based code clone detec-
tion system for large scale source code.
IEEE Transactions on Software Engi-
neering, 28(7):654–670, 2002.

[KN01] Georges Golomingi Koni-NSapu. A sce-
nario based approach for refactoring
duplicated code in object oriented sys-
tems. Master’s thesis, University of
Bern, 2001.

[KS17] CM Kamalpriya and Paramvir Singh.
Enhancing program dependency graph
based clone detection using approxi-
mate subgraph matching. In 2017 IEEE
11th International Workshop on Soft-
ware Clones (IWSC), pages 1–7. IEEE,
2017.

11

[LHMI07] Simone Livieri, Yoshiki Higo, Makoto
Matushita, and Katsuro Inoue. Very-
large scale code clone analysis and vi-
sualization of open source programs
using distributed ccfinder: D-ccfinder.
In 29th International Conference on
Software Engineering (ICSE’07), pages
106–115. IEEE, 2007.

[LM11] Thierry Lavoie and Ettore Merlo. Au-
tomated type-3 clone oracle using lev-
enshtein metric. In Proceedings of the
5th international workshop on software
clones, pages 34–40. ACM, 2011.

[LST78] Bennet P Lientz, E. Burton Swan-
son, and Gail E Tompkins. Charac-
teristics of application software main-
tenance. Communications of the ACM,
21(6):466–471, 1978.

[LWN07] Angela Lozano, Michel Wermelinger,
and Bashar Nuseibeh. Evaluating
the harmfulness of cloning: A change
based experiment. In Fourth Interna-
tional Workshop on Mining Software
Repositories (MSR’07: ICSE Work-
shops 2007), pages 18–18. IEEE, 2007.

[MT04] Tom Mens and Tom Tourwé. A sur-
vey of software refactoring. IEEE
Transactions on software engineering,
30(2):126–139, 2004.

[MVD+03] Tom Mens, Arie Van Deursen, et al.
Refactoring: Emerging trends and open
problems. In Proceedings First In-
ternational Workshop on REFactor-
ing: Achievements, Challenges, Effects
(REFACE), 2003.

[RC07] Chanchal Kumar Roy and James R
Cordy. A survey on software clone
detection research. Queens School of
Computing TR, 541(115):64–68, 2007.

[RC08] Chanchal K Roy and James R Cordy.
Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-
printing and code normalization. In
2008 16th iEEE international confer-
ence on program comprehension, pages
172–181. IEEE, 2008.

[RCK09] Chanchal K Roy, James R Cordy, and
Rainer Koschke. Comparison and eval-
uation of code clone detection tech-
niques and tools: A qualitative ap-

proach. Science of computer program-
ming, 74(7):470–495, 2009.

[RK19] Chaiyong Ragkhitwetsagul and Jens
Krinke. Siamese: scalable and incre-
mental code clone search via multiple
code representations. Empirical Soft-
ware Engineering, pages 1–49, 2019.

[SFL+18] Vaibhav Saini, Farima Farmahinifara-
hani, Yadong Lu, Pierre Baldi, and
Cristina V Lopes. Oreo: Detection of
clones in the twilight zone. In Pro-
ceedings of the 2018 26th ACM Joint
Meeting on European Software Engi-
neering Conference and Symposium on
the Foundations of Software Engineer-
ing, pages 354–365. ACM, 2018.

[SK16] Abdullah Sheneamer and Jugal Kalita.
A survey of software clone detection
techniques. International Journal of
Computer Applications, 137(10):1–21,
2016.

[SR14] Jeffrey Svajlenko and Chanchal K
Roy. Evaluating modern clone detec-
tion tools. In 2014 IEEE International
Conference on Software Maintenance
and Evolution, pages 321–330. IEEE,
2014.

[SR16] Jeffrey Svajlenko and Chanchal K
Roy. Bigcloneeval: A clone detection
tool evaluation framework with big-
clonebench. In 2016 IEEE Interna-
tional Conference on Software Mainte-
nance and Evolution (ICSME), pages
596–600. IEEE, 2016.

[SSS+16] Hitesh Sajnani, Vaibhav Saini, Jef-
frey Svajlenko, Chanchal K Roy, and
Cristina V Lopes. Sourcerercc: scal-
ing code clone detection to big-code.
In 2016 IEEE/ACM 38th International
Conference on Software Engineering
(ICSE), pages 1157–1168. IEEE, 2016.

[SvBT18] Nicholas Smith, Danny van Bruggen,
and Federico Tomassetti. Javaparser,
05 2018.

[SYCI17] Yuichi Semura, Norihiro Yoshida, Eun-
jong Choi, and Katsuro Inoue. Ccfind-
ersw: Clone detection tool with flexi-
ble multilingual tokenization. In 2017
24th Asia-Pacific Software Engineering

12

Conference (APSEC), pages 654–659.
IEEE, 2017.

[Wak04] William C Wake. Refactoring workbook.
Addison-Wesley Professional, 2004.

13

	Introduction
	Research questions

	Background
	Advantages of clone classes over clone pairs
	Clone types
	Related work in clone refactoring tools

	Addressing problems with clone type definitions
	Shortcomings of clone types
	Type 1 clones
	Type 2 clones
	Type 3 clones
	Refactoring-oriented clone types
	Type 1R clones
	Type 2R clones
	Type 3R clones
	The challenge of detecting these clones

	Clone Detection
	Survey on Clone Detection Tools
	CloneRefactor

	Experiments
	The corpus
	Thresholds
	Clone types
	Context Analysis of Clones
	Relations Between Clone Instances
	Clone instance location
	Clone instance contents

	Method extraction opportunities

	Threats to validity
	Conclusion and next steps
	Next steps

