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1  Introduction 
Modern information systems traditionally use heterogeneous information models of data, knowledge, and processes. This 
situation has developed historically, because previously, the power of computing systems was low, and the processing 
power of the information model was put at the forefront. The issues of integration of information systems and the 
unification of information models remained in the background. 

The situation has now changed. The emergence and active development of big data processing technologies, the 
expansion of the range of information, and analytical tasks have led to the fact that the processed data may well be 
knowledge, situations, processes. This requires new approaches to system integration and information models. 

Service-oriented approach (including its modern microservice version), to a certain extent, solves the problem of 
integration of information systems, but each system functions as a black box. Integration is possible only at the level of 
elements that are placed in the service interface.  

The multiagent approach can be considered as an extension of the service-oriented approach. This approach is proposed 
to be used for industry 4.0 [1], product life cycle management [2, 3], robotics systems [4], including social robotics [5]. The 
multiagent approach suggests that we should use an agent knowledge model that can be based on the ontological approach, 
but at the same time, be OLAP-like. 

For example, if we want to use an OLAP-like model to store and aggregate not numbers, but situations or processes, in 
order to solve informational-analytical tasks, using a service-oriented approach will not help, integration at the level of a 
unified information model is required. 

In this article, the metagraph model is considered as such a model, which allows describing complex data and processes 
within the unified approach. 

This article develops the ideas of the article [6], in which it was proposed to use the metagraph approach for 
multidimensional-ontological data model. However, in this article, we will try to give holistic description of the proposed 
approach, which will use the concept of the metagraph information space. 

The article is organized as follows. The formal definition of information-analytical system is given. The 
metaprogramming peculiarities in the information-analytical systems are discussed. A brief description of the metagraph 
model is given. The unified semantic description of the information-analytical system is proposed based on the metagraph 
approach.  
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2  The Information-Analytical System 
According to [7], the “Information-Analytical System” is “an automated system which carries out the storage, processing, 
analysis, and provision of information in a user-friendly form.” 

Based on this verbal definition, we can offer the following formal definition of an information-analytical system: 
, , ,DATA PROC INTRIAS IAS IAS IAS  (1) 

where IAS – information-analytical system; IASDATA – the data and knowledge component of information-analytical system, 
responsible for the “storage of information”; IASPROC – the information processes component of information-analytical 
system, responsible for “processing and analysis of information”; IASINTR – the user interface component of information-
analytical system, responsible for “input and provision of information in a user-friendly form.” 

Currently, a considerable number of technologies have been developed that allow implementing these components: 
 For the IASDATA component, there are relational and non-relational DBMS, RDF-based ontology storage tools. The 

most commonly used tool for the information-analytical system is OLAP technology [8], based on multidimensional 
data representation. 

 For the IASPROC component, there are programming languages, including specialized stored procedure languages for 
relational, non-relational, and multidimensional data. Nowadays, workflow and rule-based programming approaches 
are gaining popularity. For example, in the Drools system, it is possible to operate combined processing using the 
workflow technology approach and a rule-based programming approach. The advantages of a rules-based approach 
include flexibility. In this case, the program is not hardcoded but forward chained with rules based on the data. The 
disadvantages include the possibility of rules cycling and the complexity of processing a large set of rules. 
Nowadays, for the processing of a large set of rules, the Rete algorithm and its modifications are used. 

 For the IASINTR component, there are a considerable number of user interface technologies, based on desktop, web, 
and mobile approaches. Tools for dashboards and reports building are most commonly used in information-
analytical systems. 

Such a technology zoo creates serious problems in the development and especially with the support of information-
analytical systems. Each technology is dealt with by a separate group of specialists, for the successful implementation of the 
project between the groups should be established successful cooperation. 

One of the ways to reduce the technology zoo is the use of metaprogramming. 

3  The Metaprogramming in the Information-Analytical Systems 
Currently, the metaprogramming facilities in information systems development are used enough in isolation. For example, 
using web frameworks, it is possible to automatically generate simple forms of data input using the scaffolding mechanism. 
However, if it is necessary to create complex data entry forms for a Single Page Application (SPA), then such scaffolding 
tools will have to be created manually. 

Modern languages and programming tools, with rare exceptions, almost do not use homoiconicity in the sense of Lisp. 
Due to homoiconicity, in Lisp, a program fragment can be considered as a data set for another program fragment.  

According to [9]: “In homoiconic languages, all code can be accessed and transformed as data, using the same 
representation. This property is often summarized by saying that the language treats code as data principle.” 

However, it should be noted that homoiconicity in Lisp is a tool built into the programming language. Gradually, the idea 
began to emerge in the developer community that a mechanism like homoiconicity should not be built into a particular 
programming language, but rather a broader one. It is possible to create a language for describing data or structures with a 
homoiconic syntax in order to build on it different variants of semantics and apply in different technologies. 

The first version of this language was XML, which appeared in the late 1990s. Currently, XML is still widely used in 
many areas but is gradually being superseded by the use of JSON. The emergence of XML was a huge step forward in 
terms of not language-oriented, but technological and architectural homoiconicity: 

1. First of all, a large number of markup languages appeared to describe various subject areas. Examples of such 
languages are MathML (Mathematical Markup Language), CML (Chemical Markup Language). The XML 
namespaces were added to the XML standard to distinguish elements and attributes with the same name but different 
semantics. 

2. The Native XML Databases (NXD) [10] intended for storing XML documents may be considered as a renaissance 
of hierarchical DBMS. This technology may be considered as part of the IASDATA component. 

3. An XML schema technology [11] allows to describe and validate the structure of XML documents. This technology 
is homoiconic. The XML schema is an XML document, which elements and attributes are defined in the specific 
XML namespace. This technology may be considered as part of IASDATA component. 

4. An XSLT technology [12] allow to transform XML document in either XML document, HTML document or text 
document. This technology is homoiconic. The XSLT transformation is an XML document, which elements and 
attributes are defined in the specific XML namespace. This technology may be considered as part of IASPROC 
component. 
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5. An XQuery [13] is a query language allowing to query and process XML data stored in Native XML Databases. 
This query language itself is not homoiconic but is has the homoiconic variant of syntax representation, which is 
called XQueryX [14]. This technology may be considered as part of the IASPROC component. 

6. An XML Process Definition Language (XPDL) [15] allows defining workflow processes and interchange business 
process definitions between different workflow products. This technology may be considered as part of the IASPROC 
component. 

7. An XForms technology [16] allows describing input forms for user input. Historically, XForms technology was one 
of the first attempts of the SPA approach. This technology is very complicated and is not “rich” enough compared to 
modern JavaScript frameworks and libraries such as Angular, Vue.js, React, and others. Therefore, XForms 
technology is currently used rarely. Nevertheless, this technology is also homoiconic. Its elements and attributes are 
defined in the specific XML namespace. This technology may be considered as part of the IASINTR component. 

As an example of architectural homoiconicity, we can consider the XRX architecture [17]. The consideration of XRX 
architecture is partly based on our article [18]. XRX stands for “XForms–REST–XQuery.” XRX is an example of “zero-
translation architecture.” It means that there is no translation (data conversion) between server and client data format. XML 
used both on server and client sides and for data transfer between server and client. Thus, XRX architecture is simple and 
friendly for the developer.  

Consider the classical three-tier architecture of web application represented in Figure 1. This architecture contains three 
tiers: presentation tier, application tier, and data tier. 

 

Figure 1 – The classical three-tier architecture of Web application 
 
The main problem with this architecture is that it is required to use many different technologies at the same time to 

develop a web application, which increases the complexity of the development.  
At the presentation tier can be used: HTML, cascading style sheets (CSS), JavaScript. In the case of modern JavaScript 

frameworks, a significant portion of the web application is developed in JavaScript, and server-side scripts are mainly used 
to exchange data with the presentation tier. 

At the application tier for server-side scripting, a procedural or object-oriented programming language can be used, such 
as Python, C#, or Java. The DBMS is accessed directly using SQL or using object-relational mapping libraries such as 
SQLAlchemy (Python), NHibernate (C#), or Hibernate (Java). 

The data tier is a relational database. Some kind of stored procedure language can be used in the data tier. 
This architecture causes an “object-relational impedance mismatch” problem. According to [19]: “The object-relational 

impedance mismatch is a set of conceptual and technical difficulties that are often encountered when a relational database 
management system (RDBMS) is being served by an application program written in an object-oriented programming 
language or style, particularly because objects or class definitions must be mapped to database tables defined by a relational 
schema.” Obviously, this problem is caused by the fact that the server-side script and DBMS use different data 
representations and different approaches to data processing. 

One of the solutions to this problem is an approach in which a single data model is used at all tiers, and the same data 
model is used in the translation of information between the tiers. This approach is called “zero-translation architecture”. 
Figure 2 shows the generalized three-tier architecture of the XRX web application, which is an example of “zero-translation 
architecture.” 

The presentation tier is XForms-processor. XForms-processor receives XForms-document from Web-server, converts 
XForms-document to HTML+CSS+Javascript, provides user input, makes XML-fragment from inputted values and sends 
result XML-fragment back to Web-server. 

The application tier is XQuery-script that runs on Web-server. This is the main tier that communicates with XForms-
processor and Native XML Database. 

The data tier is a Native XML Database that stores data in XML format. 
Data transfer between Application tier and Presentation tier is XML, because XQuery-script sends to XForms-processor 

XForms-documents (that’s XML), default XML data and receives inputted XML data. Data transfer between the 
application tier and the data tier is XML too because Native XML Database sends and receives data in XML format. 
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Figure 2 – The generalized XRX-architecture of Web application 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – The three variants of detailed XRX-architectures of Web application 
 
Now consider the detailed XRX-architecture of web application represented in Figure 3. There are three variants of the 

detailed architecture. Variant I is an example of a “shallow XRX” architecture. This is the case where XRX stack is 
simplified; for example, traditional HTML forms are used instead of XForms. 

Variants II and III are examples of “deep XRX” architecture when full XRX stack is used. Variant II is the case when 
XForms-processor is a client solution. Variant III is the case when XForms-processor is a web server application solution. 
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Because in the variant II XForms-processor is a client solution, it is very easy to create XForms-documents dynamically 
and transfer them to the client-side XForms-processor. 

There are variants II and III that may be considered as examples of “zero-translation architecture.” Comparing to the 
classical three-tier architecture of web-application there is no “object-relational impedance mismatch” problem in XRX 
architecture because XML is a single data model used in all tiers. Thus, the XML approach provides not only technological 
but also architectural homoiconicity. 

XML is currently criticized for its redundant syntax, and JSON is increasingly used instead. However, some XML 
technologies are ported for use with JSON, or ideologically similar tools are created for JSON: 

 JSON-based document-oriented databases are used instead of Native XML Databases. The examples of such DBMS 
are MongoDB, CouchDB. 

 The JSON Schema technology [20] is ideologically based on XML schema technology. 
 The JSONiq query language [21] is a ported XQuery language, adopted for JSON syntax. 

Summing up, we can say that XML and JSON are two variants of the homoiconic syntax allowing to build on it different 
variants of semantics. Thus, these technologies make it possible to get rid of the “syntactic zoo” in information-analytical 
systems. 

It should be noted that the “fight against the zoo” in practice is carried out exclusively by trial and error. Nobody can 
theoretically prove that any approach will completely solve the problem of the zoo in practice. For example, a very 
conceptual and unified XRX approach has not taken deep roots in practice. Thus, we can only propose an approach, in the 
hope that it will take root in practice. 

This article attempts to overcome the “semantic zoo” in information-analytical systems. For this purpose, it is proposed 
to use a unified semantic model for IAS. We call this unified model “metagraph information space.” The basis for 
unification is the metagraph approach, which is briefly described in the following section. 

4  The Brief Description of the Metagraph Model 
In this section, the metagraph model is briefly described, which is necessary for further understanding. Metagraph is a kind 
of complex network model, proposed by A. Basu and R. Blanning in their book [22] and then adapted for information 
systems description in our papers [6, 23]. 

4.1  The Metagraph Data Model Definitions 

According to [6, 23] metagraph model may be described as follows: 
, , , ,MG V MV E ME  (2) 

where MG – metagraph; V – set of metagraph vertices; MV – set of metagraph metavertices; E – set of metagraph edges; 
ME – set of metagraph metaedges. 

Metaedge is an optional element of the metagraph model aimed for process description. In the case of the information-
analytical system description, this element is used for IASPROC component description. 

Metagraph vertex is described by a set of attributes: 
, ,i k iv atr v V  (3) 

where vi – metagraph vertex; atrk – attribute. 
Metagraph edge is described by a set of attributes, the source, and destination vertices and edge direction flag: 

,|,,,,, falsetrueeoEeatreovve ikESi (4) 
where ei – metagraph edge; vS – source vertex (metavertex) of the edge; vE – destination vertex (metavertex) of the edge;  
eo – edge direction flag (eo=true – directed edge, eo=false – undirected edge); atrk – attribute. 

The metagraph fragment: 
, ( ),i j jMG ev ev V E MV ME  (5) 

where MGi – metagraph fragment; evj – an element that belongs to the union of vertices, edges, metavertices, and 
metaedges. 

The metagraph metavertex: 
, , ,i k j imv atr MG mv MV (6) 

where mvi – metagraph metavertex belongs to set of metagraph metavertices MV; atrk – attribute, MGj – metagraph 
fragment. 

Thus, metavertex, in addition to the attributes, includes a fragment of the metagraph. The presence of private attributes 
and connections for metavertex is a distinguishing feature of the metagraph. It makes the definition of metagraph holonic – 
metavertex may include a number of lower-level elements and in turn, may be included in a number of higher-level 
elements. 
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Figure 4 – The example of data metagraph 
 
The example of data metagraph (shown in Figure 4) contains three metavertices: mv1, mv2, and mv3. Metavertex mv1 

contains vertices v1, v2, v3 and connecting them edges e1, e2, e3. Metavertex mv2 contains vertices v4, v5, and connecting 
them edge e6. Edges e4, e5 are examples of edges connecting vertices v2-v4 and v3-v5 are contained in different metavertices 
mv1 and mv2. Edge e7 is an example of the edge connecting metavertices mv1 and mv2. Edge e8 is an example of the edge 
connecting vertex v2 and metavertex mv2. Metavertex mv3 contains metavertex mv2, vertices v2, v3, and edge e2 from 
metavertex mv1 and also edges e4, e5, e8 showing holonic nature of the metagraph structure. 

The vertices, edges, and metavertices are used for data description while the metaedges are used for process description. 
The metagraph metaedge: 

, , , , ,i S E k j ime v v atr MG me ME  (7) 

where mei – metagraph metaedge belongs to set of metagraph metaedges ME; vS – source vertex (metavertex) of the 
metaedge; vE – destination vertex (metavertex) of the metaedge; atrk – attribute, MGj – metagraph fragment. 

It is assumed that a metagraph fragment contains vertices (or metavertices) as process nodes and connecting them edges. 
A metagraph fragment can also contain nested metaedges, which makes the description of the metaedge recursive. 

The example of a directed metaedge is shown in Figure 5. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – The example of the directed metaedge 
 
The directed metaedge contains metavertices mvS, … mvi, … mvE and connecting them edges. The source metavertex 

contains a nested metagraph fragment. During the transition to the destination metavertex, the nested metagraph fragment 
became more complex, new vertices, edges, and inner metavertices are added. Thus, metaedge allows binding the stages of 
nested metagraph fragment development to the steps of the process described with metaedge. 

4.2  The Metagraph Agents Definitions 

The metagraph model is aimed for complex data descriptions. However, it is not aimed for data transformation. To solve 
this issue, the metagraph agent (agMG) aimed for data transformation is proposed. There are two kinds of metagraph agents: 
the metagraph function agent (agF) and the metagraph rule agent (agR). Thus agMG = agF | agR. 

The metagraph function agent serves as a function with input and output parameter in the form of metagraph: 
, , ,F

IN OUTag MG MG AST  (8) 
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where agF – metagraph function agent; MGIN – input parameter metagraph; MGOUT – output parameter metagraph; AST – 
abstract syntax tree of metagraph function agent in the form of metagraph. 

The metagraph rule agent is rule-based: 
, , , , : ,R ST MG

i i jag MG R AG R r r MG OP  (9) 
where agR – metagraph rule agent; MG – working metagraph, a metagraph on the basis of which the rules of agent are 
performed; R – set of rules ri; AGST – start condition (metagraph fragment for start rule check or start rule); MGj – a 
metagraph fragment on the basis of which the rule is performed; OPMG – set of actions performed on metagraph. 

The antecedent of the rule is a condition over the metagraph fragment; the consequent of the rule is a set of actions 
performed on metagraph. Rules can be divided into open and closed. 

The consequent of the open rule is not permitted to change the metagraph fragment occurring in rule antecedent. In this 
case, the input and output metagraph fragments may be separated. The open rule is similar to the template that generates the 
output metagraph based on the input metagraph. 

The consequent of the closed rule is permitted to change the metagraph fragment occurring in rule antecedent. The 
metagraph fragment changing in rule consequent cause to trigger the antecedents of other rules bound to the same 
metagraph fragment. But incorrectly designed closed rules system can cause an infinite loop of metagraph rule agent. 

Thus, the metagraph rule agent can generate the output metagraph based on the input metagraph (using open rules) or 
can modify the single metagraph (using closed rules). 

4.3  The Active Metagraph Definition 

In order to combine the data metagraph model and metagraph agent model, we propose the concept of “active metagraph”: 
, , ,ACTIVE D MG MG

iMG MG AG AG ag  (10) 
where MGACTIVE – an active metagraph; MGD – data metagraph; AGMG – set of metagraph agents agi, attached to the data 
metagraph. 

Thus, active metagraph allows combining data and processing tools for the metagraph approach. Similar structures are 
often used in computer science. As an example, we can consider a class of object-oriented programming language, which 
contains data and methods of their processing. Another example is a relational DBMS table with an associated set of 
triggers for processing table entries. 

The main difference between an active metagraph and a single metagraph agent is that an active metagraph contains a set 
of metagraph agents that can use both closed and open rules. For example, one agent may change the structure of active 
metagraph using closed rules while the other may send metagraph data another active metagraph using open rules. Agents 
work independently and can be started and stopped without affecting each other. 

5  The Unified Semantic Description of the Information-Analytical System 
Based on the metagraph approach, in this section, we propose the unified semantic description of the information-analytical 
system. We call this unified model “metagraph information space.” This model is based on the information-analytical 
system formal definition, formula (1). In this section, we consider how components of IAS are translated into the 
“metagraph information space.” 

5.1  The User Interface Component 

It should be noted that in this article, we will not talk in detail about the user interface component of the information-
analytical system (IASINTR). Input form definition can be based on any homoiconic technology similar to XForms.  

We assume that for the generation of input forms based on metagraphs, is considered can be used metagraph function 
agents and metagraph rule agents. The AST (in case of function agent) or rules (in case of rule agent) of these agents are 
similar to XSLT transformations that generate XForms-forms based on the description of the data model in XML. 

In further explanation, we consider such operations as “generating an input form based on a data description” and 
“entering data into a form” as atomic operations. At the same time, we omit entirely such issues as combining input forms 
with wizards, creating complex reports based on data, building dashboards. Undoubtedly, such complex forms of the user 
interface can be generated on the basis of metagraphs using metagraph agents, but this issue is the subject of separate 
research. 

5.2  The Data and Knowledge Component 

The most commonly used tool for the information-analytical system is OLAP technology, based on multidimensional data 
representation. This section develops the ideas of the article [6], in which it was proposed to use the metagraph approach for 
the multidimensional-ontological data model. 
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5.2.1  The Multidimensional Data Model 

The classical multidimensional data model, proposed by Edgar F. Codd, allows working with numerical data (measures) 
binding them to the hierarchical taxonomies (dimensions) [8]. The multidimensional data model is a core for OLAP (online 
analytical processing) information systems. 

Many variants of formalization of such a model were proposed, for example [24]. In this section, we use our own 
simplified version of the formalization according to [6], which will help to describe the proposed model. Multidimensional 
hypercube may be described as follows: 

, , , ,HC MSR HCD HCF HCR  

, , , ,i i i iMSR msr HCD hcd HCF hcf HCR hcr  
(11) 

where HC – hypercube; MSR – set of hypercube measures (msri – measure); HCD – set of hypercube dimensions (hcdi – 
dimension); HCF– set of hypercube facts (hcfi – fact); HCR – set of hypercube aggregation rules (hcri – rule). 

In the case of the classical multidimensional data model, it is assumed that a measure can store only numerical values. 
Hypercube dimension: 

, ,k
i ihcd hcd  (12) 

where k
ihcd  – hypercube dimension element;  – a partial order on the set of hypercube dimension elements. 

In most cases, the hypercube dimension element is organized in a tree structure, in case of the time dimension, e.g., year 
 month week  day. However, partial order organization is more suitable then tree structure organization because 

partial order organization allows describing ragged hierarchies, in case of the time dimension, e.g. the month  week  
day and month  decade  day hierarchies are allowed to exist simultaneously in one dimension. 

Hypercube fact: 

, ,ref
j i nhcf hcd msr (13) 

where ref
ihcd  – a reference to the dimension element; msrn – measure. 

In the case of low-level hypercube fact, the set ref
ihcd  contains references to low-level elements of all hypercube 

dimensions. In the case of aggregated hypercube fact ( )ref
ihcd P HCD , the set ref

ihcd  belongs to the powerset of all 

hypercube dimensions because aggregation rules may exclude dimensions during the aggregation process. Simultaneously, 
during aggregation, elements ref

ihcd  roll up upon their hierarchies, providing data aggregation on higher levels of 
hierarchies. 

Hypercube aggregation rule: 
: , , ,ag ag

k OUT INhcr hcf agf hcf HCD HCD HCD  (14) 
where hcfOUT – output (aggregated) facts; agf – aggregation function; hcfIN – input (non-aggregated) facts; HCDag – a subset 
of hypercube dimensions used in aggregation. 

Aggregation rules allow calculating aggregated facts on the base of non-aggregated or low-level aggregated facts and 
hypercube dimensions. The typical aggregation functions are count, sum, min, max, and other numerical functions. 
Depending on the multidimensional system implementation, aggregation rules may be bound to the particular dimensions or 
the whole hypercube. 

Today the multidimensional model is used in a significant number of information-analytical system, and its advantages 
are worldwide recognized. However, multidimensional model is oriented for numerical measures usage. Textual or object-
oriented information is not considered for use as measures. This may be noted as a limitation of a classical 
multidimensional model. 

An approach called “Graph OLAP” is currently being developed [25, 26]. This idea is somewhat similar to ROLAP 
(Relational OLAP) approach, but instead of the relational model, the graph model is used. Instead of the hypercube 
aggregation operation, the graph aggregation operation (aggregate network) is used [26].  

Thus, the “Graph OLAP” approach is an attempt to adapt the standard multidimensional model to graph data. This 
approach inherits the main problem of the classical multidimensional model. It does not allow changing the type and 
structure of the data in the aggregation process. To overcome this problem, it is proposed to use the metagraph approach. 

5.2.2  The Metagraph Representation of the Multidimensional Data Model 

In this subsection, several definitions of the multidimensional data model will be further redefined to match the metagraph 
information space. Let us call this model the “metagraph multidimensional data model” (HCMG). 

In the case of the metagraph information space, the measure is a metagraph fragment: 
,i jmsr MG  (15) 

where msri – measure; MGj – metagraph fragment. 
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This means that a hypercube cell can contain not only a numeric value but any complex data structure described by the 
metagraph. 

According to formula (12), the hypercube dimension: 

, , , ( ),k k
i i i ihcd hcd hcd MV hcd V MV  (16) 

where ihcd  – hypercube dimension; k
ihcd  – hypercube dimension element;  – a partial order on the set of hypercube 

dimension elements; MV – set of metagraph metavertices; V – set of metagraph vertices. 
The hypercube dimension may be represented in the form of a hierarchically organized metavertex. The hypercube 

dimension elements that correspond to leaves of the tree can be represented as vertices, while the elements of the higher 
levels as metavertices. 

According to formulae (13, 15, 16), the hypercube fact: 

, , ( ), ,ref ref
j i n i n jhcf hcd msr hcd V MV msr MG  (17) 

where ref
ihcd  – reference to the dimension element; msrn – measure; MV – set of metagraph metavertices; V – set of 

metagraph vertices; MGj – metagraph fragment. 
The hypercube aggregation rule in the metagraph information space corresponds to formula (14). However, instead of 

aggregation function, the metagraph agent is used for aggregation: 
: , , ,MG ag ag

k OUT INhcr hcf ag hcf HCD HCD HCD  (18) 
where hcfOUT – output (aggregated) facts; agMG – the metagraph agent used for aggregation; hcfIN – input (non-aggregated) 
facts; HCDag – the subset of hypercube dimensions used in aggregation. 

The aggregation example is represented in Figure 6. There is a simple hypercube with two dimensions hcd1 and hcd2. 
The hypercube facts corresponds to the hypercube dimension elements combinations hcd1

11-hcd2
11, hcd1

11-hcd2
12, hcd1

12-
hcd2

11, hcd1
12-hcd2

12 are lower-level hypercube facts. The combination hcd1
1-hcd2

1 corresponds to the aggregated hypercube 
fact. In the process of aggregation, not only quantitative characteristics change but also the metagraph structure of cells 
corresponding to the facts of the hypercube. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – The example of the aggregation 
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It should be noted that according to formula (10), the combination of input hypercube fact and set of corresponding 
agents from the hypercube aggregation rules may be considered as an active metagraph. Let us call this combination “active 
fact”: 

,ACTIVE MG
INhcf hcf ag  (19) 

In formula (18), the agMG agent may aggregate many input facts. The formula (19) considers the situation that one input 
fact may be used in many aggregation rules. 

The three essential conclusions can be drawn from this model: 
1. The proposed approach allows storing in hypercube facts and aggregate not only numerical values but any complex 

data structures. This allows working with data, knowledge, situations, processes descriptions represented in the form 
of metagraph. 

2. In one data metagraph, it is possible to distinguish an arbitrary number of hypercubes. A hypercube may not be the 
entire data metagraph, but a fragment of it. 

3. In the proposed approach, agents used in aggregation rules may be considered as somewhat similar to database 
triggers. However, these agents perform an aggregation function and cannot fully implement the data processing in 
the information-analytical system. 

5.3  The Information Processes Component 

To implement data processing, we propose to use the “metagraph processes” (PROCMG), which is the set of processes 
(PROCi): MG

iPROC PROC . 
The “metagraph process” may be considered as a metagraph metaedge based on active metagraph. Based on formula (7) 

we use an active metagraph instead of data metagraph as a process node: 

, , , , ,ACTIVE
i S E k j node node nodePROC v v atr MG mv MG mv MV  (20) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 – The example of the metagraph processes description 
 
The example of the metagraph processes description is represented in Figure 7. The vertices and metavertices used for 

data descriptions are shown with circles. Active metagraphs mg* corresponding to the metagraph process elements are 
shown with rectangles. The metagraph processes PROC1 and PROC2 are shown with double rectangles. The dashed link 
shows the call of the nested metagraph process PROC2 from the active metagraph element mg15. The directed edges show 
the relationship between metagraph process elements. The undirected edges show the relationship between data elements or 
the relationship between data elements and active metagraphs. 
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The input data for the mg11 element are shown as metavertex mv1, which contains vertices v31, v32, and connecting them 
edge e31. The connection between the metavertex mv1 and the process element mg11 is performed using the edge e41. The 
attribute mg11.in = true means the semantic of input data. Similarly, using the edges e42, e43, e44, the metavertices mv2 and 
mv3 are connected with active metagraph elements mg11 and mg12 as input-output data. 

It should be noted that the description of the metagraph process is homoiconic. It is represented in the form of a 
metagraph and can be modified by a higher-level metagraph agent. It also may be stored in “metagraph multidimensional 
data model.” 

The operations of metagraph agents associated with the process elements can perform the following classes of actions: 
 DDL (Data Definition Language) operations. Definition and modification of the elements of the “metagraph 

multidimensional data model” (HCMG). Definition of dimensions, measures, aggregation rules. 
 DML (Data Manipulation Language) operations. Metagraph data transfer between different parts of the metagraph 

hypercube. Perform non-standard aggregation operations. 
 User interface operations such as “generating an input form based on a data description” or “entering data into a 

form.” 
 Homoiconic operations related to metagraph processes modification. 

5.4  The Metagraph Information Space 

To sum up this section, let us formally define the “metagraph information space” (MIS): 
, , , , ,MG MG MG MG

INTR DATA PROC INTR INTRMIS HC PROC MIS HC IAS PROC IAS MIS IAS  (21) 
The definition of “metagraph information space” corresponds to the definition of the “information-analytical system,” 

formula (1). The data and knowledge component of information-analytical system (IASDATA) is implemented as “metagraph 
multidimensional data model” (HCMG), while the information processes component (IASPROC) is implemented as 
“metagraph processes” (PROCMG). The metagraph implementation (MISINTR) of the user interface component of the 
information-analytical system (IASINTR) is not considered in details in this article. 

6  Conclusions 
The information-analytical system consists of three components: the data and knowledge component, the information 
processes component, and the user interface component. 

One of the ways to reduce the technology zoo during the information-analytical system is the use of metaprogramming, 
especially homoiconicity. Languages like XML or JSON allows describing structures with a homoiconic syntax in order to 
build on it different variants of semantics and apply in different technologies. These technologies make it possible to get rid 
of the “syntactic zoo” in information-analytical systems. This article attempts to also overcome the “semantic zoo” in 
information-analytical systems. For this purpose, it is proposed to use a unified semantic model based on the metagraph 
approach. 

The key element of the metagraph data model is metavertex. The metavertex, in addition to the attributes, includes a 
fragment of the metagraph. The presence of private attributes and connections for metavertex is a distinguishing feature of 
the metagraph model. It makes the definition of metagraph holonic – metavertex may include a number of lower-level 
elements and in turn, may be included in a number of higher-level elements. Metaedges are purposed for the process 
description. Using metagraph agents, it is possible either to generate the output metagraph based on the input metagraph 
(using open rules) or to modify the metagraph (using closed rules). An active metagraph combines the data metagraph and 
metagraph agents. 

The metagraph information space consists of the metagraph multidimensional data model and the metagraph process 
model. 

The metagraph multidimensional data model allows storing in hypercube facts and aggregate not only numerical values 
but any complex data structures. This allows working with data, knowledge, situations, processes descriptions represented 
in the form of metagraph. 

The metagraph process may be considered as a metagraph metaedge based on active metagraph. The description of the 
metagraph process is homoiconic. It is represented in the form of a metagraph and can be modified by a higher-level 
metagraph agent. It also may be stored in the metagraph multidimensional data model. 

The proposed metagraph approach allows representing the main components of the information-analytical system model 
in a homoiconic way. 
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