

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

235

The theory graph modeling systems from quality modules
of the application areas1

E. M. Lavrischeva
Doctor of phys.-мath. Sci., Professor of MIPT,

scientifically specialist ISPRAS.
Lavryscheva@gmail.com, lavr@ispras.ru

Abstract: The graph modeling of applied systems (AS) from
ready resources (modules) are presented. The graph is
represented by an adjacency and reach ability matrix. A new
program structures are modeling by mathematical operations
(unions, connections, etc.). The assemble of programs structures
(complex, system, packets, AS, OS, IS, etc.) from modules in LP,
as resources are integrating by such operations (link, make,
weaver, config, etc.) and controlled on the quality every
recourses and the making systems from them.

Mathematics is more than science,

 It’s the language of science.
Niles Bohr

1 Introduce. The graph theory of program

Programming theory is a mathematical science, the object of study of which is the mathematical abstraction of the functions of
programs with a certain logical and information structure, focused on computer execution. With the advent of the LP began to
develop new methods of analysis of algorithms of problems of AS, decomposition of areas into separate functional objects,
displaying them in the vertices of the graph to create a complex structure of AS (complex programs, aggregate, large program,
system, etc.). Functional elements of missile defense were first called modules, programs, then objects, components, services, etc.

A module is a formally described program element that displays certain AS function that has the property of completeness
and connectivity with other elements according to the data specified in the interface part of the description. From a
mathematical point of view, a module is a mapping of a set of initial data X to a set of output Y in the form M: X → Y.

A number of restrictions and conditions are imposed on X, Y and M to make the modules an independent program
element among other types of program objects [1-3].

Types of connections between modules via input and output parameters are as follows:
1) linking of control: CP = K1 + K2, where K1 is the coefficient of the calling mechanism; K2 is the coefficient of

transition from the environment of the calling module to the environment of the called;

2) Linking of data: CI= 


n

i
ixFiK

1
)(, where Kid - the weight coefficient iron of the parameter; F (xi) – the element

function for the parameter xii.
Coefficients Kid = 1 – for simple variables and Kid > 1 – for complex variables (array, record, etc.). F (х.I) = 1 if xi - a

simple variable and F (xi) > 1 if complex.
The program, modular structure is given by the graph G = (X, Г), where X - a finite set of vertices; Г - a finite subset of the

direct product of X z on the set of relations on the arcs of the graph. The program structure represents a pair S = (T, χ), where T
- a model of a program, modular structure; χ - a characteristic function given on the set of vertices X of the graph G.
The value of the characteristic function χ is defined as:
 - Χ(x) = 1 if the module with vertex x X is included in the modular system;
 - Χ(x) = 0 if the module with vertex x  X is not included in the modular system and is not accessed from him.

Definition 1. Two models of program structures Т1 = (Gl, Y1, F1) and Т2 = (G2, Y2, F2) are identical if G1 = G2, Y1 = Y2,
F1 = F2. The Т1 model is isomorphic to the Т2 model if G1 = G2 between sets Y1 and Y2 exists an isomorphism φ, and for
any х  X F2(x)=φ(f1(x)).

1 Development on Project RFFI № 19-01-00206

236

Definition 2. Two program structure S1 = (Т1, χ1) and S2 = (Т2, χ2) are identical if Т1 = Т2, χ1 = χ2 and the structures S1
and S2 are isomorphic, then Т1 is isomorphic to Т2 and χ1 = χ2. The concept of isomorphism of program structures

and their models is used in the specification of the abstraction level at which operations on these structures are defined.
For isomorphic graph objects, operations will be interpreted in the same way without orientation to a

specific composition of program elements, provided that such operations are defined over pairs (G, χ). The software
module is described in the LP and has an interface section in which external and internal parameters are set for data
exchange between related modules through Call/RMI operations, etc.

The interface defines the connection of heterogeneous software modules according to the data and the way they are
displayed by programming systems with the LP. Its main functions are: data transfer between program elements (modules),
data conversion to the equivalent form and transition from the environment and platform of the called module to the caller
and back. Functions of conversion of different, non-equivalent data types is carried out with the help of a previously
developed library of 64 primitive functions for heterogeneous types of data of LP in the APROP system [1-5] and included
in the common system environments of the OS (IBM, MS, Oberon, UNIX, etc.).

In practice, the assembly method of software modules is performed by operations (link, make, assembling, config,
weaver) special programs OS libraries (OS ES, IBM, MS.Net, etc.), a builder of complex applications in OS RV for SM
computers, complication modules for ERM "Elbrus" are used. In these operations and interface functions data type
conversion library [2]. Next, we consider the mathematical theory of graphs of software modular structures and
mathematical operations (union, projection, difference, etc.) implementation of ways of linking the graph modules and the
semantics of the transformation of data transmitted by the vertices of the graph.

1.1 Definition of a modular structure graph

To represent modular structures, we use the mathematical apparatus of graph theory, in which the graph G is treated as a
pair of objects G = (X, E), where X - a finite set of vertices, and E is a finite subset of the direct product of X  X  Z -
arcs of the graph, corresponding to a finite vertex (Fig. 1).

x 1

x 5

x 2 x 3 x 4

x 7 x 8

x 6

1 1
1

1 1 1

2
1

1

Figure 1. Graph of program from modules

with arcs 1, 2

The set of arcs of the graph have the form: E = {(x1,
х2, 1), (xl, х3, 1), (х5, x8, 1), (х5, х8, 2)}. Based on this
definition, we can say that the graph G is a multi-
graph, since its two vertices can be connected by
several arcs.

To distinguish these arcs introduced their
numbering positive integers – 1, 2. (Fig.1) and
vertices of the graph x1, х2, ..., х8 form a set of X.

From the module corresponding to the vertex х5,
there are two calling operators to the modules, with
vertices х7 , х8.

Definition 3. A program aggregate is a pair S = (T, χ), where E – a model of the program modular structure of the

aggregate; χ - a characteristic function defined on the set of vertices X of the graph of the modular structure G. The value of
the χ function is defined as follows:

χ(x) = 1 if the module corresponding to the vertex х  X, - included in the unit;
χ(x) = 0 if the module corresponding to the vertex х  X, - not included in the software unit, but it is accessed from

other modules previously included.
Definition 4. The model of the program structure of the program unit is an object described by the triple T = (G, Y, F),

where G = (X, E) - a directed graph, which is a graph of a modular structure;
Y is a set of modules included in the program aggregate;
F is a correspondence function that puts an element of the set y at each vertex X of the graph.

Function F maps X to Y, F : X → Y (1)
In General, an element from Y can correspond to several vertices from the set X (which is typical for the dynamic

structure of the aggregate) [3].
The graph of software aggregates has the following properties:
1) graph G has one or more connectivity elements, each of which represents an acyclic graph, i.e. does not contain

oriented cycles;
2) in each graph G is allocated a single vertex, which is called the root and is characterized by the fact that there are no

arcs included in it and the corresponding module of the software unit is performed first;
3) cycles are allowed only for the case when some vertex has a recursive reference to itself. Typically, this feature is

implemented by the compiler with the corresponding LP and this type of communication is not considered by the
intermodule interface. Therefore, such arcs are not included in the graph. The exception to the consideration of other types
of cycles is due to the fact that some modules will have to remember the history of their calls in order to return control
correctly, which contradicts the properties of the modules;

237

4) An empty graph G0 corresponds to an empty program structure.
Next, the graph G will be used to illustrate mathematical operations on modular structures. On Fig.2. four types of

subgraphs are shown for Fig.1. For the graph (Fig.1) set of subgraphs (from left to right) to create four programs: 1) from
the vertex x1 given three related vertices x1, x3 and x4; 2) for x3 given two vertices x5 and x6; 3) for x5 given two vertices x7
and x8; 4) to the program x5 added vertex x6, not associated with it.

x 3x 1 x 5

x 3x 2 x 5

1 11
1 1 2

x 6x 4 x 7 x 8

1 1 x62

x7

1 1

x5

x8

Figure. 2. The graphs of modules structures

A subgraph - a fragment of a software aggregate Gs = (Xs, Es) for whose functions one of two conditions is satisfied:
C (S) = 1, if χ(x) = 1 for any x of X;
C (S) = 0, if there is x such that χ(x) = 0;
R(Ss) = 0, if the modular structure is part of a higher-level structure and R(S)=1 if the software assembly is ready to run.
Given these combinations C and R, the subgraph can be: open (C =0, R = 0); closed at the top (C = 0, R= 1); closed at

the bottom (C = 1, R = 0).

1.2 The graph of the modules for Software structure

The graph of the module (m) is represented as: Gm = (Хт, Eт). It contains a single vertex х  Хт for which χ(xj)=1. This
vertex is the root. An arc of the form (хj, хе, k) means calling the module to the corresponding vertex хj , i.e. to the module
with the vertex xl. The dark circle on the graph corresponds to the vertex for which χ(x) = 1;

light – χ(x)=0.
Program graph Gp = (Хр, Ep) which is performed С (Sp) = 1; R (Sp) = 1. An example of a graph of such a program

modular structure is shown in Fig. 1.
The graph of the complex Gc= (Xc, Ec) consists of n connectivity components (n > 1), each of which is a graph and

includes: G c = Gp
1  Gp

2  , … ,  Gp
n ,

 where Xc = Xp
1  Xp

2  , … ,  X p
n и Ec = E1

p E2
p
  , … ,  En

p.

These definitions of the graph of the program module, program and complex are used for the process of assembling the
modules. These concepts may differ from similar ones, which are considered in other contexts of the work.

1.3 Matrix representation of graphs from program elements of module types

To determine the main operations on software structures, we use the mathematical apparatus of the matrix representation of
graphs in the form of an adjacency and reachability matrix. That is, the graph is represented by the matrix M= m (i, j) of
adjacency and is proved by the reachability matrix [1-8]. The element of the matrix тij determines the number of call
operators with index i, to the module with index j.

In addition to the adjacency matrix (calls), the characteristic vector Vi = χ (xi) for i-elements is used. For a modular
structure graph (Fig. 1) characteristic vector and adjacency matrix have the form:

V =

































1

1

1

1

1

1

1

1

 M =

































00000000

00000000

00000000

21000000

00100000

00110000

00000000

00001110

 (2)

We analyze adjacency matrices and characteristic vectors for subgraphs and graphs of modular structures corresponding
to different types – program, complex, aggregate, etc. For subgraphs (Fig.2) vectors and matrices have the form:


















0

0

1

3V s ,


















000

000

110

3M s ;





















0

0

1

1

1V s
,

238





















0000

0000

0000

1110

1M s ;


















1

1

1

5V s ,


















000

000

210

5Ms , (3)

For the program graph (Fig. 1) the characteristic vector and the matrix of calls coincide with V and M, respectively, and
determine the form (2), in which all elements of V are equal to one. In the case of the complex, the characteristic vector and
the call matrix have the following form:

 Vc =






















p

n

p

p

V

V

V

2

1

, Mc=



























p
n

p

p

M

M

M

00

00

00

2

1

 (4)

Here V p
i and M p

i (i = n 1,) denote the characteristic vector and the adjacency matrix for the graph of the i-th

program included in the graph of the complex. In the future, the matrix representation is used when performing
mathematical operations on software structures.

1.4 The relation of the reach ability graph of program structures

Let G = (X, E) - a graph of a program of modular structure; хi, xj - vertices belonging to X. If there is an oriented chain
from хi to xj in the graph G, then the vertex xj is reachable from the vertex хi. The following statement is true: if the vertex xj
is reachable from xl – из хj ,хl – from xj , then хl is reachable from хl. The proof of this fact is obvious.

 Consider a binary relation on the set X that determines the reach ability of one vertex of a graph to another. We
introduce the notation хi →хj - reach ability of the vertex xj from xi. The relation is transitive. Denote by D(хi)) the set of
vertices of graph G reachable from xi.. Then the equality

     i i ix х D x  (5)

 of determines the transitive closure of хi in relation to the achievability of tops. We prove the following theorems.
Theorem 1. For the selected element of connectivity of the graph of the program structure, any vertex is reachable from

the root corresponding to the given vertex of the graph, i.e. the equality (х1 – root vertex).

    11 1 .х D xx X  (6)

Evidence. Suppose the vertex хi (хi  Х) is unattainable from x1. Then хi 1x and the set X' = X \ 1x - not empty.

Since the selected component of the graph is connected, there is a vertex хj 1x and a chain Н(хi, xj), leading from хi to

xj. Based on the acyclicity of the graph G, in X'' there should be a simple chain Н(хi,, xj), where the vertex хl does not include
arcs (this chain can be empty if X' consists only of xi). Consider the chain Н(xl, xj) = Н (xl, xi) U Н (xi, xj). This means that the
module xi is reachable from vertices х1 and хi and both vertices contain no incoming arcs. This contradicts the definition of a
graph of a modular structure with a single root vertex. The theorem is proved.

The results of this theorem are important to substantiate
the requirement of the absence of oriented cycles in the
graph of the program structure with respect to the notion of
reachability. Consider the graph shown in Fig. 3.

From this figure it is clear that the graph contains a
directed cycle and modules corresponding to vertices х4, х5,
х6 will never be executed.

Thus, the results of theorem1 reinforce the requirement

that there are no oriented cycles in the graph of the program.
We analyze the matrix representation of the reach ability

relation for the graph of the program structure Fig.1 with the
reach ability matrix A, which has the form (7).

Coefficient aij = 1 if the module corresponding to the
index l is reachable from the module corresponding to the
index i the following results are based on the theorem from
graph theory.

1

1

1

1

x 5

x 4

x 3

x 2

x 1

x 6

Figure. 3. A graph contains directed cycle

 А=



































00000000

00000000

00000000

11000000

00100000

11110000

00000000

11111110
87654321 xxxxxxxx

 (7)

239

Theorem 2. The coefficient mij of the l-th degree of the adjacency matrix Мl determines the number of different routes
containing l arcs and connecting vertex xi to the vertex of the xj –oriented graph. The proof of this theorem is given in [6].
Consider the following three consequences of this theorem.

Corollary 1.1. Matrix M = 


n

l 1
М i , where M is the adjacency matrix of a directed graph with n vertices coincides up

to the numerical values of the coefficients with the reachability matrix A.
Evidence. In a directed graph containing n vertices, the maximum path length without repeating arcs cannot exceed n.

Therefore, the sequence of degrees of the adjacency matrix Mi, where i = 1,2, ..., n determines the number of all possible

paths in the graph with the number of arcs ≤ p. Let the coefficient ijm of the matrix M be different from zero. This means

that there is a degree of matrix М i in which the corresponding coefficient ijm is also nonzero. Therefore, there is a path

from vertex xi to xj, i.e. vertex xj is reachable from xi. This consequence determines the connection of the matrix of calls of
the graph of the modular structure M, coinciding with the reachability matrix A, and determines the algorithm for
constructing the latter.

Corollary 1.2. Let there be a coefficient mii > 0 for some i in the sequence of degrees of the adjacency matrix Mi. Then
there is a cycle in the original graph.

Evidence. Let mii > 0 for some l. Therefore xl reachable from xi, i.e. there is a cycle. According to the theorem, this cycle
has l arcs (generally repeated).

Corollary 1.3. Let the n-th degree of the adjacency matrix of the Мп of the acyclic graph coincide with the zero matrix
(all coefficients are zero).

Evidence. If the graph is acyclic, then the simplest path cannot have more than п – 1 arcs.
If Мп has a coefficient other than zero, then there must be a path consisting of n arcs. And this way can only be oriented

cycle. Therefore, all coefficients of Мп for an acyclic graph are zero. This consequence provides a necessary and sufficient
condition for the absence of cycles in the graph of a modular structure.

For acyclic graphs, the reachability ratio is equivalent to a partially strict order. The transitivity of the reachability ratio
was considered above. Anti-symmetry follows from the absence of oriented cycles: if the vertex xj is reachable from xj,
then the opposite is not true.

We introduce the notation xi>xj if vertex xj is reachable from vertex xi.
Let G = (X, E) be an acyclic graph corresponding to some program structure.
Consider the decreasing chain of elements of a partially ordered set X: xi1 >xi2 >…> xin . …,
where " > ” denotes the reachability ratio.
Since X is finite, the chain breaks. The vertex xin has no outgoing arcs, i.e. the element xin is minimal (it corresponds to a

module that does not contain access to other modules). The maximum element in the set X is the root vertex.

2 Mathematical operations on the graph elements

Mathematical operations (U, , /, +, -) on graphs are performed at the level of abstractions of elements of program
structures that lead to changes in graph elements and characteristic functions of systems: S = (G, χ).
Let S1 = (G1, χ1) and S2 = (G2, χ2) be two graphs of program structures G1 = (Х1 , E1) and G2 = (X2, E2)
respectively.

We introduce the following notations:
D (х) – the set of vertices reachable from the vertex x;
D*(x) – the set of vertices from which vertex x is reachable.
The same symbols are used for the same vertices included in the graphs G1 and G2. The main operations on the program

structures are discussed below
Merge (join) operation S =S1 U (9)

is intended to form a graph of the structure of the complex and is formally defined as follows S1 and S2 – any program
structures that satisfy the definitions of claim 1:

 G = G1  G2, Х = Х1 Х2, E1 E2 , (10)
where the symbol denotes a direct sum provided:

χ (х) = χ1(х), if χ  X1,
χ (х) = χ2(x), if χ  Х2.

The same vertices included in G1 and G2 are represented by different objects in the operations of combining program
structures. The characteristic vector and adjacency matrix of the program structure S are defined as follows:

V1,2 = 








2

1

V

V
, M1,2 = (11)

where V1,2 and M1,2 are characteristic vectors and adjacency matrices of modular structures S1 and S2 respectively. This
operation is associative, but not commutative – the order of the operands determines the order of the components of the
complex.

240

It should be noted that if the operands S1 and S2 satisfy the conditions for defining program structures, the result S will
also satisfy the same requirements. The join operation increases the number of connected graph elements. In addition, the
column structures may themselves have multiple items of connectedness. For the rest of the operation counts of the
operands and result are the only element of connection.

The connection operation. We denote by xi and xj the root vertices of graphs G1 and G2 of program structures S1 and S2,
respectively. This operation

S = S1 + S2 (12)
which is execute if these structures meet the following conditions:

- set X' = X2  X2 not empty;
- vertex xj  X' and χ (хj) = 0;

- D* (х)  D (x) = 0 for every хХ', where D* (х) X1 и D (х)  X2;
- G = G1 U G2, X = X 1 U X2 , E = E1 U E2, (13)

The characteristic function χ is satisfied under the condition:
χ(х) = χ1(х), if х Х1 \ X';

Х(х) = mах (χ1(х), χ2 (x))> if х  X',
χ(х) = χ2(х), if х Х2 \ X' .

First condition means that there are common vertices in graphs G1 and G2. According to the second condition, the root
vertex G2 belongs to the common part and for S1 the object corresponding to xj is not included in the program structure yet.

The third condition prohibits the existence of cycles in the result graph. Indeed, if there is хп D*(x)  D(x) , then хп> х
and x > хn, and x > хn, then this means the existence of a cycle.

If S1 and S2 satisfy the above conditions, the connection operation is partial.
Let us determine whether the result of the connection operation belongs to the class of program structures. Since X'' is

not empty, the graph G has one connected component. The root vertex of the graph G is xi. The graph G itself has no
oriented cycles, i.e. is acyclic.

Thus, S belongs to the class of program structures under consideration.
This connection operation is not commutative and is generally not associative. To show that this operation is not

associative, consider the result S = (S1 + S2) + S3, where the root vertices of graphs G2 and G3 are part of the vertices of
graph G1 and Х2  Х3 ≠ 0.

Then the result of the S2 + S3 join operation is undefined.
The operation of projection. Let S1 = (G1, χ1) be a program structure and хiХ1. The operation of projection of this

structure to the top of the graph S1 is denoted as S = Рrxi(S1) and is defined as

G(X, Г), Х = x i , E = {(xi, xj, K)| xi, xj X}, (14)
and for the characteristic function is χ(х) = χ1(х), if х Х. The projection operation defines the program structure S1 in

the structure S. let's check the belonging of the structure S to the class of the considered program structures. If the graph of
the structure S1 is connected acyclically, then the same properties will be possessed by the graph G. There is a single root
vertex xi in the graph G. Thus, the program structure S belongs to the class under consideration.

The difference operation for program structures is defined as follows. Let S1 = (G1, χ1) be a program structure and xi 
Х1. The difference operation is performed on this structure and its projection to the vertex xi of the corresponding graph (хi
is not the cortical vertex of the graph G1). Formally, the difference operation of the program structure has the form:

S = S1 - P xir (S1 (15)

and defined as follows

G = {X, E), X = (X1 \ ix)  X' (16)

E = {(xi , xj , K) | xi , xj  X } ,
where the set X' consists of such elements for which

X' = {x'j | (xl X1 \ xi) & (x'j  ix) & (xl , x'j ,K)E (17)

Here, the characteristic function χ is defined as:

χ(х) = χ1(х), если х Х1 \ ix ;

χ(х) = 0), если х  X' .

The set X includes vertices that are not included in the set ix , and those vertices ix that include arcs from vertex X1 \

ix (sets X'). The characteristic function for elements х'  X' is zero. The difference operation is the inverse of the join

operation, i.e. the equality is performed:

S - Pxir (S) + Pxir (S) = S. (18)

 Let us check that S, defined in (15), belongs to the class of program structures. If the graph is G, connected and
acyclic, then the graph G1 will have the same properties. The root vertex G is the same as the root vertex G1. Thus, S
satisfies the conditions for determining the program structure given in paragraph 1.

241

Let S* be the set of program structures given by the direct product G* X χ*, where G* and χ* are the set of graphs and
the set of characteristic functions. Denote by Ω = {U, , /, +, -} - set of mathematical operations on program structures and
P, C and R - predicates of:

 Ω = {U, , /, +, - , P, C, R (19)
Thus, an algebraic system  = (S, Ω) over a set of program structures and operations on them (union, connection,

differences and projections) is defined.

2.1 Characteristics of simple and complex graph structures

Among the variety of program structures there are three main ones – a simple, complex structure with a call of
modules from the external environment and a dynamic structure. The main purpose of various structures is the
most optimal use of the main memory during the execution of the unit.

Simple structure. An aggregate with a simple structure is created in the process of building modules based on the
operations of link calls. The amount of main memory occupied by an aggregate with a simple structure is constant and

equal to the sum of the volumes of individual modules: Vs = 


n

i
iv

1
, where vi is the amount of memory occupied by the i-th

module. The corresponding graph of a modular structure is always connected.
Complex structure. Assembly of complex structures with dynamic invocation of modules in the shared memory is

created in the Assembly process of the modules. In such an aggregate, the connections between the modules are not so rigid
and their sequence is determined by the modules included in the chain. The modules are loaded into the main memory at the
time of processing. When finished, the memory is freed and used to load another module. The graph of a complex program
structure is also connected (Fig.4) and is reflected in the matrix (2).

x 5

x 6

x 2

x 3

x 4

x 7
x 8 x 1 2

x 1 0 x 1 1

x 1

1

1

1
1

1

1 1

1

1 1

1

1

1 2

x 0

x 9

Figure 4. Modification graph of program structure

The amount of main memory required depends on the number and composition of modules and the maximum amount of

memory is equal to the sum of individual modules:

vmax
0 =Vs=



n

i
iv

1
.

The minimum amount of memory required when performing the aggregate is calculated by Floyd's algorithm, which
determines the shortest path in the graph, in which each arc corresponds to a weight coefficient, called the arc length. The
following transformations are performed to apply the Floyd algorithm.

1). Let's add new vertices and arcs to the graph. The vertices are х0, хп+1,… , хп+m,
 where m is the number of end vertices. New arcs include (х0, х1, 1), (xr1, xn+1,1), ..., (xrn, xn+rn,1). In them x1 corresponds

to the main module and all xi – to the end vertices. After performing operations, the graph of the modular structure (Fig. 1)
is given to the graph on Fig. 5 with vertices х0, x9, х10, х11, х12. It vertices correspond to the weight coefficients:

v0 = v9 = v10 = v11 = v12 = 0

2). Each arc of the form (xi , xj, k) is assigned a coefficient vij =
2

vv ji  .

Consider all routes leading from х0 to one of the other additional vertices. The length of the shortest route path is
calculated as follows:

l0,n+p=v01+ … +vrp,n+p =
2

10 vv 
+…+

2
2 vv pnp 

=
2

0v +v1 +…+vrp+
2

v pn = v1+ … + vrp.

This length l0, n+p will be equal to the sum of the memory modules for path х1, . . . , хrр.
Thus, applying Floyd's algorithm to the graph in Fig. 2, we solve the problem of calculating the amount of memory for

the maximum chain.
3). We replace the adjacency matrix with the path matrix. For each mij>0, the corresponding location will be vij. The

values тij = Ø are replaced by – ∞. The program implementing Floyd's algorithm has the following form (it is assumed that
the path matrix is described as a two-dimensional matrix (пn): this length l0, n+p will be equal to the sum of the memory
modules for path х1, хrр.

242

For k = 1 to n do
 For I = 1 to n do
 For j = 1 to n do
 if M[I, j] < M [i l k] + M[k, j] then M [I, j]: = M [i , k] + M[k, j].
As a result of this algorithm, a matrix of maximum paths will be constructed. The maximum of l0, п+p will determine the

minimum amount оf l0, п+p memory for the memory-overlapping aggregate.
The most complex structure for the values V0

min ≤ V0 ≤ V0
max can be constructed by following the algorithms proposed in [4-7].

The qualitative dependence of V0 on the number of dynamic sites is shown in Fig.5. Here п is the number of modules in the unit.
Despite the different kind of curves, they have a common pattern – any V0 is enclosed between the values of v0

max и v0
min.

Dynamic structure. The mechanism of dynamic links between modules is different from the call mechanism. Dynamic
objects are loaded into the main memory when they are accessed. By analogy, we call the volume loaded with a single
treatment of a dynamic element, has its own program structure, for which the adjacency matrix is composed. If the same
modules are found in different dynamic structures, they are different objects.

The original graph is used for illustration (Fig.1). Let the module corresponding to the vertex х1, be dynamically called
from the module corresponding to the vertex х3. The resulting modified graph is shown in Fig. 6. A dashed arrow indicates a
dynamic call. The module corresponding to the vertex x6, occurs twice.

We construct an adjacency matrix for this aggregate. Each dynamic element will have its own CAL.L. To distinguish a
dynamic call, the corresponding matrix elements will contain negative numbers whose absolute values specify the number
of dynamic calls between the data of the module pair. The adjacency matrix will look like:

М=








































000000000

000000000

000000000

210000000

001100000

000000000

000001000

000000000

000010110
876536421 xxxxxxxxx

 (20)

We investigate the qualitative dependence of the

amount of RAM on the number of dynamic segments
(Fig.5 and Fig. 6).

With one component in the software unit of a simple
structure we have V1

d = Vs.
If each dynamic component consists of one module,

then the modified Floyd algorithm finds the maximum
path and Vd

n =V0
min.

n

V 0

V 0
m ax

1

V 0
m in

Figure 5. Grafics of qualitative dependence Va

from the number of subgraph

x5

x2

x3

x4

x7
x8

x6'

x1

1 1
1

1 1

1

21 1

x6

Figure 6. Graph programs structure with dynamic

Calls

For intermediate values, the dependence is more complex. On fig.7 presents two curves (1, 2), and n is the number of

modules in the program unit.
Due to the duplication of modules there is an increase in the main memory of the OS.

n1

V d
n

V d
1

2

1

Figure 7. Grafic dependence Va from the

number of dynamic elements

Thus, curve 1 is characteristic of software aggregates of
graphs in the form of a tree, which ensures that there are
no identical modules in the graph. Despite the lack of
dynamic structure in terms of memory savings, there is a
significant advantage – independence from editing links.
Each dynamic object can be modified, and editing
relationships in the OS is not required.

243

Curve 1 defines a relationship in which different segments do not have the same modules. Curve 2 describes the
dependence for the case when different segments have the same modules. For them, the required memory increases due to
the duplication of such modules. However, dependence 2 is typical for the case when there are no identical modules in
dynamic structures and they are written in high-level LP. These modules are handled by utility tools – memory
management, I /o, emergency handling, etc.

3 Operations of assembling elements of graph g

Let the graph G be represented by the set of modules Х= {х1, х2... хт}, as described in PL, and located at the vertices of the
graph. The modules are assembled into a software unit. In this case, each pair of modules хi, хj (i, j – languages from the set of
LP are connected by the relation of call on the basis of which the module of communication х'ij is formed. In General, for
simple program structures, the aggregate contains link communication (call) operators and forward and reverse transformations
of data types passed from the calling module (in i-language) to the calling module (in j-language) and back [23].

LP allows you to describe the information part - passport modules with a description of the transmitted data [8-13] and
operations call modules. Taking into account the passports of the modules, the software structure of the unit is built
(program - Prog, complex - Comp, package - Pac). The passport describes the special language WSDL containing: - a
subset of the operations associate link elements of the graph in the language L' that contains a description of the parameters
from the list of actual and formal parameters of the invocation; - mathematical operations on the graph and operations of
binding modules in a complex structure (Prig, Comp, Agar, Pack and so on).

The operator modules link (make, config, assembling, etc. since 1994) takes the form:
Link <aggregate type> <aggregate name> (<main module name>, <additional list of module names>) <execution

mode>,
when constructing specific program structures, the vertices of the graph – modules can be marked with special symbols

ρ, denoting:
* – the beginning of the dynamic fragment with the vertex marked by this symbol;
+ - the module in the graph G is marked as the main program of the complex;
/ - means enabling debugging and so on.
Using these designations, the graph G will take the form shown in figure 8 and has a representation:

 E = {(х 5 ,х 7 ,1) , (х5 ,x8 ,1), (x5 ,х 8 ,2)} .
The aggregate is given a unique name corresponding to the generated root module. For the graph E = {(х4, х6, 1)} a

fragment of operators providing a dynamic call will be formed in the communication module x'46. For a pair of modules
specified in Fig.8 vertices x4, x6, the structure of the corresponding part of the unit, including the communication module, is
shown in Fig. 9. Similarly links of modules and other types of calls are implemented.

Thus, for a pair of modules xi, xj, a module of connection xij of the form:

х'ij = S0 * (S1  S1
T) * (S2  S2

T) * S0
1,

where S0 is a fragment of the aggregate that defines the environment of xj module functioning;
S1 – a fragment of the aggregate, including a sequence of calls to functions from the set {P, C, S}, each of which

performs the necessary conversion of the actual parameters when referring to the xj -module;
S2 – a system with a fragment of operators for the inverse transformation of data types transmitted from xj to хi after its

execution;
S0

1
 – a piece of software structures with operators epilogue for the vertex xi, for the restoration of the environment.

Для описанных структур программ зададим операции link для сборки отдельных программ на рис.8:
Link Prog P1 (x1, x2);
Link Prog P2 (x1, x3) (x3, x6);
Link Comp P3 ((x1, x3) (x3, x5/ х'58)+ (x5, x7 (20)
Link Prog P4 (x1, x4), (x4, x6);
Link Comp (P1 U P2 U P3 U P4).
The programs of the complex (aggregate, packets) are given unique names (P1, P2, P3, P4) corresponding to the root

names of modules in the chains of the graph.
Thus, the process of constructing the program structure on the graph includes:
 1. Enter the module description in the LP (L') and perform syntax checking.
 2. Select the required modules and interfaces from the repositories and place them in the graph.
 3. Translation of the unit modules in the LP.
 4. Generation of communication modules for each interconnected pair of graph modules.
 5. Assembly of the elements of the graph in the finished structure, linking modules in the operating system (IBM, MS,

Oberon, Unix и др.) [1-5].
 6. Test the system on data sets and assess the reliability of the unit.
After the modules are built, the name of the software Assembly is entered into the boot library. If you create a fragment

that is later included in another aggregate, its name must match the name of the main module. In connection with the
transition to the Internet environment to work with various software and system services in the configuration assembly of

244

such tools provides security, data protection and quality assessment of ready-made modules, service resources and web
systems in Internet.

3.1 Evaluation of the reliability and quality of systems

The key characteristics of quality attributes is reliability and completeness as properties of the AS to eliminate failures with hidden
defects with this criterion and a quality model, which relates the measures and metrics of the internal, external and operational
type. From the standpoint of completeness of the product is the main indicator of quality are defects and failures.

The model of defects based on multiple quality factors, analysis of causal relationships between them, combining
qualitative and quantitative assessments of their impact on the density of defects [15-18, 22]. To calculate the reliability
function uses a special formula:

,
Where t - the operating time of PS without a failure when testing in a period of time T; m (T) is a function of reliability

growth, as the average number of defects.
The reliability of the software largely depends on the number remaining and corrected errors in the development process.

During operation, errors are also detected and eliminated. If the bug fixes are not made new, or at least new bugs introduced
is less than clear, in the course of operation reliability increases.

To assess the quality systems used the standard quality model:
Mgua = {Q, A, M, W}, where
Q = {q1, q2, …, qi } i = 1,..., 6, – various quality characteristics (Quality – Q);
A = { a1, a2,…, aj} j = 1,..., J, – the set of attributes (Attributes – A), each of which captures a separate property of the qi

quality characteristics;
M = {m1, m2,..., mk} k =1,..., K, – the set of metrics (Metrics M) each element of the attribute aj for the measurement of

this attribute.
W = {w1, w2,...,wn}, n = 1,..., N are weight coefficients (Weights W) for metrics of the set M.
The quality standard identifies six basic quality characteristics: q1: functionality; q2: reliability; q3: use; q4: efficiency;

q5: maintainable; q6: portability.
 The quality q1 – q6 are assessed by the general formula:

On the basis of obtained quantitative characteristics of the final grade is calculated by summing the values of individual

indicators and their comparison with the benchmark systems.
Configuration of ready-made software recourses in the system
Under the configuration of the system is understood the structure of some of its version, including software elements,
combined with each other by link operations with parameters that specify the options for the functioning of the system [1-5,
16-22]. Version or system configuration according to the IEEE Standard 828-2012 (Configuration) includes:

 – configuration basis – BC;
 – configuration items;
 – program elements (modules, components, services, etc.) included in the graph;
 Configuration Management is to monitor the modification of configuration parameters and components of the system,

as well as to conduct system monitoring, accounting and auditing of the system, maintaining the integrity and its
performance. According to the standard, the configuration includes the following tasks:

 1. Configuration identification.
 2. Configuration Control.
 3. Configuration Status Accounting.
 4. Configuration audit.
 5. Trace configuration changes during system maintenance and operation;
 6. Verification of the configuration components and testing of the system.
A configuration build uses a system model and a set of out-of-the-box components that accumulate in the

operating environment repositories or libraries, and selects their operating environment Configurator (for example,
in http://7dragons.ru/ru). The Configuration assembles the components according to their interfaces [1-5, 9, 15] and
generates a system configuration file.

The Configuration builds components and reuses for the AS using config operations to obtain the output PP file. The
product must be tested on a set of tests with the least number of errors. After that, the resulting PP is evaluated for quality
taking into account the incoming resources in the AS. For maintenance of PP the certificate of quality according to
standards has to be issued.

4 The perspective technology for future

Coordinated and parallel programming provides a division of the computational process into several subtasks (processes)
for TRAN’s computers and supercomputers, the results of which are sent via communication channels. Languages for

)))()((exp()|(TmtTmTtR 

jj
j

j wmaq 11

6

1
11 





245

parallel programming - PVM, LAM. CHMP and MPI (Message Passing Interface) interface descriptions and OpenMP. The
POSIX standard provides messaging between programs in LP of C, C+ and Fortran [15, 25].

Programming on classes, on a prototype in OOP and Object-component methods - OCM
OCM are the mathematical design of systems by Graph from ready-made resources (objects, components, services, etc.)

to OM (Object Model). It is the formal method which transform the elements OM to a component model or a service
model [15, 25, 32, 33]. http://0x1.tv/20181122AF.

Component paradigm. The basis of this paradigm - OCM graph in which vertexes graph are the components of the CRP
(reuses), interfaces and arcs specify the subject classification and the relationship between the vertices. Components are
described by the formalisms of the triangle of Frege [15, 29].

Service-component paradigm. System and service-components - web resources implement intellectual knowledge of
specialists about applied fields in the Internet environment. Each implements some function and communicates with the
technological interface to interact with other services through protocols and provide Assembly and solution of applications
of different nature [18].

Methods of production of factories (Product Line/Product Family) programs and Appfab and certificate them of the
quality are discussed [20, 23].

 Application of the ontology language OWL (www.semantic_web.com), resource language (RDF) and intelligent agents
of ISO 15926 standard for networking. Ontology of Life Cycle and Computational geometry is a part of computer graphics
and algebra. Used in the practice of computing and control machines, numerical control etc. is also used in robotics (motion
planning and pattern recognition tasks), geographic information systems [27].

The Agile methodology is focused on the close collaboration of a team of developers and users. It is based on a waterfall
model lifecycle incremental and rapid response to changing demands on PP. Variants of Agile: eXtreme Programming
(XP), SCRUM, DSDM…

Internet Technologies

Within the Internet (Things, Smart IoT) technologies are developing in the direction of creating smart computers, cities,
robots and devices for use in medicine, genetics, physics, etc. The information objects (IO) that specifies the digital
projection of real or abstract objects that use Semantic Web Ontology interoperability interfaces. IO through Web services
began more than 10 years ago. Interaction semantics IO is based on RDF and OWL language of ISO 15926 Internet 3.0.
The next step of the development of the Internet is Web 4.0, which allows network participants to communicate, using
intelligent agents. A new stage in the development of enterprise solutions-cloud (PaaS, SaaS) who spliced with Internet
space and used to create Adaptive applications. Cloud services interact through the Web page by using agents [28]. Internet
stuff (Internet of Things, Smart IoT) indicates the Smart support competing APPS using distributed micro services such as
Hyper cat (mobile communications); industrial Internet (Industrial), covering the new automation concepts-smart energy,
transportation, appliances, industry», and another.

Computer nanotechnology

Today computer nanotechnology is actually already working with the smallest elements, "atoms" similar to the thickness of
the thread (transistors, chips, crystals, etc.). For example, a video card from 3.5 million particles on single crystal, multi-
touch maps for retinal embedded in the eyeglasses, etc.[28].

In the future, ready-made software elements will be developed in the direction of nanotechnology by "reducing" to look
even smaller particles with predetermined functionality. Automation of communication, synthesis of such particles will give
a new small element, which will be used like a chip in a small device for use in medicine, genetics, physics, etc.[28-33].

246

5 Conclusion
In this article proposed the theoretical apparatus of graphs to create modular program structures. The graph theory allows us
to establish the shortest path of program elements (modules) and prove the correctness of binding graph modules using
adjacency matrices, reach ability and mathematical operations (association, connection, difference, etc.) in complex
program structures (complex, system, packets, etc.). Author are formulated the theoretical aspects of the application of
graph theory in [6-15]. Since 2013, graph theory has been used in the modeling of complex systems of objects, components,
services, etc. (OCM) [15] and has been used in the world practice in the transition to the Internet environment [6-14. 22-
29]. The paper describes the features of modeling systems using graph theory and mathematical operations on elements of
software structures with using Assembly operations (link, make, config, etc.), which are implemented in different
environments. Module objects testing and controlled on quality. After config programs elements – modules should be
verified and tested, then checked for quality. The AS made of them is checked according to standard ISO/IEC 9000 (1-4)
for quality, and then transferred to the customer (Project RFFI N19-01-00206).

The graph theory, programming paradigms and ontology of mathematical modeling of applied problems for vital areas of
society (medicine, biology, physics, mathematics, economics, etc.) will become the main tools of smart machines of the
21st century [15, 24-33].

Reference

[1] Lavrischeva E. M. , Grishchenko V. N. The connection of multi-language modules in the OS of the ES.- Moscow,
1982.- 127p.

[2] Lavrishcheva E. M. , Grishchenko V. N. Assembly programming. –K.: Of Sciences. Dumka.1991.-136p.
[3] Lavrishcheva E. M. , Grishchenko V. N. Assembly programming Basics of software industry products'. K.: of

Sciences.Dumka.-2009.-371p.
[4] Glushkov V. M., Stogniy A. A., Lavrishcheva E. M. and others. System of automation of production of programs

(The APROPOS) .-Kiev, 1976.-134p.
[5] Lipaev V. V., Posin B. A. ,Shtrik A. A. the Technology of Assembly programming.-M.: 1992.-284 p. 6.
[6] Rimsky G. V. Structure and functioning of the modular automation system programmings.- Artificial intelligence:

application in chemistry.-1987.-№5.-p. 36-44.
[7] Halstead M. H. the beginnings of a science about the programs.- Perevod. with ang. –M.: Finance and statistics.-

1981.-201p.
[8] Horn, E., Winkler, F., Design of modular structures.– Computer technology of the socialist countries.- 1987.- Issue

.21.-p. 64-72.
[9] Koval G. I., Korotun T. M., Lavrishcheva E. M. On one approach to solving the problem of intermodule And

technological interface// All. the collection of the Academy of Sciences and Min.University of the USSR.-1987.
[10] Agafonov V. N. Program specification: conceptual tools and their organization. - Novosibirsk. - Science, 1987. -

380p.
[11] Kotov V. E., Introduction to the theory of program schemes, Novosibirsk, 1978.
[12] Nepeyvoda N. N. Program logic. - Programming, 1979, № 1, p. 15-25;
[13] Evstigneev A. N. Graph theory in programming, Moscow, Nauka. - 1985. -351p.
[14] Ershov, A. P., introduction to the theory of programming.-Moscow.-1977. - 287p.
[15] Lavrischeva E. M. The theory of object-component modeling of software systems. Preprint the Russian Academy of

Sciences, No. 29, 2016 - M: 48 p. ISBN 078-5-91474-025-9.13;
[16] Lavrischeva E. M. Ryzhov A. G. Application the theory of General data types of ISO/IEC 11404 GDT Standard in

relation to Big Data.- The conference “Actual problems in science and ways their development”, 27 December 2016,
http://euroasia-science.ru.- p. 99-110.

[17] Lavrischeva E. M., Mytulyn V. S., Kozin S. V., Ryzhov A. G. Creation of the application and information systems
from ready-made Internet resources. The proceedings of ISP RAS.-M.: 2018, Volume 30. Issue.1 p.27- 40.

[18] Lavrischeva E. M. , A. G. Ryzhov. Approach to modeling systems and sites from ready-made resources.- XX All-
Russian conference, September 17-22, 2018. Novorossiysk.-IPM im. M. V. Keldysh.- Report presentation.
Publication in the collection.-p. 321-345.

[19] I. B. Burdonov, A. S. Kosachev, V. V. Kulyamin correspondence Theory for systems with locks and Destructions.-
Moscow, 2008. - 411p.

[20] Lavrischeva E. M. Software Engineering of computer systems. Paradigms, technologies, CASE- means – Sciences.
Dumka.- 2014.-284p.

[21] Bruno Courcelle, Joost Engelfriet Graph structure and monadic second-order logic. A language-theoretical approach
(hal id: hal-oo646514) and Theory graph (wikipedia.ru, Foxford.ru).

[22] Lavrischeva E. M., Pakulin N.V., Ryjov A.G., Zelenov S. V. Analysis of methods of assessment reliability of equipment and
systems. Practice of application of methods of reliability.-Scientific- practical conference - OS DAY, Moscow, 17-18th 2018. The
proceedings of ISP RAS, том5 DOI: 10.15514/ISPRAS-2018-30(3), 2018. (http://0x1.tv/20180517F).

247

[23] Ekaterina M.Lavrischeva. Assemblling Paradigms of Programming in Software Engineering.- 2016, 9, p.296-317,
http://www.scrip.org/journal/jsea, http://dx.do.org/10.4236/jsea.96021.

[24] E. M. Lavrischeva.The Scientific basis of software engineering.- International Journal of Applied And Natural
Sciences (IJANS) ISSN(P): 2319-4014; ISSN(E): 2319-4022 Vol. 7, Issue 5, Aug - Sep. 2018; p. 15-32.

[25] Gorodnyay L. V. Programming Paradigms. Analysis of the state and prospects.-SORAN, 2018.-282р.
[26] Ekaterina Lavrischeva, Andrey Stenyashin, Andrii Kolesnyk. “Object-Component Development of Application and

Systems. Theory and Practice”. Journal of Software Engineering and Applications, 2014,
http://www.scirp.org/journal/jsea.

[27] Lavrischeva Ekaterina. “Ontological Approach to the Formal Specification of the Standard Life Cycle”, “Science
and Information Conference-2015", Jule 28-30, London, UK, www.conference.thesai.org.- P.965-972.

[28] Lavrishcheva E.M. Petrov I.B. Ways of Development of Computer Technologies to Perspective Nano.- Future
Technologies Conference (FTC), 29-30 November 2017| Vancouver, Canada-p.540-549.

[29] E. M. Lavrischevа. Component theory and collection of technologies for application development from ready-made
resources/ / 4-Scientific and practical conference " Actual problems of system and software engineering.- 20-24 may
2015. Collection of scientific works APSE-2015.- pp. 101-119.

[30] E.М.Lavrischeva. Science of computer programs and systems in XX-XXI centuries: Past, Present, Future. European
Journal Mathematics and Computer Science.- Vol.5 N 1.- p.67-87. 2018.-ISSN 2059-9951. www.idpublications.org.

[31] Е.М. Lavrischeva. Scientific Basis of System Programming.- Journal of Software Engineering and Applications
(JSEA), Vol. 11 No. 8 of August issue, 2018.-N 11.-p.408-434, ISSN online 1945-3124, ISSN Print 1945-3116.

 [32] E. M. Lavrischeva. Software Engineering: New disciplines and e-learning them for development of Applied
Systems. Europe Journal of Engineering and Technology, 2015.-N3. p. 36-67. ISSN2056-5860,
www.idpublications.org.

[33] Lavrischeva E.M. (2017, IEEE). Development of the theory programs and systems in the USSR. History and
modern Theory. - Sorucom-2017, IEEE Springer-2017.-p. 31-47.

