
Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 
138 

 

Intelligent methods for intrusion detection in local area networks 
 
 

Dmitry Valerievich Pantiukhin 
Master of Science, 

Senior lecturer, National Research University Higher School of Economics, Moscow,  
Russian Federation 

142800, Russia, Moscow Region, Stupino, Chaikovskogo str. 52, apt. 32 
dpantiukhin@hse.ru  

 
Ilya Michailovich Voronkov 

Master of Science, 
Head of Departament, International Centre of Informatics and Electronics, ICIE, Moscow,  

Russian Federation 
Invited lecturer, National Research University Higher School of Economics, Moscow,  

Russian Federation 
iliav_scn@mail.ru 

 
Alexey Nickolaevich Nazarov 

Doctor of Technical Science, Professor 
Professor, National Research University Higher School of Economics, Moscow, Russian Federation 

a.nazarov06@bk.ru  
 
 

Annotation: Review of intelligent methods for intrusion 
detection in local area networks is presented. Publically available 
datasets of intrusions are shortly described. A problem of 
imbalanced classes appointed and approach for batch training of 
a neural network intrusion classifier with imbalanced classes is 
presented. In computer simulation, it is shown that such approach 
helps to train on classes with small amount of examples by the 
cost of larger classes. 

 
Keywords: information security, intrusion detection, neural 
network classifier, imbalanced classes, intrusion datasets, 
UNSW-NB15 dataset 

 
 

1  Introduction 

Today machine learning and neural network methods has a quite wide application area and come more and more popular. 
Of course, most important results made in image processing and there convolutional neural networks play a great role. 
However, it is also interesting to try application of such methods in different areas, such as information security, and 
particular in intrusion detection and classification. Then intrusion detection systems (IDS) try to apply neural network to 
intrusion classification problem we see that there exist a problem, that number of examples of intrusion classes is quite 
different and classifier need to be trained taking this into consideration. 

Researchers can develop different intrusion classifiers, based on different approach. There exist approaches based on: 
– signatures of intrusions [1], [2]; 
– protected system state analysis [3]; 
– scenario graphs and attack graphs [4], [5]; 
– expert systems [6], [7]; 
– multivariate adaptive regression splines [8]; 
– support vector machines [9], [10], [11]; 
– immune networks and genetic algorithms [12]; 
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– neural networks, including recurrent [13], [14], [15], convolutional [16], [17], [18] and others [19], [20], [21], [22]. 
Most of these works use a KDD99 intrusion dataset that is quite old and has no modern examples of intrusions. 

However, today exists large set of publically available labeled datasets with intrusions examples. We use UNSW-NB15 
dataset. 

2  Publically available intrusion datasets 

Intrusion detection systems and datasets, which they use to training, can be classified in two big classes: network-based and 
host-based. Host based systems make a decisions using information from defended host machines, like CPU usage, 
processes launched, errors occurrence etc. Network-based systems make a decisions using information about network 
traffics between defended hosts and\or outside networks. There are exist examples of both type of systems and 
combinations of them. Datasets, also can be of these two types, here we deal only with network-based ones, but always 
remember that for practice better to combine various approaches and use hybrid IDS systems and corresponding datasets. 
Below short description of existing publically available datasets is presented. 

One of the first and still most popular intrusion dataset was a KDD99Cup [23], available since 1998-99 and based on 
DARPA Intrusion Dataset. It is open, free for researchers, dataset made in Information and Computer Science University of 
California. It consists from about 5 million records about network transaction. Each record includes 41 parameters of 
network traffic (for example destination IP\port, source IP\port etc.) of three type: categorical, logical (flags) and numeric. 
Dataset includes information about 22 types of intrusion in four main classes: Denial of Service (DoS, 3883370 records), 
Remote to User (R2L, 1126 records), User to Root (U2R, 52 records), Probe (41102 records) and one class of Normal 
packets (972780 records). As we can see, number of records of different classes is quite different. Although dataset was 
criticized [24], it is yet the most popular dataset. Main disadvantages are: 

- large number of duplicated, redundant records (about 80%!), 
- lack of records of some intrusion classes (U2R, R2L), 
- moral obsolescence – dataset was collected in 1998-99 and does not contain information about modern attacks. 
In 2009, ten years after, KDD99Cup was modified in NSL-KDD [24], redundant records was dropped, some work for 

refining was made and dataset reduced 4 times, see Table 1. Many authors try to modify this dataset, for example PU-IDS 
[25] in which statistics of data was used to generate new, unreal but similar, records (about 200 000 new records), and 
generic framework to generate new similar records was presented. 

 
Table 1 – Comparison of training part of NSL-KDD with respect to KDD CUP 99 [24] 

 Original Records Distinct Records Reduction Rate 
Attacks 3925650 262178 93.32% 
Normal 972781 812814 16.44% 
Total 4898431 1074992 78.05% 

 
In 2012, the UNB ISCX 2012 Intrusion Detection Evaluation Data Set [26] was created and announced at the Canadian 

Institute for Cybersecurity (CIC). This dataset, as well as KDD99, contains information about network connections, but also 
offers records of all traffic. Traffic was received within 7 days from a test computer network (6 local subnets, NAT server, 
main and secondary server, traffic monitoring tools), under various attack scenarios. Includes 2450324 connections (about 
90GB of traffic), of which 68792 are attacks. CIC continue works on this dataset and, in 2017, the UNB ISCX 2017 (known 
also as CICIDS2017) dataset was announced. Dataset containing the latest attack scenarios. A tool for traffic analysis was 
also presented [27]. This dataset was used in [28] for training of different types of neural network classifiers. It is shown 
that recurrent neural networks like LSTM or GRU achieve a good results (accuracy >97%).  

In 2015, the UNSW-NB15 dataset [29] was created at the Australian Center for Cyber Security. Dataset contains both 
records about network connections, and the traffic itself (about 100GB) from the test computer network (3 servers). Dataset 
contains 9 types of attacks: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, Worms. 
Each records contains 47 fields - information about network connections and 2 fields - information about the type of 
intrusion (or normal packets). The total number of records is about 2 million. Information about network connections is 
divided into 4 text files (csv format). Files for training and testing of classifiers, containing respectively 175341 and 82332 
records, are separately presented. We will use this dataset in our work. Records amount and description of used intrusions 
are shown in Table 2 [29]. 

It is important to note, than mostly intrusion features, measured in the UNSW-NB15 dataset are comparable with ones in 
the NSL-KDD dataset, so combinations of these datasets can be used for increasing of amount of available data. 

Comprehensive comparison of another existing dataset can be found in [30]. 
Also it can be mention about ADFA dataset from Australian Defense Force Agency which works in different principle, it 

consist not from records about network traffic, but from information about running processes on host machine, so can be 
used in host-based intrusion detection systems, which is beyond of our work now. 
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Table 2 – Statistics of UNSW-NB15 dataset [29] 

 

3  Short review of UNSW-NB15 dataset applications in machine learning approaches to intrusion 
detection and classification 

Recent time UNSW-NB15 dataset is used to create machine learning classifiers by some authors. Some results are 
described below1. Hereafter we use the definition and abbreviation according to [31], “false alarm rate” is synonymous to 
“false positive rate”. 

Firstly, in 2015, creators of UNSW-NB15 dataset propose and compare significant feature selection approach to UNSW-
NB15 and KDD99 datasets and build classifiers based on Naive Bayes and EM-clustering approaches [32]. They show that 
such simple approaches works with accuracy about 30-40% but some classes are not recognized at all. In [33] (2017) other 
authors combine Random forest classification method and feature selection approach, and reach better results both for 
KDD99 and UNSW-NB15 dataset. In same 2017, another author [34] combine Random Forest method with “Logitboost” 
[35] boosting algorithm and show better results on both datasets compared to clear Random forest methods [36] and some 
previous approaches, see Table 3 (for Random Forest application in intrusion detection see also [37]). Boosting is quite 
attractive approach to create classifiers, as example in [38] authors compare a set of boosting methods (Bagged Tree, 
AdaBoost, GentleBoost, LogitBoost and RUSBoost algorithms) on UNSW-NB15 dataset and show that Bagged Tree and 
GentleBoost classifiers show superior performance (see [38] for details). Another comparison of boosting presented in [39] 
and ensembling methods in [40].  

 

                                                           
1 This review based on IEEEXPLORE publications search engine on the July 2019. 
https://ieeexplore.ieee.org/search/searchresult.jsp?queryText=unsw%20nb15&highlight=true&returnFacets=ALL&returnType=SEARCH&sortType=n

ewest  
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Table 3 – Comparison of intrusion detection methods over UNSW-NB15 dataset [34]. 

 
 
In 2016 researches apply genetic search to select appropriate features to each class and use Support Vector Machine to 

classify intrusions with such features [41]. They achieve high accuracy, more than 90% for all classes except of “Exploits” 
(~80%), and false positive rates less then 0.1%. 

In 2018 quite interesting approach was introduced in [42]. Authors use multiscale wavelet transform and perceptron-like 
neural network with Hebbian learning for anomaly detection in records with HTTP protocol. They achieve Mean Accuracy 
93.56% (wherein Mean TPR is 73.55%, Mean FPR is 4.46%, Mean TNR is 95.53%, Mean FNR: is 26.44%). 

Creators of UNSW-NB15 continues their work and propose a Collaborative Anomaly Detection Framework, which is 
based on modification of Gaussian Mixture Model [43]. This system installed on each node of cloud network and each node 
in training phase create a statistical model of normal data by approximation of probability distribution function using 
Gaussian Mixture Model. Then, in testing phase, such model can be used to detect an anomaly, which is interpreted as 
intrusion. Such approach can be applied only to detection but not to classification of intrusion. Authors achieve results 96% 
in accuracy and detection rate and 4-9% in false positive rate. Similar approaches but with Hidden Markov Models also was 
applied in [44], with Beta Mixture Model in [45], with Dirichlet Mixture Mechanism in [46]. 

Some comparison of machine learning approaches for intrusion classification over UNSW-NB15 dataset are made in 
[47]. Authors compare Support Vector Machine, Multilayer Perceptron, Restricted Boltzmann Machine, Sparse 
Autoencoder and deep learning architecture with embedding (like word2vec approach). They show that deep learning 
approach is better in average than others, but, unfortunately, does not provide information about performance on each 
classes for UNSW-NB15 dataset. Autoencoders is also interesting approach to intrusion detection, in [48] authors present a 
two stage approach with autoencoders then second stage uses a results (score – output of classification unit) from first stage. 
Such approach shows follow results: 89.134% in accuracy and a 0.7495% in FAR for the UNSW-NB15 dataset. 
Combination of deep autoencoder, Support Vector Machine and Artificial Bee Colony searching method was used in [49] 
and show detection accuracy about 90% and FAR about 5%. 

In [50] authors provide using a Long-Short-Term-Memory (LSTM) neural network, which is a type of Recurrent Neural 
Network, for intrusion detection over UNSW-NB15 dataset. They achieve quite high results (Precision=98.02%; 
Accuracy=99.41%; TPR=97.97%; TNR=99.53%, FNR=2.03%, and FPR=0.47%) in detection and show that such approach 
works better than, for example, Support Vector Machine. Bidirectional LSTM was used in [51] and show average 85% in 
precision and 88% in recall metrics. It is also shown that some classes are not recognized at all, due to imbalance amount of 
data. 

In [52] deep learning architecture (16 layers, including fully connected with ReLU activation, dropout, and batch 
normalization layers) was created and tested on various intrusion datasets, including UNSW-NB15. Results not so high as 
in previous researches, but this architecture in used for large set of different datasets, and clearly show a problem of 
imbalanced classes. 

Authors of [53] provide a set of techniques (Bootstrap Aggregation, Synthetic Minority Over-sampling, Under-sampling, 
and Class Balancer) to deal with imbalanced classes in intrusion detection system. They show minor advantages in term of 
area under ROC-curve to whole dataset, but, unfortunately, did not provide any information for classes.  
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Latest article [54] use a multiple-layer approach consisting of a coarse layer and a fine layer, in which the coarse layer 
with the deep convolutional neural network model focuses on identification of N abnormal classes and a normal class. 
While in the fine layer, an improved model based on gcForest (caXGBoost) further classifies the abnormal classes into N-1 
subclasses. The proposed framework has been compared with the existing deep learning models using dataset NBC, a 
combination of UNSW-NB15 and CICIDS2017 including 101 classes. The experimental results show that method 
outperforms other single deep learning methods in terms of accuracy, detection rate and FAR and works well with 
imbalanced classes. 

4  Neural network structure 

Convolutional neural network consists from some number of layers of the next basic types: convolutional layers, fully 
connected layers, activation layers. In addition, network can contain different layers, such as normalization layers, dropout 
layers etc. 

Convolutional layer performs a convolution of input data and some kernel – set of parameters also known as weights. 
Such kernels may be adjustable during training or not. In the last case weights is not changing during training and example 
of such layer is pooling layer which is widely use in image processing to decrease number of adjustable parameters, but for 
our work number of parameter is not large, so we will not use a convolution with nonadjustable weights. Convolution can 
be applied to data of different dimension, for example, 2D convolution is more usable in image processing. In our work, we 
will use 1D convolution, because input data presented as a vector, 1D array. In this case, mathematically convolution can be 
described as follow. Let xi be the i-th element of the input vector, i = 1 ... N, where N is the number of input parameters, wk 
is the k-th element of the kernel (which is also represented as a vector), k = 1..K; w0 is separate coefficient which is called 
bias, then the output of a one-dimensional convolutional layer yj defined as (no stride, no padding): 

 
yj=∑k (xi+k*wk)+w0 , j=1..N-K 

Schematically this is shown in Fig.1 (top). 
Layer can contain some number of kernels, ordinary with the same number of parameters. In this case, output of layer is 

an union of outputs of each kernel. 
Fully connected layer consists of neurons, each of them multiplies corresponding element of input by its own weight, 

summarizes results and adds bias. Inputs to all neurons in a layer is the same. Let xi be the i-th element of the input vector, 
i=1...N, where N is the number of input parameters, wi,j is the i-th weights of the j-th neuron, w0,j is the bias of the j-th 
neuron, then the output yj of the fully-connected layer is defined as: 

 
yj=∑i (xi*wi,j)+w0,j 

Schematically this is shown in Fig.1 (bottom). 
Comparing convolutional and fully connected layers we can understand that convolutional layer is some particular case 

of fully connected one with some weights equal to zero and some weights in different neurons are the same (shared between 
neurons). Example of such equivalence for small layer is shown in Fig.1. Convolutional layer uses less number of weights 
but still able to perform complex transformation from input to output. 
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Fig. 1 –  Example of equivalence of convolutional (top) and fully connected (bottom) layers with 5 inputs and 3 outputs. 
‘x’ – multiplication, ‘+’ – addition. 
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Activation layer performs some nonlinear transformation from its inputs to outputs. Both, convolutional and fully 
connected layers perform, as we can see, a linear transformation of inputs. Because of this, if we use two of such layers 
sequentially, this equivalent to use only one layer (linear transformation of linear transformation is a linear transformation). 
Therefore, in practice, convolutional or fully connected layers alternates with activation layers. Activation layers apply 
some activation function to inputs. For example, so called ‘sigmoid’ calculates each output y as y=1/(1+e -x), x – input. 
Piecewise linear activation function ReLU calculates output as a maximum between 0 and input x. ‘Softmax’ activation 
function calculates output yj as yj=exp(xj)/[∑i exp(xi)] , xi  - i-th input. There are exist large number of different activation 
functions. Overall, convolutional neural network consists of alternated convolutional and activation layers and has some 
number of fully connected layers at the end, also alternated with activation. 

Structure of network, which we use in our work, is shown in Fig.2. It consist from 5 convolutional layers with ‘sigmoid’ 
activations and 3 fully connected layers, first and second with ‘sigmoid’ and last with ‘softmax’ activation. Number of 
inputs – 190 (see Section IV), number of outputs – 10 (number of classes, 9 intrusions and Normal). 

To use chosen dataset we need preprocess data to be suitable to neural network. We made it in three stage: choosing of 
relevant features, coding of nonnumeric data and scaling of numeric data. 

Firstly, we need to drop some irrelevant features. UNSW-NB15 has 47 features field, some of them relates only to that 
computer network which used for dataset collection. Namely, we drop following 7 fields from dataset: 

- ‘srcip’ (source IP address), 
- ‘dstip’ (destination IP address), 
- ‘sport’ (source port number), 
- ‘dsport’ (destination port number), 
- ‘stime’ (record start time), 
- ‘ltime’ (record last time), 
-‘res_bdy_len’ because this field does not change in dataset. 
Among other fields, dataset contains 3 categorical (string) fields:  
- ‘proto’ (transaction protocol), has 129 different values (‘udp’, ‘tcp’, arp’ etc.); 
- ‘servis’, has 8 values (‘http’, ‘ftp’, ‘smtp’, ‘ssh’, ‘dns’, ‘ftp-data’, ‘ir and  '-‘ if not used); 
- ‘state’, depend on transaction protocol and has 16 values (ACC, CLO, CON, ECO, ECR, FIN, INT, MAS, PAR, REQ, 

RST, TST, TXD, URH, URN and ‘-‘ if not applicable). 
We code this categorical fields using one-hot encoding scheme then a sparse vector with ‘0’ and only one ‘1’ show the 

value of fields. Therefore, for categorical fields we have output vector of 153 (129+8+16) length. 15 of 37 numerical fields 
scaled by division to appropriate value to make range almost equal and remaining 22 fields unchanged. 
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Input: 190 elements

Convolution layer 1, 64 kernels of size 1*5
Output: 186*64 

Activation layer 1, sigmoid

Convolution layer 2, 32 kernels of size 1*5
Output: 182*32

Activation layer 2, sigmoid

Convolution layer  3, 16 kernels of size 1*5
Output: 178*16 

Activation layer 3, sigmoid

Convolution layer  4, 8 kernels of size 1*5
Output: 174*8 

Activation layer 4, sigmoid

Convolution layer  5, 4 kernels of size 1*5
Output:  170*4 

Activation layer 5, sigmoid

Fully connected layer 1, 256 neurons

Activation layer 6, sigmoid

Fully connected layer 2, 64 neurons

Activation layer 7, sigmoid

Fully connected layer 3, 10 neurons

Activation layer 8, softmax

Output: 10 elements
 

Fig. 2 – Structure of used neural network. 
 
 

5  Class-balanced training 

Desired outputs of neural network classifier is 10-dimensional vectors showed class of input data. We have 9 classes of 
intrusions (‘Fuzzers’, ‘Analysis’, ‘Backdoors’, ‘DoS’, ‘Exploits’, ‘Generic’, ‘Reconnaissance’, ‘Shellcode’, ‘Worms’) and 
one class of normal packets (‘Normal’). The same one-hot encoding scheme used for outputs. 

Neural network trained using ‘RMS-prop’ [55] method, which is one of the modification of gradient-based method 
realized in ‘keras’ [28] library. Training is an iterative process in which loss-function minimizes. On each iteration, 
examples of inputs and corresponding desired outputs processed in neural network. 
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Common choice for large datasets is to use so called ‘batches’ – combination of inputs\outputs of some length. This 
batches varies in each iteration and random input\output examples taken to a batch (see Fig.3 top). 

In our work, we show that for situations then amount of examples in classes is very different better to use another 
approach for batch forming, namely predefine amount of examples of each class in batch (see Fig.3 bottom). For example, 
if batch size is 300 and we have 10 classes then we can form a batch that consist of 30 random examples of each class. 

 
 

3 4 521 8 ...76 N

Training data

Random choice

3 4 521 8 9 1076 ... N

Training data

Class 1 Class 2
Class К...

Class 1 examples Class 2 examples Class К examples…

BATCH with class‐balance

BATCH without class‐balance

 
Fig. 3 – Variants of batch forming. Top – random selection, bottom – class-balanced selection. 

6  Results and discussion 

For computational experiments we use next software products: 
- programming language: Python 3.5 with Anaconda 4.2.0; 
- Microsoft Visual Studio 2017, v15.5.2; 
- neural networks training: : keras 2.0.2 with tensorflow (GPU version) 1.1.0; 
- additional: pandas 0.20.1 for text file processing, numpy 1.13.1 for calculations, scikit-learn 0.18.1 for data 

encoding, matplotlib 2.0.2 for visulization. 
and hardware: 

- computer with IntellCore i7, 3.4GHz, 32 Gb 
- graphical processing unit Nvidia Quadro K600, 1Gb 

 
We use the following configuration of neural networks: 

- structure showed in Fig.2; 
- batch size: 256; 
- learning rate lr=0.001; 
- maximum allowed training epochs: 200; 
- other parameters are by default of keras library [55]. 
We train and compare neural network in two variants: with random batches (default) and with class-balanced batches. 

Test data differ from train data, experiments repeat several times, mean results are shown. 
Fig. 4 and 5 shows results of experiment. Fig. 4 shows confusion matrix on train and test data. Confusion matrix show 

how much data recognized well (diagonal elements) and how many mistakes (non-diagonal elements). Fig.5 shows value of 
loss function and accuracy during training both on train and test data. Loss-function is a categorical cross-entropy [55]. 
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Fig. 4. Confusion matrix on train and test sets for random (‘direct’) batch forming and class-balanced (‘generator’) one. 

 
a)          b) 

 
Fig.5 –  a) Accuracy and b) loss-function values on test set for random (‘direct’) batch forming and class-balanced 

(‘generator’) one. 
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Analyzing the results we can see that class-balanced approach to batch forming can improve recognition performance of 
classes with small number of examples. Without such balance it is possible that some classes will be absolutely ignored by 
neural network (‘worms’, ‘backdoors’ in our experiment). In addition, we can see that better accuracy (and loss) does not 
guaranteed that classification will be better (see Fig.4 and 5 that shows that accuracy is better for random batch forming but 
some classes does not recognized at all). 

But it is need to understand that better recognition of classes with small number of examples achieved at the expense of 
worse recognition of classes with large number of examples (compare ‘Normal’ and ‘Exploits’ for both cases). Therefore, 
such approach allow to control, is some degree, recognition performance of different classes and can be used in systems 
with different importance of classes. Note also that usage of class-balanced approach is not a guarantee of good recognition 
and only a one means to increasing of such recognition (see for example on class ‘Analysis’ which is not recognized nor by 
random batch forming nor by class-balanced one). 

7  Conclusion 

In this work we show that for intrusion detection tasks it is a common situation then amount of examples of data of various 
classes is quite different. In this case training process of neural networks for intrusion recognition need to be modified to 
achieve better recognition of classes with small amount of examples. We describe an approach of class-balanced batch 
forming and show in experiment that it can improve recognition performance of classes with small number of examples by 
the expense of decreased recognition performance of classes with large number of examples.  

Approach can be enlarged to control relative importance of classes by varying proportion of classes presented in batch. 
Previously reported UNSW-NB15 dataset were used to support this study and it is available at 

10.1080/19393555.2015.1125974, and can be downloaded from https://www.unsw.adfa.edu.au/unsw-canberra-
cyber/cybersecurity/ADFA-NB15-Datasets/ .These prior studies (and datasets) are cited at relevant places within the text as 
references [29]. 
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