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Abstract. The paper concerns topical problem of mathematical modeling of 

dynamics of heterogeneous groups with a logistic function as a basic one.  Joint 

use of mathematical models of biological systems and computer-based simula-

tion makes it possible to minimize time and save material resources while de-

termining general tendencies of subpopulation progress; and to forecast state of 

the system as well as possible consequences of artificial intervention in the en-

vironment. Among other things, it concerns forecasting of genetic abnormali-

ties. The paper proposes a model of dynamics of progress of a population con-

sisting of n subpopulations. The model is represented in the form of differential 

equations with transition coefficients within their right sides.  The transition co-

efficients mirror the share of species getting from ith subpopulation to jth one. 

The proposed system is not Voltairian one since its phase trajectories may cross 

coordinate axes. It has been proved that the system of differential equations is 

degenerated in the neighbourhood of equilibrium points. Analysis of the system 

of differential equations for n=2 has demonstrated a potential for three bifurca-

tions. It has been proved that nine bifurcation types are possible for n=3. Nu-

merical computer-based experiments have shown that the proposed model is 
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stable as for the disturbance of its coefficients, and the obtained characteristics 

of the degenerated system are close to real ones.  

Keywords: mathematical model, computer-based simulation, differential mod-

el, logistic function, bifurcation characteristics 

1 Introduction 

Environment is one of the most information-intensive objects. Essentially, it is multi-

component, and experiences constant pressure of human business activities.   

Outbreak of deep global ecological changes caused the necessity to analyze their 

dynamics, evaluate it, and forecast to make possible decisions aimed at strategy gen-

eration for future community advance. Thus, the development of complex models of 

dynamics of natural-industrial processes, and the development of systems for manage-

rial decision support on their basis is the upcoming tendency to develop information 

technology, and to implement it. 

Anthropogenic pressure results in the worsening of the global environmental im-

pact as well as in the increased number of pathologies of biological objects (i.e. im-

mune retrogression, decreased reproductive function etc.).  In the context of unstable 

environmental factors and mosaicism of areas of species, genetic inhomogeneity of 

species and certain populations increase significantly. Features of the situation should 

be involved while planning environmental protection measures, performing ecological 

monitoring, and solving problems concerning forecast of future of the populations. It 

is extremely important to study a level of genetic heterogeneity of people. Accumula-

tion of pathologic recessive genes may be latent for a long time, and starting from a 

certain moment it may be manifested in the form of rapid growth of the number of 

definite hereditary diseases. 

Use of mathematical models of dynamics of heterogenic populations as well as 

their application for computer-based simulation makes it possible to identify efficient-

ly and with minimum time consumption the common tendencies for subpopulation 

progress, to forecast the system state as well as possible consequences of artificial 

intervention in the process [1-4]. Among other things, mathematical modeling helps 

forecast formation of genetic abnormalities. 

In its classic view, the system of dynamics of arbitrarily isolated populations is rep-

resented as  
___

, 1,i ix f x i n   where ix  is a size of i th population, and  if x  deter-

mines its reproductive potential. The paper proposes to consider a model of subpopu-

lation dynamics in the form of  
___

1

, 1,
n

i ij j

j

x A f x i n


  , i.e. when  jf x , 
____

1,j n  

function is a part of a right-hand member of an equation with some coefficient 

 0;1ijA   which will be defined below as a transition coefficient. Similar problems 

were considered in [5], and in [6] they were further developed. 



2 Mathematical model of dynamics of homomorphic objects 

with logistic function as a basic one  

1. The research is based upon the concept of a population as a set of species which 

can be divided conventionally into n subpopulations; from the genetic viewpoint, 

they are more or less homogenous while differing from each other significantly. 

They are not isolated reproductively; thus, there is certain degree of probability 

that inheritors of species from ith subpopulation will get to jth population. In gen-

eral, differential model of the system may be expressed as follows: 
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n

j

ji i

i

dx
A f x j n

dt 

     (1) 

where xj  is a size of jth  subpopulation, fi(x) is a function, describing general repro-

ductive potential of ith subpopulation, and Aji is a share of inheritors of ith population 

getting to jth one. Assume that 1.ij

j

A   in terms of any i.  fi(x) function mirrors the 

commonly known logistic law  
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   

 
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where ia  mirrors reproductive potential of subpopulation with i index, and K  is a 

capacity of the population survival areal.  According to (1), (2), population growth 

nears zero when its size nears zero or when total size of all subpopulations nears max-

imum possible ecological capacity of K environment. 

(1), (2) system is not Voltairian one to the extent that its trajectories may cross co-

ordinate axes and, for instance, local behaviour of the system in the neighbourhood of 

the reference point depends upon its characteristics not only in the first quarter. Such 

results have found their application in other industries [7], as well as in such works as 

[8-11]. 

3 Equilibrium points of the system  

To study equilibrium points of the system (1), (2) apply standard analysis on Lya-

punov [9]. It is seen easily that zero point (i.e. reference point) is one of the equilibri-

um points. Moreover, there is also endless number of equilibrium points lying in the 

plane  

 i

i

x K . (3) 

Character of arrangement of equilibrium points is rather natural from ecological 

viewpoint. It is known that if there are no representatives of the certain species, they 

cannot originate from nothing. If subpopulations inhabit one and the same ecological 



niche consuming the same resources, their random distribution within the niche in 

terms of their sizes is equivalent. 

Theorem 1: (1), (2) system is degenerated system in the neighbourhood of specific 

points of stationary hyperplane (3). 

Proving: general view of ijth component of Jacobian matrix J of (1), (2) system is 
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. According to (3), general view of ijth component 

of Jacobian matrix J of (1), (2) system within planes of stationary hyperplane will be 

1

1 n

ij ik k k

k

J A a X
K 

    . Since ijJ  does not depend on j directly, pi hiJ J , 
____

, 1,p h n  

is true; it follows that vectorial columns of Jacobian matrix are linearly dependent, 

  0Det J  ; hence, the system is degenerated within specific points of stationary 

hyperplane  
1

n

i

i

x K


 . 

The theorem has been proved.  

If n=2, then the system is represented as: 
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.
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 

 
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  

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 (4) 

Following symbols were introduced for (4) system: parameter i iiA   mirrors a 

part of subpopulation i  growth belonging to parental one according to its phenotypic 

characteristics. In terms of circulation system, parameters are
1,

1
n

ij i

i i j

A 
 

  , 

___

1,j n . 

Subpopulation may vary in reproductive coefficients аi, initial size, and in transi-

tion coefficient i (i.e. certain share of growth of a subpopulation belonging to “paren-

tal” one according to its phenotypic characteristics). 

Figures 1 and 2 demonstrate samples of phase patterns in the context of two-

dimensional case for two sets of parameters. From ecological point of view, we are 

interested mainly in the first quarter where subpopulation sizes are positive.  

 



 

Fig. 1. Phase pattern of system (4) with following parameters: 1 20.95; 0.95;    

2 10.3; 0.1.a a   

 

Fig. 2. Phase pattern of system (4) with following parameters: 

1 20.95; 0.95;   1 25; 2.a a    

Taking into consideration the fact that we are interested in the first quarter, i.e. 

1 1, [0, ]x x K , the system behaviuor near (3.3) line depends completely upon ai indi-

ces: if 1 0a  , 2 0a   then all points of the section are attracting; if 1 0a  , 2 0a   

they are repelling; if ia  have unlike signs, the section will consist of two parts – with 

attracting points, and with repelling ones.  

Theorem 2: degenerated stationary line 1 2x x K   of (4) system consists of 

points of attracting ray (i.e. attractor) with  1 2 1 2 0x a a K a    general view, and 

points of repelling ray (i.e. repeller) with  1 2 1 2 0x a a K a    general view. Coor-

dinates of a point, connecting rays of attractor and repeller are 2 1

2 1 1 2

;
a a

K K
a a a a

 
 

  
; 

within the point, characteristic equation of Jacobian matrix has zero root of 2nd order.    

Proving:  according to theorem 1, system (4) is degenerated in the neighbourhood 

of points of stationary line 1 2x x K  . Elements of Jacobian matrix system are: 
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Within points of stationary line 1 2x x K  , Jacobian matrix is 

     
     

1 1 1 2 2 2 1 1 1 2 2 2

1 1 1 2 2 2 1 1 1 2 2 2

1 1
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a x a x K a x a x K
J

a x a x K a x a x K

   

   

      
  
       

, and its characteristic 

equation is  2

1 1 2 2 0t t a x a x K    where due to degeneration of Jacobian matrix, 

1 0t  , and  2 1 1 2 2t a x a x K   . 

Within points of stationary line 1 2x x K  , nonzero root of the characteristic 

equation can be represented as  2 2 1 1 2t a a x K a   ; then, if  2 1 1 2 0a a x K a    

it is obvious that points of the stationary line are attracting, and 

if  2 1 1 2 0a a x K a   , they are repelling. It is understood that the two rays will be 

combined within the point meeting 
 2 1 1 2

1 2

0a a x K a

x x K

  


 
 condition also having 

2 1

2 1 1 2

;
a a

K K
a a a a

 
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 coordinates. Within the point where attractor and repeller are 

combined, according to  1 2 1 2 0x a a K a    condition, root of the characteristic 

equation is 2 0t  . 

The theorem has been proved.  

The system trajectory may be directed either to endlessness or to equilibrium 

points lying on a plane (3). In the latter case, finite point of the phase trajectory de-

pends upon initial conditions. The dependence is not linear one; and while approach-

ing attractor, trajectory density is not constant. In some specified sense, one can state 

that probability of getting to different points of the attractor is not similar.   

4 Analysis of bifurcation characteristics of the system  

Analysis of system (4) demonstrates possibility of three bifurcations. Suppose that 

equality of zero of a real part of no less than one of proper meaning of Jacobian ma-

trix is the required bifurcation condition.  



Theorem 3: system (4) is regenerated in the neighbourhood of singular point (i.e. 

reference point), if 
 1 2 1 2

1 2 1 2

1 1 2 2

1 0
0 0 1

0

a a
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a a

 
 

 

  
       

 
. 

Proving: Jacobian matrix of system (4) within singular point (i.e. reference point) 

is 
 

 
1 1 2 2

1 1 2 2

1

1

a a
J

a a

 

 

 
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 
; its characteristic equation is  

   2 0t Tr J t Det J   where   1 1 2 2Tr J a a   , and    1 2 1 2 1Det J a a     . 

It is obvious that while fulfilling any of 

1

2

1 2

0

0
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a

a
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

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
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 conditions, Jacobian is 

  0Det J  ; thus, the coordinate system is degenerated in the neighbourhood of the 

reference point.  If 
   

 

1 2 1 2

1 1 2 2

1 0

0

Det J a a

Tr J a a

 

 

   


  

, then reference point is elliptic 

point, and real part of the pair of complex roots of characteristic equation 

  1 1 2 2Tr J a a    is equal to zero. Hence, the system is degenerated in the neigh-

bourhood of reference point, if 
   

 

1 2 1 2

1 1 2 2

1 0

0

Det J a a

Tr J a a

 

 

   


  

. 

The theorem has been proved.  

Theorem 4: in the neighbourhood of a reference point, system (4) is of a saddle 

type, if  1 2 1 2 1 0a a     . If  
 

2

1 1 2 2

1 2 1 20 1
4

a a
a a

 
 


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point is a node; if  
 

2

1 1 2 2

1 2 1 2 1
4

a a
a a

 
 


    , then it is a focus. In the context 

of the two latter cases, point is stable if 1 1 2 2 0a a   ; it is unstable, 

if 1 1 2 2 0a a   . 

Proving: Jacobian matrix of system (4) is 
 

 
1 1 2 2

1 1 2 2

1

1

a a
J

a a

 

 

 
  

 
 at the 

origin, and its characteristic equations are    2

1 1 2 2 1 2 1 2 1 0t a a t a a         . It 

is obvious, that if    1 2 1 2 1 0Det J a a      , then discriminant  of characteristic 

equation being      
2

4D J Tr J Det J   is more than zero, and the product of roots 

of the characteristic equation (according to Vieta theorem) is less than zero. Hence, 

the origin is less than zero and the origin is of a saddle type by definition. Therefore, 

consider that   0Det J  .  Discriminant  D J of the characteristic equation is 

     
2

1 1 2 2 1 2 1 24 1D J a a a a        . It is understood that if 
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1 2 1 2 1
4

a a
a a

 
 


   , then singular point (i.e. reference point) is elliptic 

one and real part of a pair of complex roots has stable focus; if 1 1 2 2 0a a   , it is 

unstable. If  
 

2

1 1 2 2

1 2 1 2 1
4

a a
a a

 
 


   , then the singular point is hyperbolic 

one.  According to the assumption,   0Det J  . Hence, roots of the characteristic 

equation (as a result of Vieta theorem) have similar sign; consequently, if 

1 1 2 2 0a a   , then the origin has a type of a stable node; if 1 1 2 2 0a a    it is of 

unstable node type. The theorem has been proved.  

Below, the results, represented in theorems 3 and 4, are illustrated. Fig. 4 demon-

strates phase patterns in the process of reproductive coefficient 1a transition through 

zero value.  Other parameters have been selected as follows: 

 1 2 20,8; 0,8; 5; 100a K      (5) 

 
a               b   c (5) 

Fig. 3. Phase pattern of system (4) with parameters and a) 1 1a  , b) 1 0a  , and c) 1 1a   . 

In Fig. 3, the origin is unstable nodes and all points of 1 2x x K   line are attractive. 

Such behavior is typical for the system under standard conditions when two progress-

ing subpopulations complement each other by a certain share of their inheritors while 

increasing system-wide population biomass. When overall size of the series achieves 

maximum acceptable edge K, the subpopulation growth comes to an end in the sense 

that the number of newborn species is equal to the number of died ones. 

In the context of the degenerated case (Fig. 3, b) all the phase trajectories are 

straight ones, zero equilibrium point almost decays and line (3) stays to be attractor. 

The case is realistic from the practical point of view since when subpopulation one 

has zero coefficient of reproductive coefficient, its species are available owing to the 

growth of subpopulation two. In this context, certain share of species of subpopula-

tion 2x belonging to parental one according to their phenotypical characteristics, is 2  

and share of inheritors will belong to 1x ; thus,  21  . It is obvious that in such a 

case, ratio of size of two subpopulations will be stable, i.e. phase trajectories will be 

straight lines. 

In the case represented in Fig. 3, c, saddle is a reference point. Certain share of 

points within a line (3) are repelling; certain share of trajectories tend to infinity de-



spite the fact that in the neighborhood of the reference point, where realistic values of 

initial size of the subpopulations, the system remains unstable as before. Such a “sce-

nario” for the system development is widely used under the real conditions since in 

the context of one system degradation it can support sufficient level of its size owing 

to the subpopulation being developed; when total biomass achieves its critical value, 

the former can preserve the ratio. 

Fig. 4 represents another bifurcation case, when 1 parameter goes through critical 

value 0.8. Other system parameters were selected as follows: 

 2 1 20.2; 1; 1.5; 100a a K       (6) 

 
a   b   c 

Fig. 4. Phase pattern of system (4) with parameters (6) and a) 1 0.7  ; b) 1 0.8  ; c) 

1 0.9  . 

The case is not realistic from biological point of view but it is interesting mathemati-

cally. In terms of the selected coefficients, subpopulation one is at a disadvantage: its 

reproductive coefficient is negative and it exists owing to subpopulation two produc-

ing mainly species of subpopulation one. In Fig. 4, reference point is a stable focus; if 

the initial number of species is insufficient, both subpopulations die out. In the con-

text of other initial conditions, the trajectories tend to the upper part of a line (3). Fig. 

4, b represents transition degenerated case when two lines (i.e. attractor and repeller) 

are available. Boundary trajectory points are focused on two half-lines and certain 

trajectories tend to infinity. After subsequent magnification of 1 in Fig. 4, it becomes 

obvious that reference point becomes a saddle.  The majority of trajectories tend to 

the upper part of a line (3); moreover, their density is maximal within lower part of 

the half-line. As before, in the context of sufficiently large size of population two, 

trajectories may tend to infinity.  

In addition to the considered cases, another bifurcation when 1 2 1 2( 1) 0a a     

may take place. In this context, critical values of parameters are determined using the 

equation 

 1 1 2 2 0a a    (7) 

It is understood that in the neighborhood of point (7), discriminant of characteristic 

equation is negative, i.e. singular point is a focus. In this context, bifurcation is a 



change of a stable focus for unstable one or vice versa. Fig. 5 shows such a bifurca-

tion when condition (7) is fulfilled and discriminant of characteristic equation is nega-

tive:  

 1 1 20.8; 0.25; 0.1; 100a K       (8) 

 

a   b     c 

Fig. 5. Phase pattern of system (4) with parameters (8) and a) 2 1a  ; b) 2 2a  ; c) 2 3a  . 

When reference point is a stable focus, in terms of small x2 the system cannot achieve 

its equilibrium within a line (3), sizes of the both subpopulations tend to zero.  Taking 

into consideration the fact that in the context of ecological system, xi coordinates can-

not have negative values, the case of unstable focus cannot be considered as essential-

ly different though area of initial values x2 , in terms of which the system is in equilib-

rium, is quite broader.  

 

Fig. 6. Bifurcation diagram of system (4) in terms of fixed 2 =0.1 and 2a =2 

Bifurcation diagram represents general information concerning potential bifurcations 

of system (4) (Fig. 6). As it has been demonstrated (Fig. 3-5), bifurcations of node-

saddle, focus-saddle, and stable focus-unstable focus types are observed within the 



system. Fig. 7 demonstrates a segment of bifurcation diagram (Fig. 6); namely, it is 

the segment where density of bifurcational curves is maximal.  

 

Fig. 7. Segment of bifurcation diagram demonstrated in Fig. 6. 

As it is seen, degenerated point M, within which bifurcation of type three originates, 

is available within parametric space of system (4). Bifurcation diagram (Fig. 6) 

proves graphically the results, represented in theorems 5 and 6. 

Features of such a point are as follows: ordinary system bifurcations are possible 

within the point as well as such more complicates transitions as “stable focus-unstable 

node”, “stable focus-unstable focus”,“focus-saddle”, “unstable focus-stable node”, 

“node-centre”, and “centre-saddle”.  

Specify full-circle trajectory Г within certain neighbourhood of point M in bifurca-

tion diagram represented by Fig. 7. The trajectory, just as a part of the bifurcation 

diagram in the neighbourhood of point M, is shown schematically.  Actually, radius of 

trajectory Г is 0.01. Trajectory Г passes through all segments of the bifurcation dia-

gram; thus, the system behaviour in the neighbourhood of point M is quite sufficient 

to describe in full every possible state graph of variations of proper values as well as a 

discriminant of the characteristic equation of system (4) while anticlockwise move is 

taking place along the trajectory Г. For definiteness, locate  K , N , P , T , and Z  

points within the diagram. 



 
Fig. 8. Dynamics of characteristic numbers and Jacobian matrix discriminant of the system (4) 

in the context of movement along trajectory   (Fig. 7). 

For the diagram in Fig. 8 following symbols were used: D  - discriminant of the char-

acteristic equation; 1t , and 2t  - proper numbers of Jacobian matrix of the system (4); 

b  - real part of a pair of complex proper values of Jacobian matrix of system (4).  

Discretization interval applied for the diagram is 0.01.  

Every of , , , ,K N P T Z  points of trajectory   of the bifurcation diagram shown in 

Fig. 7 is separate bifurcation. KN  arch of trajectory   is within the part of paramet-

ric field, where topology of phase space on the neighbourhood of singular point is a 

saddle, which corresponds to a positive value of a discriminant of characteristic value 

as well as to negative production of proper values of the characteristic matrix. 

NP arch corresponds to a type of a singular point (i.e. reference point) unstable node 

depending upon  the variation from negative proper parameter to positive one. Bifur-

cation transition through point P is stipulated by the transition of proper values of 

Jacobian matrix to imaginary plane. Analytical condition for such a bifurcation origin 

is    2 4 0Tr J Det J  . Discriminant of characteristic equation takes negative val-

ues when proper values are found out within imaginary axis. In this context, the graph 

mirrors only the real part of a pair of the complex characteristic numbers of Jacobian 

matrix being  b Tr J  .   0Tr J  condition is fulfilled within point T  of the sys-

tem (4) stipulating loss of stability of elliptic equilibrium point as well as variation of 

the phase space topology in the neighbourhood of the singular point (i.e. reference 

point) from stable focus to unstable one. 

System (4) is degenerated system in the sense that it involves continuous set of 

equilibrium points of measurability 1. Generally, such systems are unstable structural-

ly. To analyze characteristics of the system from the point of view, it is possible to 

introduce to it additional parameter K  which reflects certain difference in ecological 

capacity for the two subpopulations.  Express system (4) for two-dimensional case in 

such a way: 
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 (9) 

Fig. 9 shows phase patterns of system (9) in terms of different values of coefficient 

K ; other parameters were selected as follows:  

 1 1 2 20.3; 0.5; 0.5; 0.3; 100.a a K       (10) 

 

a               b   c (5) 

Fig. 9. Phase pattern of the system (4) with parameters (10), and а) 30K   , b) 0K  , 

c) 30K  . 

Computer simulation demonstrates significant stability of the system. As it is seen 

from the figures, even in the context of substantial disturbance of K nature of the 

trajectories does not experience essential changes within the major part of the phase 

space. Topology variation, taking place objectively, is seen in the slow motion of the 

system along a line (3) after its arriving towards (K,0) point or (0,K) point. 

Another disturbance type is connected with discretization interval effect being al-

ways available in the context of computer simulation. Actually, discrete model form 

is more adequate to the reality since population size cannot vary continuously. In the 

context of the degenerated systems, discretization may result in the breakdown trajec-

tories and the system behaviour may experience qualitative variations. System (4) 

demonstrates stability to such disturbances as well. In terms of rather high coefficients 

of reproductive functions, cases are possible when phase trajectories pass attractor 

(3); generally, the trajectory returns to its stationary line during the next interval. Fig. 

10 shows a fragment of a line (3) and trajectories with sufficiently large discretization 

interval in its neighbourhood.   



 
Fig. 10. Trajectories of the system (4) with t = 5 interval in the neighbourhood of attractor (3). 

5 Bifurcations of comeasurability 1  system 

Theorem 5: in the neighbourhood of the singular point (i.e. reference point), sys-

tem (4) may have only three bifurcations of comeasurability 2 arising if 

1 1 2

2 1 2 1 2

0 0 0

0 1 1

a a a

a    

    
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      
.  

Proving: according to the results of theorem 3, system (4) is degenerated in the 

neighbourhood of a reference point, if  
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. It is obvious that in the context 

general type of bifurcations of comeasurability 2 of (3.4) system should be 2

4 6С  , 

namely 
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. (12) 

As it is understood, zero-dimensional set is the solution for systems (12); thus, only 

three bifurcations (11) of comeasurement 2 of system (4) within the singular point 

(i.e. reference point).  The theorem has been proved.  

Theorem 6: in the neighbourhood of the singular point (i.e. reference point), sys-

tem (4) experiences the only bifurcation of comeasurement 3 arising, if 

 1 2 1 2

1 1 2 2

1 0

0

a a

a a

 

 

  
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 
. 

Proving: topological structure of a phase pattern in the neighbourhood of a refer-

ence point of the system (4) may be in such nonequivalent states as “stable node”, 

“unstable node”, “saddle”, “stable focus”, “unstable focus”. It is commonly supposed 



that “node” and “focus” are equivalent topologically. We emphasize that in this con-

text, two-dimensional set “saddle” is transitional state between “stable node” and 

“unstable node”; one-dimensional set “centre” is transitional state between “stable 

focus” and “unstable focus”. Relying upon the abovementioned, differ conditionally 

topological structures of a phase pattern of “node” type and “focus” type. Analytical 

condition to transfer from “stable node” to “stable focus”, and from “unstable node” 

to “unstable focus” zero equality of a discriminant of characteristic equation of the 

system (4) being          
22

1 1 2 2 1 2 1 24 4 1D J Tr J Det J a a a a          . 

Basing upon general view of determinant of characteristic matrix 

   1 2 1 2 1Det J a a      as well as real part of complex roots of a  characteristic 

equation   1 1 2 2Tr J a a   , we can see that if the conditions of the theorem 
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 

0

0

Det J

Tr J






 are fulfilled, then discriminant of the characteristic equation is equal to 

zero; hence, if 
 1 2 1 2

1 1 2 2

1 0

0

a a

a a

 

 

  


 
 then system (3.4) will experience bifurcation of 

comeasurement 3 at the reference point. The theorem has been proved. 

6 Conclusions 

The paper represents results of analysis of mathematical model of dynamics of heter-

ogeneous groups with logistic function as a basic one for 2n   cases. Such a model 

is not Voltairian one to compare with classic model; i.e. its trajectories may cross 

coordinate axes. Moreover, it depends heavily on transition coefficients proposed by 

the paper. Analysis of a model of metapopulation dynamics, including several sub-

groups competiting for common resource, has helped demonstrate rather diverse po-

tential system dynamics. Notwithstanding the degenerated,  in some specified sense, 

nature of the model, its dynamics is not trivial since in the context of variation of the 

system parameters, three bifurcation types are possible if 2n   and nine bifurcation 

types are possible if 3n  . As the numerical experiments have shown, the system is 

stable sufficiently stable in relation to its coefficient disturbance; and characteristics 

of nondegenerated systems, which can be obtained in such a way, are close to the 

system under analysis. However, in the case of stability of nontrivial equilibrium, 

finite state of the system depends upon initial conditions and it cannot be considered 

as absolutely random one.  Following of the system trajectories towards equilibrium 

has certain regularities which will be described in detail during analysis of bifurcation 

characteristics of the system.  

Models of metapopulation dynamics and regularities of directivity of the system 

trajectories to equilibrium may be used by IT while developing systems to support 

managerial decision making. 
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