
Copyright © 2019 for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Windows PowerShell Research from the Point in Terms

of Operational Data Analysis Subsystem Constructing

Hlib Horban1[0000-0002-6512-3576], Ihor Kandyba2[0000-0002-8589-4028],

Anzhela Boiko3[0000-0002-3449-0453], Kateryna Kirey4[0000-0002-9338-2380], Viktoriia Chorna5

1-5 Petro Mohyla Black Sea National University, Mykolaiv, Ukraine

hlib.horban@chmnu.edu.ua1, jeo2145@gmail.com2,

anzhela.boiko@chmnu.edu.ua3, kirey.kea@gmail.com4,

chornav2008@gmail.com5

Abstract. Relatively new for the Windows operating system is the PowerShell

command shell, that was designed to replace the elder task automation tools,

which are the cmd.exe command shell and the Windows Script Host. At the ap-

pearance of PowerShell many problems were solved, in particular, the problem

of integrating the command line with objects that are supported in the operating

system, and working with random data sources. The main feature of the Pow-

erShell com-mand shell is that all results of its commands are represented as sets

of objects of certain .NET classes, because this command shell is built on the

.NET platform. At the same time, the capabilities of PowerShell are not thor-

oughly studied. The article presents a study of this command shell in the context

of an object database and simple On-Line Analytical Processing (OLAP) system

building based on the described classes directly in PowerShell scripts. Main re-

sults of building an OLAP system by means of standard PowerShell commands,

.NET classes, and creating classes for storing multidimensional data are also pre-

sented.

Keywords: Command shell, PowerShell, .NET, commandlet, class, object data

model, property, connection, links, XML, dimension, measure, fact table, ag-

gregation.

1 Review of the contemporary researches

With the dynamic development of the graphical interface of the Windows operating

system (Windows OS), there are almost no alternative control methods for this OS

based on the use of the command line and different scenarios. First of all, due to the

fact that in comparison with UNIX-like operating systems, the command line of the

Windows OS has always been its weak point. The main reason for this was that the

main efforts of its developers were not aimed at creating a work environment for pro-

fessionals, but to improve the graphical shell for more comfortable work of ordinary

users. At the same time, this control model is not scalable. For example, during admin-

mailto:hlib.horban@chmnu.edu.ua
mailto:jeo2145@gmail.com
mailto:anzhela.boiko@chmnu.edu.ua
mailto:kirey.kea@gmail.com4

istration of a certain number of servers with the use of standard graphic tools, it is nec-

essary to repeat the same sequence of actions in a certain number of times, and therefore

the question arises of automation of the routine operations execution.

If in UNIX systems the automation tool is a standard shell or its modifications (bash,

ksh, csh, and others), then in Windows there is no specific tool. On the other hand, there

is a certain group of similar tools, which are quite different from each other. In recent

versions of Windows OS, these tools are the cmd.exe command-line shell, the Windows

Script Host scripting environment, and Microsoft PowerShell. Each tool has its ad-

vantages and disadvantages [1, 2].

Chronologically the first tool was the cmd.exe command line shell, which in turn

expanded the capabilities of the command.com shell for MS-DOS and the very first

versions of Windows, actually replacing it in versions starting with Windows NT. The

advantage of cmd.exe is that it is the most universal and easy to learn tool, as well as

available in all versions of Windows OS. In turn, its rather serious disadvantage is the

fact that this shell does not in any way provide access to objects supported by Windows

(COM, .NET, etc.).

The next step in the development of tools for task automation in Windows OS was

the Windows Script Host (WSH). This tool allows you to execute scenarios (scripts)

directly in the operating system and write them in complete programming languages,

which by default are VBScript (script version of the VisualBasic language) and Jscript

(some analog of the JavaScript language from Microsoft) [2]. In comparison with the

cmd.exe shell, the benefits of WSH are that this technology has its own object model,

elements of which have properties and methods that allow solving some daily tasks of

the operating system administrator (for example, working with the system registry, net-

work resources, etc.) as well as it allows you to access services of any automation serv-

ers applications, which register their objects in the OS.

However, in spite of all benefits, the WSH technology also has strong disadvantages.

First of all, Windows operating system does not have complete reference information

on WSH objects by default, and in the second place, WSH scenarios present a rather

serious potential threat through a security perspective, because there are a great number

of viruses, which use WSH for performing destructive actions. Last disadvantage can

be avoided by using the encryption described in [3, 4]. Some risks associated with dif-

ferent types of virus attacks can be minimized by the MAS method [5].

In the early 2000s, the situation with automation tools in Windows was not good

enough [1]. On the one hand, the functionality of the cmd.exe shell proved to be insuf-

ficient and from the other hand WSH scenarios proved to be overcomplicated for mid-

level users and entry level administrators.

The development of a new shell for access to WMI (Windows Management Instru-

mentation) objects from the command line (WMI Command-line, WMIC) started in

2000. However, this tool was not sufficiently successful, because more emphasis was

made not on the user’s operational comfort, but on operational characteristics of WMI

[1, 2].

Upon completion of the WMIC, Microsoft's experts came to the conclusion that it

was possible to implement such a shell, which would not be limited to working only

with WMI objects, but could have the ability to work with objects of any classes of the

.NET platform, effectively enabling the ability to use all its capabilities directly from

the command line. As can be seen from the above it was the start-up of the development

of a completely new task automation tool in Windows, which was named Windows

PowerShell.

Windows PowerShell is relatively new. The initial version was implemented in Win-

dows Vista operating system, and starting with Windows 7, PowerShell became its in-

tegral part. The current version of this command shell is PowerShell 5.0 [1, 2].

PowerShell itself has solved many problems emerging when automating standard

Windows tasks by using cmd.exe and WSH. In particular, some of the solved problems

are the work with arbitrary data sources in the command line according to the file sys-

tem principle and the problem of integration of the command line with different objects

of the operating system.

The main innovation of the new command shell is that the result of its work is not

the text as it was in the Cmd.exe command shell or UNIX-like systems, but an object

[6, 7]. Besides, it is possible to output the required values of the properties of these

objects and perform their methods. Since the PowerShell itself built on the .NET plat-

form, any object whose data is output by a particular command line is a .NET object.

Again, the internal command in PowerShell is called a commandlet and is also some

.NET class, which is a descendant of the Cmdlet class. This class, in its turn, is the base

class for all internal commands. A large number of commanlets returns some infor-

mation that is displayed on the console and represents a set of objects in a certain .NET

class.

In Windows PowerShell, the names of all the commandlets consist of a verb and a

noun. The verb points out the action to do and the noun in its turn points out the object

of the action. For example:

 Get-Process – information output about system processes;

 Set-Location – change of the current directory;

 Get-ChildItem – output of the directory content (its child elements);

 Stop-Service – shutdown of the service.

Commandlets can have parameters and their values (arguments). The structure of pa-

rameters in all commandlets is identical, and the same parameters for different com-

mandlets have the same names. All this allows for quite easy memorization and learning

of commandlets.

In addition, PowerShell implements a well-developed alias mechanism for more

convenient entering of command names. Three types of aliases are supported: names

in the style of cmd.exe shell commands, names in the style of shell commands in UNIX-

like operating systems, and names representing acronyms – abbreviations formed from

the initial letters of words in the name of the commandlet. For example, the Get-

ChildItem commandlet has three equivalent aliases: dir (the name of the equivalent

command in cmd.exe), ls (the same in shells of UNIX-like operating sys-tems) and gci

(acronym of the Get-ChildItem name).

For example, let’s perform this commandlet for the C directory C:\Windows:

PS C:\Windows> Get-ChildItem

The result will be:

Directory: C:\Windows

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 7/16/2016 4:23 PM ADFS

d----- 7/16/2016 4:23 PM appcompat

d----- 9/12/2016 2:22 PM AppPatch

--

-a---- 7/16/2016 4:19 PM 10240 winhlp32.exe

-a---- 7/16/2016 4:18 PM 316640 WMSysPr9.prx

-a---- 7/16/2016 4:18 PM 11264 write.exe

As can be seen, this commandlet really displays the content of the directory (if you do

not specify a directory, the content of the current directory will be output by default),

which includes files and subdirectories. However, each line in the result represents an

object of some .NET class, which has corresponding properties, values of which are

displayed on the screen. In fact, these are not all properties of this class, but only those

that are displayed by default. How to learn about all properties of this class and its name

will be described below.

Predominantly the shells of the command line have a conveyor mechanism, the

essence of which is the sequential execution of commands in such a way that the result

of the previous command line output redirects to the input of the next one. Sufficiently

useful property of pipelines is not to depend on the number of transmitted elements,

because the pipeline operates separately for each element.

In Windows PowerShell objects pass down the pipeline, and in the cmd.exe shell

and UNIX-like systems, a text stream passes down the pipeline. Such organization of

pipeline operation gives the advantage, because the command, which receives the result

of the previous command, analyzes it and allocates the necessary information. In the

case of presentation of a result in the form of a text, it is sometimes difficult to perform

its analysis, because usually output results of the commands are mainly oriented not to

the convenience of the further text review, but to the convenient visual perception of

the users. In the case of presenting of a result in the form of objects this problem does

not arise, because the necessary information for the next command can be obtained with

the help of simple access to the corresponding properties of objects.

Pipeline mechanisms often use commands that somehow process input information.

Such commands are usually called filters, examples of which in PowerShell are the

Where-Object, Select-Object and Group-Object commandlets.

The Where-Object commandlet sets a defined condition for object retrieval. As an

example of using this commandlet, let’s present information output only with respect

to executable files in the C:\Windows folder (they contain .exe extensions).

Get-ChildItem C:\Windows | Where-Object {$_.Extension -eq

".exe"}

Directory: C:\Windows

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 7/16/2016 4:18 PM 61440 bfsvc.exe

-a---- 7/16/2016 4:18 PM 4673304 explorer.exe

--

-a---- 7/16/2016 4:19 PM 10240 winhlp32.exe

-a---- 7/16/2016 4:18 PM 11264 write.exe

Another filter in PowerShell is the Select-Object commandlet. It can be used to output

only the properties of objects specified as arguments. In the following example, let’s

add this commandlet to the outputs of the previous commandlets, which receives input

information down the previous pipeline from the Where-Object com-mandlet. In its

turn, let’s order the Select-Object commandlet to output only the names and sizes of

the files with .exe extension.

Get-ChildItem C:\Windows | Where-Object {$_.Extension -eq

".exe"} | Select-Object Name,Length

Name Length

---- ------

bfsvc.exe 61440

explorer.exe 4673304

winhlp32.exe 10240

write.exe 11264

With the help of PowerShell it is possible to group objects. This functionality acts using

the Group-Object commandlet. You should specify to it one of the properties as argu-

ments, by which the grouping will be carried out. In the following example, grouping

of the content of the C:\Windows directory by extension is performed.

Get-ChildItem C:\Windows | Group-Object Extension

Count Name Group

----- ---- -----

 70 {ADFS, appcompat, AppPatch, AppReadiness...}

 1 .NET {Microsoft.NET}

 11 .exe {bfsvc.exe, explorer.exe, HelpPane.exe, hh.exe...}

 1 .dat {bootstat.dat}

 7 .log {DtcInstall.log, iis.log, lsasetup.log, PFRO.log...}

 1 .bin {mib.bin}

 4 .INI {ODBC.INI, ODBCINST.INI, system.ini, win.ini}

 2 .dll {pyshellext.amd64.dll, twain_32.dll}

 1 .xml {ServerDataCenter.xml}

 1 .prx {WMSysPr9.prx}

The output of the above-mentioned sequence of commandlets represents a table with

three fields, which in fact is the object of the definite .NET class with three properties.

The value of the Count property in each line represents the number of elements that are

included into the corresponding group. In its turn, the value of the Name property rep-

resents the value of the corresponding property of the source objects that was specified

as an argument for the Group-Object commandlet.

2 Main part

The results of these commandlets resemble the action of SQL queries for relational

databases. In objects that return as a result of the certain commandlets execution, it is

possible to draw an analogy with the relational table. However, in this case, this is not

about relational tables after all, but about class objects, because any commandlet in

PowerShell rep-resents its result in the form of certain sets of objects of a certain .NET

class, data on which is simply represented in the table form.

At this, between the object and relational data models it is possible to draw corre-

sponding analogies of concepts used in them [8, 9]. For example, the class in the object

data model is represented by a table in the relational data model, but in its turn the

object or instance of this class is nothing else than one row of the table, and the class

property is the column of the table, respectively. However, the object data model is

completely built on classes, and one of its main differences from the relational data

model is that the links between objects are carried out not on fields (properties) as be-

tween the relational tables, but by references [8, 9]. In its turn, references are the same

properties but not simple data types are used as their types, but entity classes. Another

difference between the object data model and relational data model is that the links

between objects are bidirectional.

It is worthy of note that it was impossible to create own classes in PowerShell lan-

guage for a long time, though it was possible to use predefined .NET classes with the

purpose to create their objects. Already in the PowerShell 5.0 version for the first time

there appeared a possibility of own classes declaration that removed restrictions of

PowerShell functionality as a software programming language of CLI scripts. Here is

an example of the declaration of Student (a student) and Group (a group) classes, and

we will create a link between them.

class Student

{

 [int]$id; [string]$surname

 [string]$name; [string]$midname

 [Group]$group;

}

class Group

{

 [int]$number; [string]$specialty

 [Student[]]$students

}

In such a way the object of the "Student" class contains a reference to the object of the

"Group" class, because one student can enter only one group. However, on the other

hand, a certain group consists of a plurality of students, so the "Group" class describes

the property, which is an array of references to objects of the "Student" class.

There are two different methods to create a new instance of the self-described class

in PowerShell: the New-Object commandlet and the static New() method that is a mem-

ber of any class described in the PowerShell:

$s=New-Object Student

$g=[Group]::New()

As the result, new instances of the "Student" and "Group" classes were created. Now

we need to create relationship between them. This can be done as follows:

$s.Group=$g

In such a way with the help of the PowerShell command line scripts it is possible to

describe entity classes that correspond to certain entities; link them to each other by

declaration of corresponding links and to create their instances. In such a way with the

help of the above structures it is possible to design a complete object database. In Pow-

erShell there are services for XML format in which it is convenient enough to store the

data which present objects. For this purpose, the Get-Content commandlet is used to

read the contents of the file and present it in a corresponding format. As well the .NET

classes designed to work with XML data are used.

In such a way, the possibilities of the object database building by means of the Pow-

erShell command shell by way of description of their own entity classes have been

considered herein before. Upon that analogs of queries are some PowerShell command-

lets that are commonly used in pipelines and in a certain way perform filtering of ob-

jects or their properties. Such commandlets are Where-Object, Select-Object and

Group-Object.

The Measure-Object commandlet accepts a corresponding set of digits as the input

data, processes it, and allows you to perform aggregation functions on it to calculate

the sum, the average value, and the maximum and minimum values. To perform a cor-

responding operation for this commandlet, you should specify the -Sum, -Average, -

Minimum and -Maximum keys, respectively. As a rule this commandlet is quite con-

venient to use for calculation of the total size of files in a certain directory, as well as

the average size of files in the directory, if necessary. As an example, we will calculate

the statistical data for the C:\Windows directory with the use of the commandlet de-

scribed above as the -Property key for which we will indicate the Length property,

which is the file size, and also specify the keys for the calculation of all aggregated

values:

Get-ChildItem C:\Windows | Measure-Object -Property Length -Sum

-Average -Minimum -Maximum

Count : 24

Average : 299407,541666667

Sum : 7185781

Maximum : 4675384

Minimum : 0

Property : Length

The result of the Measure-Object commandlet implementation is presented in a quite

convenient form, because it provides information about the number of elements, the

corresponding aggregated value, and the property name of the objects of a certain class,

upon which the calculation of aggregated values was performed. The application of this

commandlet is not confined to calculating the total and average size of the file. It is

quite convenient to use it in PowerShell scripting to compute the aggregated values of

numeric arrays. As an example, let’s declare an array of five numbers and calculate its

sum, as well as average, maximum and minimum values.

$a=3,7,5,2,8

$a | Measure-Object -Sum -Average -Minimum -Maximum

Count : 5

Average : 5

Sum : 25

Maximum : 8

Minimum : 2

Property :

The result does not require additional comments. We can suppose that when using

the above commandlets, it is quite effective to carry out calculations of aggregate func-

tions in multidimensional arrays that are the basis of OLAP systems [10]. OLAP is a

technology of operational analytical processing of data, which uses methods and means

for collecting, storing and analyzing multidimensional data with the purpose to support

decision-making processes.

At present OLAP systems are most often used in conjunction with relational Data-

base Management Systems (DBMS) because the links between them are already well

studied. However, after consideration of the Measure-Object commandlet and other

commandlets designed for data processing in PowerShell, the question now arises of

whether the OLAP-system, at least primitive, can be implemented with their help. Be-

sides, such a system would not be bound to any DBMS.

To answer this question, let us consider the structure of OLAP systems in more de-

tail. Their basis is multidimensional databases, which in their turn are built based on

the fact and dimension tables [10]. Fact tables contain external keys that are primary

keys in dimension tables and quantitative values that are called measures and usually

represent the value of profit, cost, etc. At the same time, the dimension in the OLAP-

systems seems to be a definite sequence of values of some parameter, which should be

analyzed. It is from the fact and dimension tables a multidimensional data structure is

formed that takes the form of a hypercube, in which defined actual values of variables

that represent measures, are located at the intersection of dimensions. Besides the actual

values, hypercubes also store the summary data that can be calculated using the aggre-

gation function (sum, mean value, etc.). In this way, you can calculate the summary

data for one or more dimensions, and it also will contain one summary value for all

dimensions at once.

Mathematically the hypercube is appropriate to represent by following sets:

1. D – a set of hypercube dimensions for a specific subject area:

 1 2{ , ,..., ,..., }niD D D D D
, (1)

where Di – i-dimension, n – the number of dimensions;

2. A – a set of attributes (values of elements) of hypercube dimensions:

 1 2 niA A A A A     
 (2)

where Ai – a set of attributes of dimension Di, which in turn can be represented as:

1 2{ , ,..., ,..., }k m

i i i i iA A A A A
, (3)

where
k
iA – k-attribute of i-dimension, m – the number of attributes in i-dimension;

3. M – a set of values of hypercube measures:

 1 2 1 2 1 2

1
, ,... ,..., , ,... ,..., , ,... ,...,{ ,..., ,...., }

n n ni i i

l z
I I I I I I I I I I I IM M M M

, (4)

where Ii – attribute index of i- dimension, n – the number of dimensions,

1 2, ,... ,..., ni

l
I I I IM – l-measure for the cube cell with ni IIII ,...,,...,, 21 index,

 z – the num-

ber of hypercube measures.

 As an example of creating an OLAP system, let us consider a database where cor-

responding car sales information is stored. The hypercube that is built for the above

database will have three dimensions and one measure. The hypercube that will build

for the above database will have three dimensions and one measure. The second dimen-

sion is the dealer information, which will have the "dealer" and "location" hierarchy

levels. The third dimension is the date of sale with the "month" and "year" hierarchy

levels. In its turn, the measure will be the number of vehicles of a defined model sold

at specified date by specific dealer. Fig. 1 shows the corresponding Integrated DEFini-

tion1 (IDEF1) diagram for this database.

Fig. 1. IDEF1 diagram of the car sales database.

For the building of such a database with the help of PowerShell, all the entities pre-

sented in the diagram above must be described in their classes. Connections between

these classes will be presented as links. In this way, it is possible to connect the actual

data with the dimension data, which in its turn can be connected to the different hierar-

chy levels. The fact table also can be presented in the form of a class; in this case it

would be better called a fact class. Let us present in PowerShell language descriptions

of classes, which are the entities used in the hierarchy levels of corresponding dimen-

sions.

class AutoModel

{

 [int]$id

 [string]$nameModel

 [int]$price

 [Producer]$producer

}

class Producer

{

 [int]$id

 [string]$cityProducer

 [string]$codeProducer

 [AutoModel[]]$autoModels

}

For example, for the AutoModel class, its connection with the Producer class is de-

scribed. This connection is bidirectional: the AutoModel class describes a link to an

object of the Producer class, while the Producer class describes an array of links to the

corresponding objects of the AutoModel class. The entities of all other dimensions and

connections between different hierarchy levels in them are described in the same way.

The description of the entity that represents the actual data is slightly different. This

class contains links to entity class objects that store data of a particular dimension in

the most detailed way. A property that is a measure is specified separately in the class.

The code of the actual data class presented below.

class AutoSales

{

 [int]$id

 [AutoModel]$autoModel

 [Dealer]$dealer

 [Month]$month

}

The most convenient way to store data in the form of classes is to store it in XML files

because the XML format itself is isomorphic towards the object representation of data:

the name of the class is a tag, and the names of its corresponding properties are the tag

attributes. As for the preservation of object hierarchies in XML, it is easy to implement

by enclosing a subordinate object into the main one. Below there is an example of how

to save dimension data, representing the dealer and its location, in XML. Here, the main

object is the location area, which is the higher level of the hierarchy, and the subordinate

objects are dealers.

<state id="2" codeState="15" nameState="Mykolaiv region">

<dealer id="3" nameDealer="Velocity" state="2" />

<dealer id="4" nameDealer="Power" state="2" />

<dealer id="5" nameDealer="Supperline" state="2" />

</state>

For the building of an OLAP system, it is quite sufficient to create two XML-files, one

of which contains dimension data, and the second one contains actual data. The follow-

ing example shows a corresponding fragment of the XML file which contains the actual

data on car sales:

<root>

<AutoSel autoModel="1" dealer="1" month="1" quantity="15" />

<AutoSel autoModel="1" dealer="9" month="2" quantity="18" />

<AutoSel autoModel="1" dealer="7" month="4" quantity="11" />

<AutoSel autoModel="1" dealer="5" month="5" quantity="25" />

 ………

</root>

Now let us consider the type of actual data processing as well as dimension data directly

in PowerShell scripts. Since PowerShell allows the use of any .NET class, it is possible

to use a form to display the data in a more user-friendly way. However, it is only pos-

sible to create a new form in the PowerShell script code after connecting the appropriate

build. An example of creating a new form that is preceded by connecting the relevant

build is given below.

[void][System.Reflection.Assembly]::LoadWithPartialName("Sys-

tem.Windows.Forms")

$factForm=New-Object System.Windows.Forms.Form

A new object in PowerShell is created with the help of the New-Object commandlet. In

such a way, a new form is created in the presented example. Using the above command-

let, it is possible to create new objects of visual components (drop-down list, button,

table, etc.) as well, and then place them on the form.

The form of the OLAP application displays dimension data as well as multidimen-

sional data, both actual and aggregated. To do this, it contains three drop-down lists

that allow the end user to select specific values for each dimension. If you want to

perform aggregation for a defined dimension, the element with the value "ALL" corre-

sponds to this action in the drop-down list. However, the main element on the form is

a table which displays the actual or aggregated data.

Fig. 2. Example of the form image for the OLAP system with the output of defined actual data.

If no element with the value "ALL" has been selected in any of the drop-down lists, it

means that the actual data that will be read from the corresponding XML file is dis-

played. If the end user has changed the current element in any of the three drop-down

lists, a corresponding event handler will be called. Its action consists first of reading

objects with actual data and then filtering them by conditions that correspond to the

value of the elements in the drop-down lists selected by the user. The PowerShell code

below is designed for this purpose.

$factXml.GetElementsByTagName("AutoSel") | Where-Object {($_.Au-

toModel -eq $selModel.id) -and ($_.dealer -eq $seldealer.id) -

and ($_.month -eq $selmonth.id)}

The user can also select the element with the value "ALL" in one or several drop-down

lists that means aggregation by one specific dimension or their collection. By way of

example, let us give in Fig. 3 for a start the form with the summary of sales by car

model.

Fig. 3. Example of the form image with a summary data output by one dimension.

The above example summarises the car sales of all the models, available in the model

database, by the Supperline dealer in December 2017. This is indicated by an element

with the value "ALL" in the drop-down list that corresponds to the "AutoModel" di-

mension. In this case the following procedure is carried out by the program. The actual

data at first is read from the XML file and then filtered by the selected dealer and month.

After this operation, the obtained set of objects is saved into the $existFact variable,

which is then processed by the Measure-Object commandlet for calculation of the total

value of the measure for the corresponding set of objects. Besides the sum, it is possible

to find the average, minimum and maximum values of a measure, which the mentioned

above commandlet allows you to do. Below there is a code in the PowerShell language,

which performs the actions described above.

$existFact=$factXml.GetElementsByTagName("AutoSel") | Where-Ob-

ject {($_.dealer -eq $seldealer.id) -and ($_.month -eq $sel-

month.id)}

$sum=($existFact.quantity | Measure-Object -sum).Sum

If you select elements with the value "ALL" in any two drop-down lists at once, the

aggregation in two dimensions will be carried out, and in this case, only one dimension

will have a fixed value. Fig. 4 shows an example of summing up the number of vehicles

sold in December 2017, regardless of which model they belong to and by which dealer

they were sold.

Fig. 4. Example of the form image with the final data output by one dimension.

Calculation of the corresponding aggregated value is carried out with the help of the

following program code.

$existFact=$factXml.GetElementsByTagName("AutoSel") | Where-Ob-

ject {$_.month -eq $selmonth.id}

$sum=($existFact.quantity | Measure-Object -sum).Sum

In contrast to the previous example, where the aggregated value was calculated by only

one dimension, only one condition is checked in the corresponding Where-Object com-

mand code (in this case, it is the correspondence of the month to the selected value). If

you calculate the final value for the whole cube, the commandlet for checking the con-

dition does not need to be applied at all. In this case, it is necessary to use only the

Measure-Object commandlet, which calculates the total value for the set from abso-

lutely all objects with actual values stored in the XML file. The program code that

carries out the above action is presented below.

$existFact=$factXml.GetElementsByTagName("AutoSel")

$sum=($existFact.quantity | Measure-Object -sum).Sum

The corresponding example of the form image with the total value output is shown in

Fig. 5.

Fig. 5. The image of the form with the total value output for the whole hypercube.

Thus, by using the Where-Object and Measure-Object cmdlets you can output any

data from the OLAP cube, both actual and aggregated.

3 Conclusions and Perspectives of Further Research

Thus, this article studies the PowerShell, which is increasingly being used in Microsoft

Windows OS instead of the traditional cmd.exe command shell. Even though all its

capabilities are not yet studied well enough, the conclusion can be drawn that this com-

mand shell is more functional than cmd.exe. In particular, PowerShell has a data man-

agement tool that is similar to the DBMS query. The Measure-Object commandlet was

studied, which has an opportunity to process multidimensional data in the same way as

in OLAP-systems, which are now increasingly used in industrial DBMS. Combining

PowerShell scripts of own classes descriptions in the code became possible in version

5.0, and the use of standard commandlets opens up the prospects for designing and

implementing such structures, which can serve as a substitute for databases and data

storages at least in the simplest cases. In particular, the article describes the principles

of creating a simple OLAP system in the PowerShell environment. At the same time,

this system certainly does not claim to be universal because it is bound to a specific

database. For the building of a universal OLAP system, it is necessary to design such

an architecture that would allow the end-users to create their entities automatically,

rather than to describe them manually with the use of PowerShell classes. All of this

the system should do automatically. For implementing such actions, it is necessary to

think over the structure of metadata carefully and implement it, which is a part of the

further plans of the authors.

References

1. Shepard, M., Venkatesan, C., Talaat, S., Blawat, B.: PowerShell: Automating Administra-

tive Tasks. Packt Publishing Ltd. (2017)

2. Payette, B., Siddaway, R.: Windows PowerShell in Action. Third Edition. Manning Publi-

cations Co (2018)

3. Krainyk, Y., Perov, V., Musiyenko, M., Davydenko, Y.: Hardware-oriented turbo-product

codes decoder architecture. In: 9th IEEE International Conference on Intelligent Data Ac-

quisition and Advanced Computing Systems: Technology and Applications (IDAACS), pp.

151-154. IEEE Press, Bucharest, Romania (2017). doi: 10.1109/IDAACS.2017.8095067

4. Krainyk, Y., Davydenko, Y., Starchenko, V.: Message-level Decoding of Error Patterns for

Turbo-Product Codes. In: 39th International Conference on Electronics and Nanotechnology

(ELNANO), pp. 660-663. IEEE Press, Kyiv, Ukraine (2019).

doi: 10.1109/ELNANO.2019.8783849

5. Burlachenko, I., Zhuravska, I., Davydenko, Y., Savinov, V.: Vulnerabilities Analysis and

Defense Based on MAS Method in Fast Dynamic Wireless Networks. In: 4th International

Symposium on Wireless Systems within the International Conferences on Intelligent Data

Acquisition and Advanced Computing Systems (IDAACS-SWS), pp. 98-102. IEEE Press,

Lviv, Ukraine (2018). doi: 10.1109/IDAACS-SWS.2018.8525692

6. Knittel, B.: Windows 7. Scripts, automation and command line. St. Petersburg (2012). (in

Russian)

7. Popov, A. V.: Introduction to Windows PowerShell. St. Petersburg (2009). (in Russian)

8. Fisun, M., Horban, H.: Generation of the association rules among multidimensional data in

DBMS caché environment. Advances in Intelligent Systems and Computing, 63-79 (2016).

9. Fisun, M., Dvoretskyi, M., Shved, A., Davydenko, Y.: Query parsing in order to optimize

distributed DB structure. In: 9th IEEE International Conference on Intelligent Data Acqui-

sition and Advanced Computing Systems: Technology and Applications (IDAACS),

pp. 172-178. IEEE Press, Bucharest, Romania (2017). doi: 10.1109/IDAACS.2017.8095071

10. Fisun, M., Horban, H.: Implementation of the information system of the association rules

generation from OLAP-cubes in the post-relational DBMS cache. In: XIth International Sci-

entific and Technical Conference Computer Sciences and Information Technologies (CSIT),

pp. 40-44. IEEE Press, Lviv, Ukraine (2016). doi: 10.1109/STC-CSIT.2016.7589864

https://doi/

