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Abstract. Mathematical modeling of effort of development of mobile applica-
tions (apps) by non-linear regression model using multivariate normalizing
transformation is performed. A three-factor non-linear regression model to es-
timate the effort (in man-hours) of developing the mobile apps in a planning
phase is constructed on the basis of the Johnson four-variate transformation for
Sg family. This model is constructed around the Requirement Analysis Docu-
ment (RAD) variables: number of screens, number of functions, and number of
files. Comparison of the constructed model with the linear regression model and
non-linear regression models based on the univariate normalizing transfor-
mations is performed. This model, in comparison with other regression models,
has a larger multiple coefficient of determination, a smaller value of the mean
magnitude of relative error, a larger value of percentage of prediction, and
smaller widths of the confidence and prediction intervals of regression. Such a
good result for the constructed model may be explained best multivariate nor-
malization of the non-Gaussian data set, which used to build the three-factor
non-linear regression model based on the Johnson four-variate transformation
for Sg family.
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1 Introduction

The problem of estimating software development effort is one of the important ones
in the planning phase, which is the first of the five phases of the software develop-
ment lifecycle [1]. Today, the solution of this problem is carried out, including using
mathematical modeling. One of the more well-known mathematical models for esti-
mating software development effort is COCOMO II. But its use for mobile apps has
some difficulties. First, the main factor for this model is the size of the software,
which is still unknown in the planning phase. Second, COCOMO Il is a non-linear
regression equation built on a univariate transformation in the form of a decimal loga-
rithm, which does not always allow for proper normalization of the data. In addition,
the regression equation does not include random variables [2-4] as and a effort esti-
mation model based on Function Points Analysis method [5]. And, as you know, the

Copyright © 2019 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



effort is a random variable. Third, while mobile app development is similar to web
app development and has its roots in more traditional software development, however,
one significant difference is that mobile apps are often written specifically to take
advantage of the unique features that a particular mobile device offers [6].

Therefore, over the last decade, the various models for forecasting the effort of de-
veloping the mobile apps in a planning phase, including regression ones [7, 8], were
constructed. It is the regression models that describe an effort as a random variable.
And since the effort distribution is not Gaussian, it is necessary to use non-linear re-
gression models, and their construction should be based on multivariate normalizing
transformations [9].

2 Model construction

At first, the three-factor linear regression model to estimate the effort Y (in man-
hours) of developing the mobile apps in a planning phase is constructed for the four-
dimensional data set from Table 1. This model is constructed around the Requirement
Analysis Document (RAD) variables: number of screens X1, number of functions Xa,
and number of files Xa.

Table 1. The data set and MD? values.

No Y X1 X2 X3 MD? No Y X1 X2 X3 MD?
1 192 5 4 3 0.66 20 198 5 4 0.50
2 272 5 4 3 231 21 146 3 2 1.18
3 288 3 2 2 6.43 22 191 6 5 0.96
4 116 6 6 4 095 23 99 3 2 1.47
5 372 5 5 4 6.82 24 382 11 12 9 8.35
6 504 9 8 6 1055 25 270 9 10 8 4.84
7 28 6 7 2 711 26 282 12 7 3 7.16
8 176 6 7 3 453 27 213 10 5 2 6.14
9 364 10 11 9 6.90 28 322 11 7 5 4.32
10 120 10 10 5 6.76 29 290 10 6 4 3.67
11 22 6 5 4 6.72 30 223 7 7 6 1.69
12 224 11 6 2 7.08 31 241 5 5 6 4.95
13 24 2 2 1 3.05 32 87 5 5 2 1.53
14 200 11 7 4 488 33 36 3 3 1 2.24
15 160 6 6 7 941 34 216 8 7 5 0.54
16 120 2 2 1 2.86 35 67 5 6 2 4.26
17 96 4 4 1 260 36 115 7 7 3 2.59
18 202 6 5 4 0.49 37 36 2 2 1 2.84
19 145 4 3 2 1.17 38 98 3 3 2 1.47




The data set from Table 1 was obtained by combining two data sets for 17 mobile
apps from [5] and for 21 mobile apps (rows 18 to 38). Also, Table 1 contains the val-
ues of squared Mahalanobis distance (MD?). We use the technique based on the
squared Mahalanobis distance [10] for detecting the outliers in the data from Table 1.
There are no outliers in the data from Table 1 for 0.005 significance level, since for
all data rows, the MD? values are smaller than the value of the quantile of the Chi-
Square distribution, which equals to 14.86.
Following [2-4] the three-factor linear regression model has the form

where ¢, is a Gaussian random variable which defines residuals, e, ~N(0,0y); the
estimators for parameters of the model (1) are: b,=0.26513 , b =0.23116

b, =-0.00082 , b, =0.08374 . Parameters of the model (1) were estimated by the least

square method.

To judge the prediction accuracy of linear regression model (1) we first used the
well-known standard metrics of prediction accuracy, i.e., a multiple coefficient of
determination R?, a mean magnitude of relative error MMRE and percentage of pre-
diction at the level of magnitude of relative error (MRE), which equals 0.25,
PRED(0.25) [11, 12]. The values of R?, MMRE, and PRED(0.25) equal respectively
0.5449, 0.5713, and 0.5789 for the linear regression model (1). These values show us
bad prediction results of the regression model (1).

Besides, the null hypothesis that the observed frequency distribution of residuals
for the linear regression model (1) is the same as the normal distribution was tested by
Pearson's chi-squared test. There is a reason to reject the null hypothesis that the dis-
tribution of residuals for the model (1) is the same as the normal distribution, since
the chi-squared test statistic value equals to 13.33 is higher than the critical value of
the chi-square, which equals to 7.81 for 3 degrees of freedom and 0.05 significance
level. Also, for the distribution of residuals in linear regression model (1), estimators
of skewness and kurtosis equal to 0.78 and 5.69, respectively. Although for the
Gaussian distribution, the values of skewness and kurtosis equal to 0 and 3, respec-
tively.

It is known [2], one of the underlying assumptions that justify the use of linear re-
gression models is the normality of the distribution of residuals. But this assumption
is not valid for the linear regression model (1). What leads to the need to construct a
multiple non-linear regression model to estimate the effort of developing the mobile
apps in a planning phase.

The three-factor non-linear regression model to estimate the effort of developing
the mobile apps in a planning phase was constructed based on the Johnson four-
variate transformation for Sg family according [9]. The three-factor non-linear regres-
sion model has the form [9]



where ¢ is a Gaussian random variable which defines residuals, e~N(0,1); Z, isa

prediction result by linear regression equation for normalized data, which were trans-
formed using the Johnson four-variate transformation for Sg family,
A . . X:—;
Z, =by+bZ; +b,Z, +0,Z5; ijyj+njlnﬁ, Q;<X;<@;+hj,
Gy A=A
j =1,2,3; the estimators for parameters of the Johnson four-variate transformation for
Sg family are: {, =569898, f§,=0524119 , 7,=0.776179 , §5=0.540973 ,

Ay =2.40219 , 7, =0.743879 , f,=0.79545 , 5 =0.534447 , §, =-114.5452
§,=1.7242 | $,=1.6885, (5 =090, A, =3328.564 , A, =12.3743 , h,=12.091,
Xs =8.30648 ; the estimators for parameters of the linear regression equation for

normalized data are: b, =0, b, =0.808152 , b, =-0.928296 , b, = 0.854262 . Parame-

ters of the linear regression equation for normalized data were estimated by the least
square method.

The values of R?, MMRE, and PRED(0.25) equal respectively 0.5789, 0.4933 and
0.5263 for non-linear regression model (2). These values show us bad prediction re-
sults of the non-linear regression model (2) approximately also as for the linear re-
gression model (1).

Because of this, the method [13] for improving non-linear regression models was
further used to construct a non-linear regression model to estimate the effort of devel-
oping the mobile apps in a planning phase. The method [13] consists of four stages. In
the first stage, a set of multivariate non-Gaussian data is normalized using a multivar-
iate normalizing transformation. After that, normalized data are checked for outliers,
and, if ones are detected, outliers are cut off. The method based on the squared Ma-
halanobis distance [14] is used for outlier detection. In the second stage, the non-
linear regression model is constructed based on the multivariate normalizing trans-
formation [9]. In the third stage, the prediction intervals of non-linear regression is
built according [9]. And finally, at the fourth stage, it is checked whether among the
data for which the non-linear regression model was built, those that go beyond the
found boundaries of the prediction interval. And, if the outliers are detected, they are
cut off, and we repeat all the stages, starting with the first, for new data.

For the non-linear regression model (2) with the parameter estimators obtained
from the data in Table 1 of the 38 mobile apps, it turned out that Y values for the three
apps (5, 6, and 11) go beyond the prediction interval. In Table 2, the lower bound of
the prediction interval obtained in the first iteration is denoted as LBy, and the upper
bound is denoted as UB;. In the second iteration, data from three mobile apps (5, 6,
and 11) were cut off, and data from the remaining 35 apps were used for model con-
struction. For the model (2) with the parameter estimators obtained from the data in
Table 1 of the 35 mobile apps, it turned out that the value of Y for app 17 goes beyond
the prediction interval. There were four such iterations, after which 30 mobile apps
remained (1, 3, 4, 7, 9, 10, 12-14, 18-38). At the fifth iteration, there were no outliers;
the repeat of the stages was completed, the nonlinear regression model (2) was con-
structed using data from 30 apps. In Table 2, the lower bound of the prediction inter-



val obtained in the fifth iteration is denoted as LBs, and the upper bound is denoted as
UBs. The row numbers (i.e., mobile apps) with the outliers in data are highlighted in
bold. A dash (-) depicts the exclusion of the corresponding numbers of data in the
relevant iteration (i.e., iteration 5).

Table 2. Lower and upper bounds nonlinear regression before and after outlier cutoff.

No Y LB: UB1 LBs UBs No Y LB  UB1  LBs UBs
1 192 60.5 377.3 1314 2285 20 198 70.8 4022 1484 2482
2 272 60.5 3773 - - 21 146 49.2 3533 1153 209.6
3 288 88.6 5241 2181 3326 22 191 66.2 3925 1398 2387
4 116 51.1 3529 105.7 1957 23 99 247 2900 73.0 1499
5 372 545 3624 - - 24 382 1401 6249 3172 4022
6 504 90.1 4533 - - 25 270 93.4 4772 202.6 309.0
7 28 -0.7 2325 251 709 26 282 1046 5325 2239 3321
8 176 189 2778 - - 27 213 785 4527 158.6 2653
9 364 1574 6652 331.6 4115 28 322 126.8 560.3 257.5 3551
10 120 48.7 363.8 971 1885 29 290 109.1 5131 2195 3225
11 22 70.8 402.2 - - 30 223 786 4252 1641 266.7
12 224 735 447.0 1485 2558 31 241 84.9 4493 1944 2997
13 24 -239 1709 153 511 32 87 17.1 2673 492 1112
14 200 1065 5116 2143 3188 33 36 -29.0 1536 152 496
15 160 100.6 490.0 - - 34 216 771 4186 153.2 2539
16 120 -23.9 170.9 - - 35 67 14 2332 290 770
17 96 -33.4 149.2 - - 36 115 31.0 3064 649 137.9
18 202 70.8 4022 148.4 2482 37 36 -239 1709 153 511
19 145 49.2 3533 1153 209.6 38 98 247 2900 73.0 1499

In the fifth iteration, for the data from 30 mobile apps, the estimators of parameters of
the Johnson four-variate transformation for Sg family are: §, =0.58590 ,

7, =0316749 , 7,=086299 , §,=048606, %, =1.01714 , 7, =0.63606 ,
A, =0.86557 , ;=0.612856 , Gy =-12.7422 , (,=1.84255 , ¢, =1.5560 ,

$;=0.73913 , A, =500.266 , A, =11.3796 , A, =13.2488 , A, =8.52637 ; the esti-
mators for parameters of the linear regression equation for normalized data are:
by =0, b, =1.1190 , b, =-1.3765 , b, =1.2027 .

The values of R?, MMRE, and PRED(0.25) equal respectively 0.965, 0.117 and
0.867 for non-linear regression model (2). These values show us good prediction re-

sults of the non-linear regression model (2) with parameter estimators obtained from
the data in Table 1 of the 30 mobile apps.



Following [9], appropriate equations were constructed to determine the lower and
upper bounds of the non-linear regression prediction intervals

BT
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where 1y, is a first component of a vector of normalizing transformation,

Y= {\VY ,\V1,\v2,...,\uk}T ; kK is a number of factors (regressors or independent varia-
bles); tuan is a quantile of student's t-distribution with o/2 significance level and v

degrees of freedom; Zy is a matrix of centered regressors that contains the values of

normalized data Z, —Z;, Z, —Z,, ..., Zy —Zy; Zx is a vector with components
_ _ _ 1N .V
2, -2y, Z, 2y, ..., Z} —Z, for i-row; si:—z(zY_—zY,), v=N-k-1;
1 1 1 V i:l 1 1

(Z§< )T % is kxk matrix
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N
where Sz ;. :Z[Zqi —Z_qIZri —Z_r], a,r=12,....k . In our case, k=3.
i=1

In the fifth iteration, for the data which normalized by the Johnson four-variate
transformation for Sg family from 30 mobile apps, 3x3 matrix

208 255 19.1
(zi)z =| 255 302 245/
191 245 29.7

3 Comparison of models

Also, for comparison of the model (2) with other models, a linear regression model
and nonlinear regression models on the basis of the univariate decimal logarithm
transformation (Log10) and the Johnson univariate transformation for the Sg family
were constructed for data from Table 1 of the 30 mobile apps. The three-factor linear
regression model for data from Table 1 of the 30 apps has the form

Y = 40,250 +28,973 X, -41,798 X, +50,665 X + &, . (4)



The three-factor non-linear regression model is constructed based on the decimal
logarithm transformation for data from Table 1 of the 30 apps

Y =105 X fix P x b )

where the estimators for parameters are: 60 =1.73898 , 61:1.6687 , 62 =-2.1116 ,

b, =1.30125 .

The three-factor non-linear regression model based on the Johnson univariate
transformation for the Sg family has the form (2) with only the following parameter

estimators: b3 =1.1148 y, =0.25204 , §,=0.10255, 7, =0.49345 , 7,=0.61963 ,
Ay =0.58192 , 7, =051359 , 7,=063352, 7,=058967 , ¢, =19.9286 ,

$, =190, §,=181688, ¢5=090, i, =370.175, A,=1020, *A,=10.6468

Ay =8.6277 , by =0, b =0.60292 , b, =-0.80179 , b; =1,1148 . Parameters of the
Johnson transformation for Sz family were estimated by the maximum likelihood

method.

The values of R?, MMRE and PRED(0.25) equal respectively 0.838, 0.237 and
0.733 for linear regression model (4), and equal respectively 0.789, 0.206 and 0.733
the model (5), and equal respectively 0.878, 0.190 and 0.767 for the model (2) with
estimators of parameters for the Johnson univariate transformation. The values of R?,
MMRE, and PRED(0.25), which equal respectively 0.965, 0.117, and 0.867, is better
for the model (2) with estimators of parameters for the Johnson four-variate transfor-
mation in comparison with all previous models.

The null hypothesis that the distribution of residuals for the linear regression model
(4) is the same as the normal distribution was tested by Pearson's chi-squared test.
There is a reason to reject the null hypothesis that the distribution of residuals for the
linear regression model (4) is the same as the normal distribution, since the chi-
squared test statistic value equals to 10.78 is higher than the critical value of the chi-
square, which equals to 7.81 for 3 degrees of freedom and 0.05 significance level.
Also, for the distribution of residuals in linear regression model (4), estimators of
skewness and kurtosis equal respectively to 1.52 and 7.73. There is no reason to reject
the null hypothesis that the distribution of residuals for nonlinear regression models
(2) and (5) is the same as the normal distribution, since the chi-squared test statistic
values are less than the critical value of the chi-square, which equals to 7.81. The chi-
squared test statistic values equal to 4.78, 2.91, and 2.30 for the distribution of residu-
als in nonlinear regression models (5), (2) with estimators of parameters for the John-
son univariate transformation and (2) with estimators of parameters for the Johnson
four-variate transformation respectively. For the distribution of residuals in nonlinear
regression models (2) and (5), estimators of skewness and kurtosis are close to 0 and
3, respectively. Only the estimator of kurtosis equals to 5.39 for the distribution of
residuals in the nonlinear regression model (2) with estimators of parameters for the
Johnson univariate transformation for the Sg family.



The lower (LB) and upper (UB) bounds of the linear regression and non-linear re-
gression prediction intervals were also determined by (3) based on the decimal loga-
rithm transformation, Johnson's univariate and four-variate transformations for a sig-
nificance level of 0.05. These bounds are shown in Table 3.

Table 3. Lower and upper bounds of prediction intervals for regressions.

linear Log10 Johnson Johnson
No Y regression univariate univariate four-variate

LB UB LB uB LB UB LB uB
1 192 80.7 259.1 1043 3101 685 3025 1314 2285
3 288 528 237.0 108.0 3541 959 3526 2181 332.6
4 116 773 2546 875 259.1 710 306.0 1057 1957
7
9

28 -752 1208 244 797 283 1556 251 709

364 2295 4229 1595 499.1 269.4 3837 3316 4115

10 120 699 260.7 919 2806 705 3122 97.1 1885
12 224 1135 3055 93.0 303.6 60.0 2999 1485 25538
13 24 -266 1571 226 719 216 599 153 511
14 200 176.6 3615 171.2 5223 129.0 3554 2143 31838
18 202 1186 2969 1284 3815 89.1 3274 1484 2482
19 145 422 2220 773 233.0 49.7 2628 1153 209.6
20 198 118.6 2969 1284 3815 89.1 327.4 1484 2482
21 146 422 2220 773 233.0 49.7 2628 1153 209.6
22 191 127.0 306.3 116.3 3486 99.1 3365 139.8 238.7
23 99 127 1935 477 1445 402 2277 73.0 1499
24 382 2158 4109 1554 4875 204.8 378.0 317.2 4022
25 270 1941 3825 1410 4372 1793 3708 202.6 309.0
26 282 1515 3432 1340 4218 1689 3756 2239 3321
27 213 1275 317.1 116.6 380.3 59.9 2942 158.6 2653
28 322 2264 4130 2283 700.0 1743 369.1 2575 3551
29 290 1895 3742 2014 619.1 1251 3523 2195 3225
30 223 1639 3451 1372 4142 1266 3528 164.1 266.7
31 241 1843 376.0 156.0 490.8 143.7 361.7 1944 299.7
32 87 -131 168.0 38.1 1152 339 1919 492 1112
33 36 -38.8 1437 189 60.0 210 489 152 496
34 216 1439 321.6 136.4 4048 1054 340.0 153.2 253.9
35 67 -588 1302 253 804 294 1622 290 770
36 115 106 1943 557 168.0 455 2498 649 1379
37 36 -266 1571 226 719 216 599 153 511
38 98 127 1935 477 1445 402 2277 730 1499




Note that the width of the non-linear regression prediction interval based on the John-
son four-variate transformation is less than after the Johnson univariate transfor-
mation for 29 from 30 data rows (except one with number 25), smaller than after dec-
imal log transformation and less compared with the linear regression prediction inter-
val width for all 30 data rows. Approximately the same results were obtained for the
confidence intervals of regressions. Herewith a confidence interval of non-linear re-
gression is defined as (3) with the only difference that in the sum in curly brackets,
there will not be 1.

Such good prediction results for the constructed model may be explained best mul-
tivariate normalization of the non-Gaussian data set, which used to build the three-
factor non-linear regression model based on the Johnson four-variate transformation
for Sg family. The measures of multivariate skewness B, and kurtosis B, [15] allow

one to test two hypotheses that are compatible with the assumption of multivariate
normality. In our case for 30 apps B; =4 and B, =24 . The estimators of multivariate

skewness and kurtosis equal 8.42, 5.44, 12.86, 6.82, and 26.78, 23.08, 33.57, 25.71
for the data for 30 apps from Table 1, the normalized data on the basis of the decimal
logarithm transformation, the Johnson univariate and four-variate transformations
respectively. The values of these estimators indicate that the necessary condition for
multivariate normality is approximately performed for the normalized data on the
basis of the decimal logarithm and the Johnson four-variate transformation. Also,
multivariate normality was tested by MD? [16]. A multivariate normality condition is
only performed for the normalized data on the basis of the decimal logarithm and the
Johnson four-variate transformation, since for all 30 rows of the normalized data, the
MD? values are smaller than the value of the quantile of the Chi-Square distribution,
which equals to 14.86 for 0.005 significance level.

4 Conclusions

Mathematical modeling of effort of development of mobile apps by non-linear regres-
sion model using multivariate normalizing transformation is performed. A three-
factor non-linear regression model to estimate the effort of developing the mobile
apps in a planning phase is firstly constructed on the basis of the Johnson four-variate
transformation for Sg family. This model, in comparison with other regression models
(both linear and non-linear), has a more significant multiple coefficient of determina-
tion, a smaller value of the mean magnitude of relative error, a more significant value
of percentage of prediction, and smaller widths of the confidence and prediction in-
tervals of regression. An example of the construction of the three-factor non-linear
regression model confirms the efficiency of the method for improving non-linear
regression models on the basis of multivariate normalizing transformations, the
squared Mahalanobis distance, and prediction intervals. Prospects for further research
may include the application of other data sets to construct the multiple non-linear
regression models for estimating the effort of developing the mobile apps in a plan-
ning phase.
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