
THUIR@AILA 2019: Information Retrieval
Approaches for Identifying Relevant Precedents

and Statutes

Yunqiu Shao1 and Ziyi Ye1

BNRist, DCST, Tsinghua University, Beijing 100084, China
shaoyq18, zy-ye16@mails.tsinghua.edu.cn

1

Abstract. In this paper, we present the methodologies employed in the
AILA 2019. There are two tasks in this challenge. Given a situation, the
first task is to identify relevant precedents, and the second one is to iden-
tify relevant statutes. We consider both tasks as ranking problems, and
combine ranking models with auto summarization and data processing
techniques in generating our runs. We participated in both tasks, and
our three runs achieved the best performance in Task 2.

Keywords: Information Retrieval · Precedent · Statute.

1 Introduction

Precedents and statutes are both primary sources in a Common Law System.
With the rapid increase of digitized legal documents, it is important to build
an automatic legal retrieval system which can identify relevant precedents and
statutes. In recent years, there have been some works on the topic of legal infor-
mation retrieval. The FIRE 2017 IRLeD Track [3] focused on creating a frame-
work for legal keywords extraction and precedent retrieval. COLIEE has been
held annually to develop techniques of retrieval and entailment in the legal field.

AILA 2019 [1] is one of the tracks in FIRE 2019, which aims to develop an
automatic system that identifies a set of related prior cases as well as relevant
statutes in the given situation. It consists of two tasks. Task 1 is to identify
relevant prior cases for a given situation, and Task 2 is to identify relevant
statutes for the situation.

The two tasks share 50 queries where each query describes a situation. In
Task 1, there are 2,914 case documents as the candidates for searching, and in
Task 2, there are 197 statutes from Indian law. Relevance labels for the first 10
queries are provided and can be used as training data, and the remaining 40
queries are used as test data. Each team can submit up to 3 runs for each task.

1 Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). FIRE 2019, 12-15 Decem-
ber 2019, Kolkata, India



In our experiments, we model each task as a ranking problem. We utilize
some classic retrieval models such as the LMIR, BM25 models but we also try to
use auto-summarization and data processing techniques to further improve the
ranking performance. Evaluated by P@10, MAP, BPREF, and RR, our three
runs achieve the best performance in Task 2 and our best run was ranked at
the 10th position in Task 1. We will introduce our methods and discuss the
experiment results in the following sections.

2 Methods

Each task was treated as a ranking problem. We considered several classic re-
trieval models, including LMIR (Language Model for Information Retrieval) [7],
VSM (Vector Space Model) [6], and BM25 [5]. We used varied settings and also
tried to combine different retrieval models in different runs. In this section, we
first introduce these retrieval models and then explain how we apply them to
the two tasks.

Language Model for Information Retrieval (LMIR). Each document is
considered as a language sample, and a query as a generation process [7]. The
model ranks documents according to the probabilities of generating the query
from the corresponding language models of documents, i.e. P (q|d). Considering
the unigram example, the probability can be written as

P (q|d) ∝
∑
t∈q

P (t|d) (1)

, where P (t|d) is estimated based on term frequency. In the linear interpolation
language model, P (t|d) is estimated by

P (t|d) = λPmle (t|Md) + (1− λ)Pmle (t|Mc) (2)

, where Pmle (t|Md) denotes the term frequency of t in the document d, Pmle (t|Mc)
denotes the term frequency in the entire collection, and λ is a smoothing param-
eter ranging from 0 to 1. The bigram model can be combined with the unigram
model as

P (wi−1, wi|d) = µ× P1 (wi|d) + (1− µ)× P2 (wi−1, wi|d) (3)

, where P1, P2 denote the unigram LM and bigram LM respectively, which can
be estimated using formula (2), and µ also functions as a smoothing parameter.
Considering wi−1wi as the term t in formula (1), we can build a language model
that considers both unigram and bigram.

Vector Space Model (VSM). The query and document are mapped to a
latent space, and the similarity between the query and document are calcu-
lated by the vectors in the latent space. To be more specific, the query q and



document dj are represented as vectors, i.e. q = (ω1,q, ω2,q, ..., ωN,q), dj =(
ω1,dj

, ω2,dj
, ..., ωN,dj

)
. Then the similarity can be calculated as a cosine value

between the two vectors.

cos (q,dj) =
q · dj

‖q‖ ‖dj‖
(4)

In the classic VSM [6], the term-specific weights are represented as products
of local and global parameters, i.e. ωt,d = tft,d · idft, where tft,d is the term
frequency of term t in document d and idft is the inverse document frequency
for term t. The inverse term frequency (idf) is a global parameter calculated

based on the document collections: idft = log |D|
|{d′∈D|t∈d′}| .

BM25 . Okapi BM25 [5] is a ranking function based on the probabilistic retrieval
framework. It is widely used in kinds of search engines. The relevance score
between the query and the document is computed by the following formula:

n∑
i=1

idf (qi) ·
tf (qi, d) · (k1 + 1)

tf (qi, d) + k1 ·
(

1− b+ b · |d|argdl

) · tf(qi, q) · (k2 + 1)

tfqi,q + k2
(5)

The k1, k2 and b are free parameters, usually chosen as k1 = k2 = 1.0, b = 0.75.

Mixed-size Bigram Model (MBM). MBM [2] is a variation of n-gram and
tf-idf models. Firstly, the set of n-grams is obtained from query and document,
denoted as qgramset and dgramset respectively. In MBM, we consider both
unigram and bigram. Then, the relevance score between query and document is
given by the following formula:∑

∀t idf(t)

Iq × |qgramset|+ (1− Iq)× |dgramset|
, t ∈ (qgramset ∩ dgramset) (6)

, where 0 ≤ Iq ≤ 1 represents the relative significance of the query gram set.

2.1 Task 1: Identifying Relevant Prior Cases

In Task 1, we submit 3 runs which utilize LMIR, VSM, and a combination model
(CM) of VSM and MBM, respectively.

Data Pre-processing. The query, which is a situation description, contains
over 500 words on average, and the document contains over 3,000 words on
average. Compared to the traditional ad-hoc search, the query in this task is
much longer. We observe that the main legal issues of the first ten queries usually
occur around the appeal process. Therefore, we select the sentences which contain
”high court” as the key sentences, along with the former and latter sentences 2.
The query is made up of selected key sentences. We pre-process 3 all the queries
and document in the following steps:

2 If there are no sentences that contain ”high court”, we use the last four sentences
3 We use the NLP tools produced by NLTK, http://www.nltk.org/ .



– Tokenize with RegexpTokenizer and ignore all of the punctuation and nu-
meric.

– Make all of the words lowercase.
– Get POS tags by NLTK and ignore the conjunction, prepositions, determin-

ers and list symbols.
– Ignore the English stop words.
– Do stemming using NLTK.

Run1: LMIR. We utilize the LMIR model with unigram and bigram in the
first run. λ and µ are two parameters in this model, which both range from 0 to
1. We use a grid search with a step size of 0.1 for parameter tuning, based on
Recall@20 and Recall@100 of the training data. As a result, we set λ = 0.1 and
µ = 0.1.

Run2: VSM. We get the idf based on all of the case documents. However,
when we represent the document using a vector, the long text might weaken the
representative power. Therefore, we only consider the last three paragraphs in
each document. Then we use formula (4) to compute the similarity score between
each query-document pair.

Run3: CM. In the last run, we utilize the linear combination of VSM and
MBM, where scoreCM = α · scoreV SM + (1 − α) · scoreMBM . The VSM score
(scoreV SM ) is computed in run2, and we further compute scoreMBM with for-
mula (6). There are two parameters, Iq in MBM and α, which both range from
0 to 1. Similarly, we use a grid search to select the best parameters and finally
set Iq = 0.8 and α = 0.5.

2.2 Task 2: Identifying Relevant Statutes

In this task, we submitted 3 runs which employed the LMIR, VSM and a com-
bination model of VSM and BM25, respectively.

Data Pre-processing. The candidate documents in this task are statues, in-
cluding titles and descriptions. There are two main differences from Task 1. One
is that the document length is much shorter than that of Task 1, which is about
200 words on average. The other is that not only the issue but also the topic of
the query situation contribute to the relevance. Therefore, instead of selecting
the key sentences, we attempt to make use of the entire description. We consider
two kinds of queries, one is to use the original situation text, denoted as qorl,
and the other is to use the summary (no more than 200 words) of situation
description generated by TextRank 4 [4], denoted as qsum. We concatenate the
title and description of a statute as a candidate document. Then we apply the
same data pre-processing steps listed in Section 2.1 to all the queries (qorl and
qsum) and documents.

4 https://github.com/PKULCWM/PKUSUMSUM



Run1: LMIR. The LMIR model in Task 2 is similar to that in Task 1, but we
use the summary as the query. We search the parameters λ and µ according to
Recall@10 and Recall@20, and finally set λ = 0.1 and µ = 0.1.

Run2: VSM. We calculated the idf based on the statutes in this task. Since
the document is quite short, we make use of the entire document text to get the
document vector.

Run3: CM. We linearly combine the VSM with BM25 so that the relevance
score is computed as scoreCM = α · scoreV SM + (1 − α) · scoreBM25, where
scoreV SM is given in run2 and scoreBM is calculated according to formula (5).
We select the weighted parameter α with grid search based on Recall@10 and
Recall@20, and set α = 0.7, while for the parameters in BM25, we set k1 = k2 =
1.0 and b = 0.75.

3 Experiments and Results

Table 1 shows the results of our runs in Task 1 and Task 2, along with the results
of some post experiments for Task 2. We made some mistakes when submitting
the runs in Task 2. One was that we would like to set the α = 0.7 in CM, but in
the submitted run, the α was set as 0.3. The other was that we would like to use
qsum in all our three runs, but actually we used qorl to calculate scoreV SM (the
scores given by VSM in Run 2 and Run 3). Therefore, we conducted some post
experiments with the labels and evaluation methods given by the organizers.
Note that CM* here means to use the correct α = 0.7.

Despite these mistakes, we achieved good results in Task 2, where our three
runs were ranked as the top 3 runs among all the other runs. In the post exper-
iments, we found that given the correct parameter settings, the combination of
models can improve the performance in both tasks. Meanwhile, the performance
of different models varies with tasks. For example, in Task 2, VSM performs quite
well while in Task 1, it performs the worst. It suggests that different methodolo-
gies should be used for the precedent retrieval and statute retrieval.

In terms of methods to shorten the query length, we extract the key sentences
through string matching. This decision is made based on our observation on
only ten training queries, which might result in a weak generalization ability
and therefore, hurt the models’ performances in Task 1. In Task 2, we use auto
summarization techniques, which seems to work well for LMIR and BM25 but
have little effects on VSM.

4 Conclusion and Future Work

In this paper, we introduce the methods we employed in completing the AILA
2019 tasks. Our methods achieve the best ranking performance in Task 2, but
do not work well in Task 1. This result suggests that we should use different
methods in these two tasks and we need to further improve the models for the



Task ID Method P@10 MAP BPREF RR Rank

Task 1 CM 0.0425 0.0689 0.0434 0.121 10
Task 1 LMIR 0.0375 0.0599 0.0316 0.149 12
Task 1 VSM 0.0225 0.0405 0.0221 0.095 17

Task 2 VSM (qorl) 0.0975 0.1566 0.0961 0.281 1
Task 2 CM (qorl + qsum) 0.09 0.1318 0.0742 0.247 2
Task 2 LMIR (qsum) 0.065 0.1115 0.0653 0.23 3

Task 2 (Post) VSM (qsum) 0.0975 0.1404 0.0969 0.2576 –
Task 2 (Post) CM* (qorl + qsum) 0.1025 0.1742 0.1098 0.3113 –
Task 2 (Post) CM* (qsum) 0.1125 0.1550 0.1078 0.3123 –

Table 1. Evaluation Results in Task 1, Task 2 and post experiments for Task 2.

precedent retrieval task. Due to the limited size of data, we did not use neural
models here and leave it as a research direction for further study.

5 Acknowledgement

This work is supported by the National Key Research and Development Program
of China (2018YFC0831700) and Natural Science Foundation of China (Grant
No. 61622208, 61732008, 61532011) .

References

1. Bhattacharya, P., Ghosh, K., Ghosh, S., Pal, A., Mehta, P., Bhattacharya, A., Ma-
jumder, P.: Overview of the FIRE 2019 AILA track: Artificial Intelligence for Legal
Assistance. In: Proceedings of FIRE 2019 - Forum for Information Retrieval Evalu-
ation (December 2019)

2. Carvalho, D.S., Nguyen, M.T., Tran, C.X., Nguyen, M.L.: Lexical-morphological
modeling for legal text analysis. In: JSAI International Symposium on Artificial
Intelligence. pp. 295–311. Springer (2015)

3. Mandal, A., Ghosh, K., Bhattacharya, A., Pal, A., Ghosh, S.: Overview of the fire
2017 irled track: Information retrieval from legal documents. In: FIRE (Working
Notes). pp. 63–68 (2017)

4. Mihalcea, R., Tarau, P.: Textrank: Bringing order into text. In: Proceedings of the
2004 conference on empirical methods in natural language processing. pp. 404–411
(2004)

5. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In: SIGIR94. pp. 232–241. Springer (1994)

6. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Communications of the ACM 18(11), 613–620 (1975)

7. Song, F., Croft, W.B.: A general language model for information retrieval. In: Pro-
ceedings of the eighth international conference on Information and knowledge man-
agement. pp. 316–321. ACM (1999)


