
RALIGRAPH at HASOC 2019: VGCN-BERT:
Augmenting BERT with Graph Embedding for

Offensive Language Detection

Zhibin Lu1 and Jian-Yun Nie2

1 University of Montreal zhibin.lu@umontreal.ca
2 University of Montreal nie@iro.umontreal.ca

http://rali.iro.umontreal.ca/rali/?q=en

Abstract. Hate speech and offensive language detection are receiving
more and more attention in recent years. The RALIGRAPH team par-
ticipated in the Shared Task on the Identification of Offensive content
for Indo-European languages within the FIRE conference. This paper
describes our approach VGCN-BERT model for all three sub-tasks of
hate language and offensive language detection in English. VGCN-BERT
takes into account both local and global information, by combining the
Graph Convolutional Networks (GCN) and the Self-Attention Encoder
(BERT). Our approach produced good results in the experiments.

Keywords: Offensive Language Detection · Graph Convolutional Net-
works · Graph Embedding · Self-Attention Encoder.

1 Introduction

In recent years, an increasing number of users are subjected to offensive lan-
guages or have witnessed abusive and hateful texts online, which is related to
sexism, racism or other types of aggressive behaviors and cyberbullying. Govern-
ments have started to enact laws, and major social platforms such as Facebook
and Twitter are also censoring offensive posts with the assistance of artificial
intelligence technologies, human reviewing processes, user reporting processes,
and so on. However, it seems the problem is still far from being successfully
resolved.

A lot of research methods for offensive language detection have been proposed
in the past few years [10]. Among which, deep learning (DL) based methods [2]
are attracting more and more research interests [6], [1]. Most of the existing
DL methods are based on convolutional neural networks (CNN) [8] and/or re-
current neural networks (RNN) such as long short-term memory (LSTM) [7].
Self-attention [12] technology has been widely used in many NLP tasks in recent

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). FIRE 2019, 12-15 Decem-
ber 2019, Kolkata, India.

Lu et al.

years. BERT [4] is currently one of the most powerful self-attention models that
uses multi-task pre-training technique based on a large number of corpora. It
often achieves the best performance in many tasks such as Named entity Recog-
nition (NER), text classification and reading comprehension.

However, the existing deep learning models may capture well semantic and
syntactic information in local contexts, but may ignore global information such as
word co-occurrences in a corpus which carries non-consecutive and long-distance
dependencies [11].

In our research on the task of classifying offensive language, we intend to
leverage both the local information captured in BERT and the global informa-
tion on the whole vocabulary in a language. To obtain global information, we
use Graph Convolutional Networks (GCN) [9] which can perform convolution
calculations on neighbor nodes in the graph. In this paper, we take inspiration
from Text GCN [13] to build a vocabulary graph, and construct the graph con-
volutional networks as an embedding layer which brings global information to
the entire sentence, then feed the vocabulary graph embedding and word embed-
ding together to the Self-attention encoder in the BERT. We call it VGCN-BERT
model. We participated in the HASOC 2019 [10] competition with this model
and got third place on Task B and C.

In section two, we describe some related work, such as self-attention mech-
anisms, BERT model and graph convolutional networks. In section three, we
describe our approach, including the structure and training settings of VGCN-
BERT model, and the method of datset preprocessing. In section four, we list
the results and make some comments.

2 Related Work

2.1 Self-Attention and BERT

Self-Attention [12] uses three weights of Q(Query), K(Key), and V(Value), and
calculates the relation between each word and all other words, and obtains dif-
ferent attention scores as follows

Attention(Q,K, V) = softmax(
QKT

√
dk

)V, (1)

where the denominator is a scaling factor used to control the scale of the at-
tention score, dk is the dimension of the query and key vectors. Using these
attention scores, every word can get a weighted vector representation which
captures contextual information.

The structure of BERT [4] for text classification is divided into two major
parts: the positional word embedding part, and the multi-layer multi-head self-
attention encoder [12] part. For every layer of encoder, it contains a multi-head
attention (a layer-superimposed self-attention mechanism), which reads the in-
put data and uses the multi-head attention to get a new representation of the
context information for each word.

VGCN-BERT

BERT is a pre-trained model. The goal of pre-training is to provide a good
initialization for model training, which has been widely used in image classifica-
tion and NLP. BERT is trained on 800M words from BooksCorpus and 2,500M
words from English Wikipedia, and uses two unsupervised task to improves the
pre-training:

– Masked Language Model. Instead of the traditional n-gram language model,
BERT randomly selects words to mask them out and then tries to predict
the masked words from their context.

– Next Sentence Prediction. BERT uses sentence classification as a pre-training
task to determine if a sentence is the real next sentence or another randomly
picked sentence.

A typical input to BERT is a pair of sentences as follows [4]:
Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon

[MASK] milk [SEP]
Label = IsNext

where [CLS] is the BOS (begin of sentence) for a pair of sentences; [SEP] is
used as a separator of two sentences or as EOS (end of sentence); [MASK] is
used to mask out the predicted words in the masked language model. The final
state of [CLS] embedding after encoding is used as the aggregated sequence
representation for classification tasks. In our offensive language detection task,
we only need to classify every individual document, which is usually as short as
a tweet, with only one or two sentences. So we treat the document as a sentence.
Below is an example of the sentence classification:

Input = [CLS] Stupid ass coward b*tch f*ggot racist piece of sh*t. [SEP]
Label = Offensive

2.2 Graph Convolutional Networks (GCN)

A GCN [9] is a multilayer neural network that calculates directly on a graph and
induces embedding vectors of nodes based on properties of their neighborhoods.
Formally, consider a graph G = (P,E) 3, where P (|P | = n) and E are sets
of nodes and edges, respectively. In GCN, the graph is a self-loop graph, where
every node is assumed to be connected to itself, i.e., (p, p) ∈ E for any p.

Usually, people use the adjacency matrix A and its degree matrix D to rep-
resent graph G, where Dii =

∑
j Aij . The diagonal elements of A are set to 1

because of self-loops. For one convolutional layer, the formula is

H = ÃXW, (2)

where X ∈ Rn×m, n is the number of nodes, m is the dimension of the feature,
Ã = D− 1

2AD− 1
2 is the normalized symmetric adjacency matrix and W ∈ Rm×h

is a weight matrix.

3 In order to distinguish from notations (v, V, |V |) of vocabulary, this paper uses no-
tations (p, P, |P |) to represent the point(vertex) of the graph.

Lu et al.

Usually, we use two layers of GCN to capture information about direct and
indirect neighbors [9]. Then a two-layers GCN model is as follows,

Z = softmax(Ã ReLU(ÃXWh)Wc), (3)

where ReLU is an activation function, Wh is the hidden layer weight and Wc is
the output layer weight.

Text GCN [13] is a special case of GCN, in which the vocabulary and all
documents correspond to nodes in a graph. The edges between words are de-
termined by point-wise mutual information (PMI) and those between a word
and a document by TF-IDF. After the phase of building the graph, Text GCN
uses the same Formula 3 during the training phase, but the feature matrix X
is an identity matrix, which means every word or document is represented as a
one-hot vector as the input to Text GCN.

3 Methodology

3.1 VGCN-BERT model

The idea we explore in our work is to combine the graph’s global information-
awareness capabilities (global receptive fields) with the self-attention local information-
awareness capabilities (local receptive fields). Specifically, we want each docu-
ment to get some global information about the vocabulary through a vocabulary
graph before doing self-attention training. On the other hand, BERT is able to
take into account local dependencies between words in a sentence. Our approach
combines GCN with BERT.

For vocabulary graph, we take inspiration from Text GCN [13] to build a
vocabulary graph, and use NPMI [3] to calculate the vocabulary graph as follows:

NPMI(i, j) = − 1

log p(i, j)
log

p(i, j)

p(i)p(j)
(4)

After building the vocabulary graph, we construct the vocabulary graph em-
bedding module and insert it into BERT in the word embedding phase. To obtain
the vocabulary graph embedding, we modify the formula 2 to the following form:

Gembedding = XÃW, (5)

where X is the word embedding matrix which comes from word embedding layer
of BERT, and Ã is the normalized symmetric adjacency matrix of vocabulary
graph, and the output dimension of W controls the number of vocabulary graph
embedding whose dimension is the same as every word embedding.

Therefore, the original sentence represented by word embeddings will be en-
riched by the vocabulary graph embedding. Then we feed all the embedding
vectors to the self-attention encoder, and the encoder module will pay atten-
tion to all word embeddings as well as graph embeddings. Finally, we use the
embedding produced for [CLS] for classification.

VGCN-BERT

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

3000

3500 Task A
Task B
Task C

Fig. 1. Data distribution

3.2 Datasets

The training dataset of HASOC has a total of 5852 texts, and its labels are
divided into three sub-tasks. Figure 1 shows the data distribution on the training
set and find that the categories of the dataset are unbalanced, especially Task
B and Task C.

Therefore we use the weighted cross entropy as loss function. The weight of
each of the classes (Wc) is calculated by

Wc =
#dataset

#classes ·#one class
, (6)

where #dataset is the total size of dataset and #classes is the number of classes
and #one class is the count of one class.

In addition to the dataset provided by HASOC, for sub-task A, we also used
Founta et al.’s dataset [5] 4 to pre-train the model. Founta et al. constructed
this large dataset in order to reflect a real-world setting where abuse is relatively
rare. It contain 99,996 5 tweets with cross-validated labels and is classified into 4
labels, normal (53,851), spam (14,030), hateful (27,150) and abusive (4,965). We

4 https://github.com/ENCASEH2020/hatespeech-twitter
5 The final version provided by the author is more than the one described in the paper.

Lu et al.

merge the labels of normal and spam into label NOT of sub-task A and merge
the labels of hateful and abusive into label HOF of sub-task A.

3.3 Preprocessing and setting

To clean the text, we removed URL string and @-mentions for every text, then
the text was lower-cased and tokenized using NLTK’s TweetTokenizer 6. We use
bertTokenizer function to split text, so that the vocabulary for GCN is always
a subset of pre-trained BERT’s vocabulary.

To build the vocabulary graph, we set the window size as 20 when calculat-
ing NPMI, and set the threshold of NPMI as 0.2 to filter out non meaningful
relationships between words.

In the VGCN-BERT model, the graph embedding output size is set as 16,
and the hidden dimension of graph embedding as 128. We use the bert-base-
uncased version of pre-trained BERT, and set the max sequence length as 200.
The model is then trained in 15 epoch-es with a dropout rate of 0.2.

The following are other parameter settings for the three tasks.

– Sub-task A: While using Founta et al.’s dataset to pre-train the model,
we set learning rate as 4e-6 and mini batch size as 12 and L2 loss weight
decay as 1e-4. While fine-tuning the model using dataset of sub-task A, we
set learning rate as 1.9e-6 and mini batch size as 16 and L2 loss weight decay
as 0.02.

– Sub-task B: we set learning rate as 4e-5, and L2 loss weight decay as 0.07.
– Sub-task C: we set learning rate as 1.4e-5, and L2 loss weight decay as

0.05.

We use the original BERT model and a 2-layer MLP model as the two base-
lines. The parameter settings of BERT are the same as the VGCN-BERT for
all three tasks, except that there is no graph embedding output dimension. We
also use Founta et al.’s dataset to pre-train the BERT model for sub-task A.
For the 2 hidden layers MLP, we use the term-frequency (TF) as inputs feature,
and we set the first hidden layer dimension as 512 and the second hidden layer
dimension as 100, learning rate as 1.5e-3 and L2 loss weight decay as 2e-5, batch
size as 64, total train epoch as 100, early stopping as 10.

4 Result

Before getting the test set from HASOC, we take out small parts of the training
set as validation set for model selection. The shuffled training set are divided
into three sets with a ratio of 80:5:15, which represent the training set, the valid1
set, and the valid2 set, respectively. Table 1 lists the f1-score performance of the
valid2 set when the performance of the valid1 set gets the best. It should be
noted that we can’t ensure that such parameter settings are optimal for all three

6 http://www.nltk.org/api/nltk.tokenize.html

VGCN-BERT

Table 1. Weighted average F1-Score on valid 1/2 set.

Model Task A Task B Task C

valid 1/valid 2 valid 1/valid 2 valid 1/valid 2

MLP 68.21/64.00 60.12/60.62 66.61/64.58

BERT 64.29/69.61 60.81/61.92 68.15/65.85

VGCN-BERT 64.82/70.33 66.13/61.26 70.08/66.06

Table 2. Results of Macro F1 and Weighted F1 on Test set.

Team Task A Task B Task C

macro/weighted macro/weighted macro/weighted

Top Team 78.82/83.95 54.46/72.77 51.11/75.63

RALIGRAPH 74.09/78.76 47.90/72.18 49.07/77.19

models, because we found that the parameters of learning rate and L2 decay
have a great influence on the final performance of the models, and sometimes
small changes of them will cause large fluctuations. We believe the small dataset
and the uneven data distribution are the main causes. Despite this, we find that
in most cases, the performance of VGCN-BERT is better than the other two
models, especially on task C.

Table 2 lists the results on test set provided by the HASOC. Our team got
third place on Task B and C and scored the second highest weighted F1-score
on the Task C.

5 Conclusions

In this paper, we report the work we performed in the FIRE hate language
detection tasks. Our main idea is to complement the local information captured
by BERT with global information on the vocabulary. The combination of BERT
with GCN seems to produce good results, and our submissions are ranked quite
high.

As we do not have much training data specific for the tasks, the model can
be further improved with more training data. In addition, as future work, we
will also consider using different relationship measurements to construct various
vocabulary graphs. Also, more layers of GCN networks needs to be explored to
get a sense of the influences of the network structures when introducing BERT
embeddings into VGCN.

References

1. Agrawal, S., Awekar, A.: Deep learning for detecting cyberbullying across multiple
social media platforms. In: Advances in Information Retrieval - 40th European

Lu et al.

Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018,
Proceedings. pp. 141–153 (2018). https://doi.org/10.1007/978-3-319-76941-7 11,
https://doi.org/10.1007/978-3-319-76941-7 11

2. Badjatiya, P., Gupta, S., Gupta, M., Varma, V.: Deep learning for
hate speech detection in tweets. In: Proceedings of the 26th Inter-
national Conference on World Wide Web Companion, Perth, Australia,
April 3-7, 2017. pp. 759–760 (2017). https://doi.org/10.1145/3041021.3054223,
https://doi.org/10.1145/3041021.3054223

3. Bouma, G.: Normalized (pointwise) mutual information in collocation extraction.
Proceedings of the Biennial GSCL Conference 2009, University of Potsdam (2009),
https://pdfs.semanticscholar.org/1521/8d9c029cbb903ae7c729b2c644c24994c201.pdf

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

5. Founta, A.M., Djouvas, C., Chatzakou, D., Leontiadis, I., Blackburn, J., Stringh-
ini, G., Vakali, A., Sirivianos, M., Kourtellis, N.: Large scale crowdsourcing and
characterization of twitter abusive behavior. In: 11th International Conference on
Web and Social Media, ICWSM 2018. AAAI Press (2018)

6. Gambäck, B., Sikdar, U.K.: Using convolutional neural networks to classify hate-
speech. In: Proceedings of the First Workshop on Abusive Language Online,
ALW@ACL 2017, Vancouver, BC, Canada, August 4, 2017. pp. 85–90 (2017),
https://www.aclweb.org/anthology/W17-3013/

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

8. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP.
pp. 1746–1751 (2014)

9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

10. Modha, S., Mandl, T., Majumder, P., Patel, D.: Overview of the HASOC track at
FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European
Languages. In: Proceedings of the 11th annual meeting of the Forum for Informa-
tion Retrieval Evaluation (December 2019)

11. Peng, H., Li, J., He, Y., Liu, Y., Bao, M., Wang, L., Song, Y., Yang, Q.: Large-
scale hierarchical text classification with recursively regularized deep graph-cnn.
In: WWW. pp. 1063–1072 (2018)

12. Vaswani, A., etc, N.S.: Attention Is All You Need. Long Beach
13. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In:

AAAI (2019)

