CEUR-WS.org/Vol-2517/T4-7.pdf

Ensemble Learning for Irony Detection in
Arabic Tweets

Muhammad Khalifa! and Noura Hussein?
1 Computer Science Department, Cairo University, Egypt
muhammad.e.khalifa@gmail.com
2 Computer Science Department, Benha University, Egypt
nourahussein193@gmail.com

Abstract. |

In this paper, we describe and show the results of our 3 systems submitted
for the Irony Detection in Arabic Tweets Shared Task at the Forum for
Information Retrieval (FIRE 2019). We employ ensemble learning for this
task through 3 different types of ensemble models, namely classical, deep
and hybrid (that combines both). We extract types of features from the
tweets including TF-IDF word n-gram features, topic modeling features,
bag-of-words and sentiment features. Our submitted systems scored the
top 3 places with our best system achieving 84.4 F1 points on the test
set.

Keywords: Irony Detection - Ensemble Learning - Text Classification

1 Introduction

Irony is defined as a trope whose meaning is different from what is literally enun-
ciated [L10]. Failing to detect irony leads to the misinterpretation of the message
intended causing degradation of the performance of Natural Language Under-
standing (NLU) systems. However, irony detection can be challenging since it
requires world knowledge and a more complex understanding of the context [10].
Detecting irony efficiently can help with various Natural Language Processing
(NLP) tasks such as sentiment analysis, hate speech detection, fake news detec-
tion, and online harassment detection.

Taking sentiment analysis as an example, [§] shows how the presence of irony
can negatively impact sentiment classification performance. Remarkably, while
the sentiment classification performance in regular tweets could reach up to an
F1 score of 71, the performance on ironic tweets reached only a maximum of 57.
Thus, accurate sentiment classification requires accurate irony detection so that
the sentiment classifier can acknowledge that the intended sentiment is contrary
to the literal one.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). FIRE 2019, 12-15 Decem-
ber 2019, Kolkata, India.

2 Khalifa et al.

Text classification of Arabic tweets is typically faced by a few challenges.
First, there is the difficulty of dealing with Arabic itself, which is a morpholog-
ically rich language with characteristics that make dealing with it a challenge
[3]. Second, Arabic tweets are usually replete with unstandardized, dialectal and
transliterated words (ex. “hello® becomes “sla“). This leads to what is known
as the out-of-vocabulary (OOV) problem where the learning system may fail
to generalize due to a large number of unseen words during training. Moreover
and in addition to dialectal Arabic, tweets can include code-switching between
Arabic and other languages such as English or French. This contributes more to
the difficulty of the task by introducing more unknown words or phrases whose
understanding could be essential to the task of irony detection.

In this paper, we describe our submitted systems to the shared task of Irony
Detection in Arabic Tweets. Given a tweet, our system should automatically de-
cide whether it is ironic or not. We employ ensemble learning using both classical
and deep models and our results show that classical ensembles outperform deep
ensembles on this task. Moreover and prior to classification, we extract various
features from tweets including Term Frequency-Inverse Document Frequency
(TF-IDF) word n-gram features, topic modeling features and sentiment-based
features. We conduct experiments to assess the importance of each category of
features and our results show that TF-IDF features, Bag-of-words representa-
tion, and count-based features are most significant for irony detection.

2 Systems Description

2.1 Preprocessing

Before feature extraction, we apply various preprocessing to the tweets in the
dataset. Our preprocessing stage comprises mainly of text normalization such
as replacing all instances of ‘s’ with ‘¢’ and ‘¢’ with ‘¢’ Besides, all instances
of Hamza are replaced with ‘¢’ to account for incorrect word spellings. We also
normalize all instances of repeated characters such that “Jssss”, for instance,
becomes “ds” and strip all diacritics (if any).

2.2 Feature Extraction
Given a tweet, we extract five different types of features:

— Word n-gram TF-IDF: we extract TF-IDF-weighted features of word n-
grams where n € [1,6]. We use only the top frequent 50K n-grams.

— Topic Modeling Features we run Latent Dirichlet Allocation (LDA) [1] on
the training set setting the number of topics £ = 20 and using both unigrams
and bigrams. Then, each tweet ¢ is represented using a k-dimensional vector
V' such that V} = P(topic = d|text = t).

— Sentiment Features: given a tweet, we average the sentiment scores of its
constituent words. The sentiment scores used are extracted from the Arabic
sentiment lexicon proposed in [I1].

Ensemble Learning for Irony Detection in Arabic Tweets 3

— Pretrained Word Vectors We compute a Bag-of-words (BOW) represen-
tation of each tweet by averaging the word vectors of its constituent words.
We use the pretrained 300-dimensional Twitter-CBOW word vectors pro-
vided by [9].

— Count-based Features: these features include word and character counts,
word density (number of characters per word), punctuation count, stopwords
count and the standard deviation of the word length per tweet.

Table [I] shows F1 obtained using each of the performance of XGBoost using
different categories of the features. Apparently, TF-IDF and word vectors give
the best performance on the development set.

Features F1

Sentiment 59.0
Topic Modeling 60.0
Count Features 67.0

TF-IDF word n-gram|(81.1
Word2vec BOW 83.6
All 85.6

Table 1: F1 score on the development set using each features category. Model
used is XGBoost.

2.3 Classical ensemble

For our first submission, we use an ensemble of 3 models. Namely, Gradient
Boosting [4], Random Forest [2] and Multilayer Perceptron (MLP) [5]. This
ensemble is trained on all of the previously discussed features. To compute the
final predictions from all the ensembles, we use Soft Voting where we sum the
probabilities of each class across models and the class with the highest probability
sum is chosen.

2.4 Word-level Bi-LSTM ensemble

Our second submission is an ensemble model based on a word-level bidirectional
LSTM (bi-LSTM) network [7]. We augment the bi-LSTM with a subset of the
aforementioned features. These features are processed through a feed-forward
network and the output is concatenated with the output of last hidden state
of the bi-LSTM. This is passed through another feed-forward network and then
projected into a Sigmoid unit for classification. See Figure The subset of
the additional features used includes TF-IDF, topic modeling and count-based
features. We use an ensemble of 8 models for our final submission.

4 Khalifa et al.

Word Embeddings Other features
w1 w2 W3

|

Bi-LSTM |

class probabilities

Fig. 1. The Bidirectional LSTM-based model used in our second submission.

2.5 Hybrid ensemble

We combine both our first and second systems into our third submission which
is an ensemble of Gradient Boosting, Random Forest, Multi-Layer Perceptron
and 8 bi-LSTMs.

3 Experiments and Results

3.1 Dataset

We use the training dataset provided by the Irony Detection in Arabic Tweets
shared task [6]. The dataset is a collection of 4024 tweets with only two classes:
ironic and non-ironic. Both classes contain 2091 and 1933 samples, respectively.
We do not use any additional training data. The test set, on the other hand,
contains 1006 tweets.

3.2 Experimental Setup

For hyperparameter selection, we use a randomly sampled 20% of the training
set as a development set. However, before final submission, we train each system
on the whole training set. Table shows the hyperparameter settings for all
models used.

3.3 Results

Table |3| shows the results on both development and test sets using both single
and ensemble models. Noticeably, the single XGBoost model performs best on
the development set compared to all other single models with an F1 score of 85.6.

Ensemble Learning for Irony Detection in Arabic Tweets 5

Model Hyperparameters
Random Forest|n trees=60

n_layers=3
MLP layer_sizes=(128, 64, 32)
n_trees=200

XGBoost max__depth=10

gamma=0.5
embeddings dim=300

embeddings__init=random__normal
Istm_ n_ layers=1

Istm_hidden units=128
feedforwardl_units=64
feedforward2 units=128
feedforward activation=‘relu’
dropout=0.6

Bi-LSTM

Table 2: Hyperparameters for all models used.

By combining XGBoost with Random Forest and MLP, the classical ensemble
achieves the best F1 scores of 86.5 and 84.4 on both development and test sets,
respectively. The hybrid ensemble achieved the next best scores of 86.2 and 83.3
and the Bi-LSTM ensemble comes last with 84.6 and 82.2. Since the dataset
size is relatively small, it makes sense for classical models to outperform deep
models.

Model Dev|Test
Random Forest - 80.4 |-
XGBoost 85.6 |-
MLP 80.8 |-
RF 4+ MLP + XGBoost (ensemble)|86.584.4
Bi-LSTM 82.6 |-
8 Bi-LSTMs (ensemble) 84.6 |182.8
Hybrid ensemble 86.2 |83.3

Table 3: Results of our three systems on development and test sets.

3.4 Conclusion

In this paper, we described our three submitted systems to the Irony Detection
in Arabic Tweets Shared task at the Forum for Information Retrieval Evaluation
(FIRE 2019). Our submitted systems are classical, deep and hybrid ensembles
that operate of a set of features extracted from each tweet. The extracted features
include TF-IDF word n-gram features, bag-of-words representation, sentiment-

Khalifa et al.

based features and topic modeling features. Our results show the classical en-
semble outperforming both deep and hybrid ensembles with 84.4 F1 points on
the test set and achieving the first place on the task leaderboard.

References

10.

11.

Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of machine
Learning research 3(Jan), 993-1022 (2003)

Breiman, L.: Random forests. Machine learning 45(1), 5-32 (2001)

Farghaly, A., Shaalan, K.: Arabic natural language processing: Challenges and
solutions. ACM Transactions on Asian Language Information Processing (TALIP)
8(4), 14 (2009)

Friedman, J.H.: Greedy function approximation: a gradient boosting machine. An-
nals of statistics pp. 1189-1232 (2001)

Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer percep-
tron)—a review of applications in the atmospheric sciences. Atmospheric envi-
ronment 32(14-15), 2627-2636 (1998)

Ghanem, B., Karoui, J., Benamara, F., Moriceau, V., Rosso, P.: Idat@Qfire2019:
Overview of the track on irony detection in arabic tweets. In: Mehta P., Rosso P.,
Majumder P., Mitra M. (Eds.) Working Notes of the Forum for Information Re-
trieval Evaluation (FIRE 2019). CEUR Workshop Proceedings. In: CEUR-WS.org,
Kolkata, India, December 12-15 (2019)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735-1780 (1997)

Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., Stoyanov, V.: Semeval-2016
task 4: Sentiment analysis in twitter. In: Proceedings of the 10th international
workshop on semantic evaluation (semeval-2016). pp. 1-18 (2016)

Soliman, A.B., Eissa, K., El-Beltagy, S.R.: Aravec: A set of arabic word embedding
models for use in arabic nlp. Procedia Computer Science 117, 256265 (2017)
Van Hee, C., Lefever, E., Hoste, V.: Semeval-2018 task 3: Irony detection in en-
glish tweets. In: Proceedings of The 12th International Workshop on Semantic
Evaluation. pp. 39-50 (2018)

Vo, D.T., Zhang, Y.: Don’t count, predict! an automatic approach to learning
sentiment lexicons for short text. In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers). pp.
219-224 (2016)

	Ensemble Learning for Irony Detection in Arabic Tweets

