
Taking Advantages of Automated
Reasoning in Visual Ontology

Engineering Environments

Germán BRAUN a,b,c, Laura CECCHI a and Pablo FILLOTTRANI c,d
a Informatics Faculty, Universidad Nacional del Comahue, Argentina

b Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina
c LISSI, Computer Science and Engineering Department, Universidad Nacional del Sur,

Argentina
d Comisión de Investigaciones Cientı́ficas de la provincia de Buenos Aires (CIC),

Argentina

AbstractIt is well-known that automated reasoning provides important support for
tools in ontology engineering, particularly, revealing errors and unexpected (non-)
entailments in models. This has been possible thanks to the standardisation of onto-
logy languages and the subsequent development of tools and infrastructure to ma-
nipulate ontologies in such languages. However, in spite of the fact that nowadays
reasoning systems are integrated into a huge range of these tools, their use for en-
hancing automated tasks in ontology engineering processes has not been fully ex-
plored in depth, particularly in closing the gap between graphical and formal rep-
resentations of ontologies. In this work we detail two scenarios in which it is pos-
sible to take advantages of automated reasoning in this sense. The first scenario
deals with the problem of tool interoperability, and the second analyses how to
obtain non-trivial graphical inferences.

Keywords. automated reasoning, ontology engineering, modelling tools

1. Introduction

The cross-fertilisation between visual knowledge representation systems and logic form-
alisms has been extremely productive since the research area of Description Logics (DLs)
emerged as a structured and well-understood way to provide a precise semantic char-
acterisation of frames and semantic network tools [17]. Visual modelling languages are
more human-centered, and as such they are more intuitive and promote applicability.
New system developments generate representational and algorithmic challenges for lo-
gics. On the other hand, logical systems supply an unambiguous semantics and well-
known computational properties. Theoretical contributions induce the development of
new technologies to be used in more effective tools. This lead to a very close interaction
between basic and applied computer science, which distinguishes the research area.

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).

In the last years there have been important theoretical advances in precisely defining
the semantics and computational properties of diverse DL profiles[1], shifting the atten-
tion focus towards tools for the development of these logical systems and thus taking ad-
vantages of reasoning services. Nevertheless, modelling using formal logic is a difficult
task as it does not provide practical and methodological means for ontology engineering.
In addition, engineers are required to understand the logical foundation underpinning
such logic, which is very difficult for domain modellers. In this paper we aim at analys-
ing how could ontology engineering processes, and the relevant tools, take advantages of
automated reasoning to improve the quality of the outcome. The importance of this ques-
tion has been already considered in [11], where it is stated that reasoning enabled tools
provide vital support for ontology engineering by giving tools the ability to detect errors
and unexpected (non-) entailments. There it is also marked the key benefits flowing from
OWL standardisation [16] and the subsequent development of tools and infrastructure
that can be used to support the development and deployment of OWL ontologies. Most
recently, these statemens are being developed as the case of the VADALOG system [8]
and the OBDA paradigm [22]. The former emerged as a platform aiming at managing
knowledge graph applications and integrating machine learning and data analytics with
logical reasoning, while the latter presents query answering as the main reasoning task
for querying relational data sources through an ontology.

In spite of the fact that nowadays reasoning systems are integrated into a huge range
of tools, their use for defining or enhancing automated tasks is still undervalued. In this
work we detail two scenarios and experiments in which we describe how to take ad-
vantages of the automated reasoning for ontology designing tasks and how it should be
used considering the diverse reasoning tools, protocols and underlying languages sup-
port. In particular, we focus on how this can be applied to ontology engineering in the
context of a visual tool. At the end of each scenario we present algorithms to tackle the
found weaknesses, which take advantages of automated reasoning a visual tool. We out-
line on how diverse tools provide different approaches to manage ontology engineering
tasks involving automated reasoning, creating a mismatch between the theory of precise
semantics and the practice.

This work is structured as followed. Section 2 details the context in which our re-
search takes place and including most relevant related works. Section 3 presents the scen-
arios, experiments and discussions about how automated reasoning is integrated to on-
tology engineering tasks. Section 4 presents final discussion and conclusions aiming at
generating a deeper insight in visual-formal interactions.

2. Context

Formalising the graphical and logical interaction has several advantages. First, it can be
used as a basis for design and implementation of novel graphical applications for con-
ceptual modelling and ontology engineering, providing a terminology and understanding
of the requirements for design and implementation of this kind of environment. Second,
it allows to evaluate and classify existing tools according to how they manage the in-
tegration of both aspects (logical and visual). Third, it is useful for neatly characterising
the expressive power of any tool in both directions: visual and formal. In addition to
VADALOG and OBDA systems, there are other related tools in this approach, partic-

ularly ICOM [6], NORMA [20], Menthor [15], OWLGrEd [5], VOWL [14] and eddy
[13], which are considered here because they are based on graphical onotlogy repres-
entation with diverse treatment of automated reasoning. ICOM, NORMA, Menthor and
OWLGrEd present some similarities in the treatment of automated reasoning, however,
although they interact with reasoners, its integration to the visual languages and onto-
logy engineering processes is still limited. ICOM and NORMA show implicit properties,
subsumptions, equivalences, disjoints and cardinalities on the very same diagram, while
Menthor and OWLGrEd use reasoning only for satisfiability checking. On the other hand,
next tools define their own visual language: VOWL is a mere graph-based visualiser,
while eddy is a graphical editor for the specification and visualization of ontologies. In
both, the integration of reasoning with diagrams is absent. Obviously, we cannot leaving
out to the well-known Protégé tool [12] and its recent cloud-based version [10], however,
the visual support of these tools is not between their main strengths presenting limited
plug-ins without a comprehensive interaction with reasoning services [21].

In addition, several of reviewed tools implement just a few ontology engineering
tasks (only the popular Protégé is considered as an integrated ontology development
tool), providing very different user interfaces, graphical and formal languages and reas-
oning capabilities. Generally, these processes appear to be fragmented across diverse
tools and workarounds. This lack of adequate and seamless tools potentially hinders
the broad uptake of ontologies by modellers not skilled in logics, especially OWL, as a
knowledge representation formalism. As a consequence, this analysis gives a real insight
into going towards an unified tool integrating not only the visual notations and their com-
mon features, but also supporting other activities of ontology engineering altogether in a
single graphical and logical framework with a set of core functionalities.

In [4, 3], we present the idea of associating a well-defined semantic to a set of primit-
ives from a visual language and formalising the key elements of this concept. The central
concept of this approach is the definition of a graphical ontology, which states a visual
model in terms of a DL knowledge base. Following these ideas we developed crowd1,
a web-based tool interacting with reasoning systems for ontology engineering. The tool
provides a UML editor and uses DL-based reconstructions of such conceptual data mod-
elling language, based on [2, 6], although it is being currently extended to support EER
and ORM 2.

3. Taking Advantages of Automated Reasoning

We present here two scenarios where automated reasoning can be integrated into onto-
logy engineering tasks in the context of visual environments. Particularly, we analyse
issues related to: (a) interoperability between tools in the context of importing tasks; and
(b) how the automated reasoning can be used for inferring new cardinality constraints in
a graphical model of an ontology. The aim of this evaluation is to state how the automated
reasoning can be applied to manipulating graphical ontologies. The scenarios of evalu-
ating are described first, and subsequently the results and discussion thereof. We will go
through simple examples, as shown in Fig. 1 in order to specifically show the issues that
we have tried to undertake. This simple ontology, which is adapted from one in [6], states

1http://crowd.fi.uncoma.edu.ar/

http://crowd.fi.uncoma.edu.ar/

HomePoint

FixedCellMobileCall

PhoneCall

{covering,exclusive}

m O r i g i n

o r i g i n
1..5

Figure 1. Starting graphical ontology in UML for scenarios and experiments, adapted from
http://www.inf.unibz.it/˜franconi/icom/

that mobile calls are a kind of calls; that phone points are partitioned between cell points
and fixed points and that home points are among phone points. Mobile calls are related
to cells through the mOrigin association. The binary association mOrigin is a included
in the binary association origin. Finally, for a sake of simplicity, we will suppose for our
example that each call has between one and five origin phones.

3.1. Scenario 1: Interoperability Support in Tools

For this scenario, we consider importing in a tool an OWL 2 ontology from a OWL
2 document in OWL/XML syntax aiming at visualising it, i.e. exploring its concepts,
hierarchies and roles. Firstly, we present the case of Protégé for an ontology with two
equivalent representations for the domains and ranges of object properties. Finally, we
discuss and conclude about this issue and show an algorithm for importing OWL 2 on-
tologies, which aiming at accessing the OWL 2 documents through SPARQL-DL [18]
queries on the ontology to be imported and visualised.

A possible encoding, following [2], for the binary association origin between
Call and Phone from the conceptual model shown in Fig 1 is as follows:

∃origin.> v Call

∃origin−.> v Phone

Call v (≥ 1 origin.>) u (≤ 5 origin.>)

From the resulting DL formalisation, we can generate document V1 in Table 1
using OWL/XML syntax. Alternatively, we can use ObjectPropertyDomain and
ObjectPropertyRange OWL/XML tags, resulting in document V2. Intuitively,
both documents represent the same graphical and formal meaning, but after importing V1
in Protégé, both domain and range axioms are imported as general axioms because the
referred axioms cannot be directly associated with a named class. This is shown in Fig 2
(a). On other hand, importing of V2 is trivial because domains and ranges are displayed
in the right view and associated to origin. Fig. 2 (b) shows its interpretation.

In Protégé, general class axioms cannot be directly associated with a named class so
that they are not inferred as equivalent to domain and range of an ObjectProperty either
when importing. Furthermore, reasoners in the tool do not conclude this after checking

http://www.inf.unibz.it/~franconi/icom/

V1 V2

<Ontology>
...
<SubClassOf>
<ObjectSomeValuesFrom>
<ObjectProperty abbreviatedIRI="origin"/>
<Class abbreviatedIRI="owl:Thing"/>
</ObjectSomeValuesFrom>
<Class abbreviatedIRI="Call"/>

</SubClassOf>

<SubClassOf>
<ObjectSomeValuesFrom>
<ObjectInverseOf>
<ObjectProperty abbreviatedIRI="origin"/>

</ObjectInverseOf>
<Class abbreviatedIRI="owl:Thing"/>
</ObjectSomeValuesFrom>
<Class abbreviatedIRI="Phone"/>

</SubClassOf>
...
</Ontology>

<Ontology>
...
<ObjectPropertyDomain>
<ObjectProperty abbreviatedIRI="origin"/>
<Class abbreviatedIRI="Call"/>
</ObjectPropertyDomain>

<ObjectPropertyRange>
<ObjectProperty abbreviatedIRI="origin"/>
<Class abbreviatedIRI="Phone"/>
</ObjectPropertyRange>
...
</Ontology>

Table 1. Document (V1): OWL 2 encoding domain and range derived from Fig 1. Document (V2): Another
OWL encoding for the same axioms but using ObjectPropertyDomain and ObjectPropertyRange
tags. Both documents in OWL/XML syntax.

Figure 2. (a) left. Domain and range axioms according to V1: OWL 2 document are imported as general class
axioms in Protégé. (b) right. Domain and range axioms according to V2: OWL 2 document are imported as
domain and range at object property level in Protégé.

the ontology. In order to correct this situation, we propose to manipulate OWL docu-
ments through queries on the ontology instead of parsing OWL tags. To do this, we run
a SPARQL-DL engine on the V1 document and the queries shown in Table 2. This en-
gine is built on top of the Pellet reasoner [19] for SPARQL-DL [18], which is a sub-
stantial subset of SPARQL, significantly more expressive than existing DL QLs. Thus,
SPARQL-DL outs the respective domain and range for origin independently of the
underlying representations in a document, and disambiguating the general class axioms
and returning the equivalents ones.

Discussion We can see that general axioms expressing domain and range for a property
(as in the OWL document V1) can be properly represented in a visual tool when an onto-
logy is being imported. Tools built on top of the OWL API [9] parse OWL documents by
identifying each axiom in the document, i.e. travelling its structure. This is fine for tools
manipulating DL axioms such as Protégé but not the case of visual tools. Even visual

SPARQL-DL Queries Outputs

// Get Domain for each OP
SELECT DISTINCT ?objectproperty ?domainop
WHERE {
ObjectProperty(?objectproperty),
Domain(?objectproperty,?domainop)
}

// Get Range for each OP
SELECT DISTINCT ?objectproperty ?rangeop
WHERE {
ObjectProperty(?objectproperty),
Range(?objectproperty,?rangeop)
}

{"domainop": { "type": "uri", "value":
"http://crowd.fi.uncoma.edu.ar#Call" },
"objectproperty": { "type": "uri", "value":
"http://crowd.fi.uncoma.edu.ar#origin"}}

{"domainop": { "type": "uri", "value":
"http://www.w3.org/2002/07/owl#Thing" },
"objectproperty": { "type": "uri", "value":
"http://crowd.fi.uncoma.edu.ar#origin" }}

{"rangeop": { "type": "uri", "value":
"http://crowd.fi.uncoma.edu.ar#Phone" },
"objectproperty": { "type": "uri", "value":
"http://crowd.fi.uncoma.edu.ar#origin"}}

{"rangeop": { "type": "uri", "value":
"http://www.w3.org/2002/07/owl#Thing" },
"objectproperty": { "type": "uri", "value":
"http://crowd.fi.uncoma.edu.ar#origin" }}

Table 2. SPARQL-DL queries and responses for domains and ranges of each ObjectProperty in V1.

tools like OWLGrEd [5] and ICOM [6] hide these complex expressions behind UML
classes.

Algorithm 1 Importing ontologies in crowd
Result: A visual representation of an ontology extracted from a OWL 2 document

1 $OWL-file← load OWL 2 document in crowd;
2 $answer← execute SPARQL-DL queries on $OWL-file;
3 $classes← get Classes from $answer ; /* get all the classes from SPARQL-DL responses */

4 foreach $class in $classes do
5 $subclass← $subclass ∪ getSubClass($class)
6 end
7 $op-set← get ObjectProperties from $answer;
8 $triple-op← void;
9 foreach $op in $op-set do

10 $triple-op← $triple-op ∪ ($op, getDomain($op), getRange($op))
11 end
12 $dp-set← get DataProperties from $answer;
13 $triple-dp← void;
14 foreach $dp in $dp-set do
15 $triple-dp← $triple-dp ∪ ($dp, getDomain($dp), getRange($dp))
16 end

/* Composing the UML diagram: UML-D */
17 foreach $class in $classes do map $class to a UML class in UML-D;
18 foreach $sbc in $subclass do map $sbc to a UML generalisation in UML-D;
19 foreach ($op,$dop,$rop) in $triple-op do map $op to a UML binary association between $dop and $rop with

cardinality 0..∗ on both sides in UML-D;
20 foreach ($dp,$ddp,$rdp) in $triple-dp do map $dp to a UML attribute between $ddp and $rdp in UML-D;
21 send UML-D to graphical engine;

Aiming at providing an import functionality for a visual tool as crowd, we propose
to query the ontologies, e.g. using SPARQL-DL and reasoning, and thus identifying ax-
ioms that can be mapped to graphical primitives. The pseudo-code in Alg. 1 shows the
algorithm in crowd for importing OWL 2 ontologies in order to visualise them. The gen-
eral idea of such algorithm is to get from an OWL 2 document all the classes, object
and data properties and any other axioms, which primitives in the underlying graphical

language can be mapped to. For instance, Equivalence and Disjoint axioms do not have
direct primitives in UML although they could be reconstructed from DL by adding gen-
eralisations and additional classes, as demonstrated in [2]. Those axioms without any
primitive will remain saved in the source OWL 2 document for reasoning tasks. Lastly,
in spite of the fact that the input of the algorithm depends on the SPARQL-DL engine in
terms of complexity, the post processing of responses is lineal to the number of queries,
i.e. m ∗ n, where n are the queries and m their responses.

As one limitation, this approach only takes into account monolithic ontologies, i.e.
ontologies saved into only one file, with no imports or mergers [7]. In this same direc-
tion, properties whose domain and range are defined as composed concepts could not be
imported either.

3.2. Scenario 2: Inferring Stricter Cardinalities

Determining implicit consequences is helpful: on the one hand, to reduce the complexity
of the diagram by removing those parts that implicitly follow from other ones, and on the
other hand it can be used to make properties explicit, thus enhancing its readability. In
particular, the refinement of properties involves detecting stricter cardinality constraints
from analysing how the properties of classes and relationships interact with each other.
From a theoretical point of view, these cardinalities can be identified by exploring the
DL axioms (by hand), however, this is rather complex when involving external reasoning
tools. Reasoning services provide ways to query about satisfiability, subsumption, equi-
valence and disjointness of classes, object and data properties, although in some situ-
ations these services should be used along with specific axioms in order to provide more
insights on the current model.

In this scenario, we revisit the conceptual model from Fig. 1, identify some impli-
cit cardinalities based on a related approach from ICOM, and present an algorithm for
manipulating and inferring these cardinalities on visual models in a concrete tool. First
of all, in order to analyse cardinalities, we encode both UML association origin and
mOrigin with its respective cardinalities (axioms 1-5), and also the UML generalisa-
tions (axioms 6-9), as follows.

∃origin.> v Call (1)

∃origin−.> v Phone (2)

Call v (≥ 1 origin.>) u (≤ 5 origin.>) (3)

∃mOrigin.> v MobileCall (4)

∃mOrigin−.> v Cell (5)

MobileCall v Call (6)

Phone ≡ Cell t Fixed (7)

HomePoint v Phone (8)

mOrigin v origin (9)

After handing these axioms to Protégé and reasoning over it, no new hidden axiom is
revealed to the modeller. However, if we carefully analyse the diagram, we can conclude
that it is necessarily true that each MobileCallmay have an origin from at most five
Cell. This is true because any pair in mOrigin is also among the pairs in origin and
also each Call participates at most five times as first argument in origin. So that any
generic subclass of Call and origin inherits the very same maximum participation.
One more time, current reasoning systems do not detect this new conclusion in a direct
way but they can help to extract this implicit knowledge from ontology by supporting
other ontology engineering processes. Based on the ICOM proposal, where non-trivial
graphical cardinalities are inferred by asserting new axioms for 0 and 1 during the DL
encoding of a diagram, we propose a new process for generalising the previous one and
thus inferring cardinalities greater than ICOM ones. First of all, our algorithm asserts
these axioms to original model:

MobileCall mOrigin min ≡MobileCall u (≥ mmOrigin)

MobileCall mOrigin max ≡MobileCall u (≤ n mOrigin)

where m is the minimum cardinality and n is the maximum cardinality. For our model,
the following axioms are asserted:

MobileCall mOrigin min ≡MobileCall u (≥ 1 mOrigin) (10)

MobileCall mOrigin max ≡MobileCall u (≤ 5 mOrigin) (11)

Fig. 3 depicts this scenario. Initially, from axioms (10-11), it is possible state that
both concepts MobileCall mOrigin min and MobileCall mOrigin max are
sub-concepts of MobileCall because the sub-expressions (≥ 1 mOrigin) and (≤
5 mOrigin) are empty sets, i.e. no stricter cardinality is defined for mOrigin. The
resulting ontology after reasoning on the last model shows interesting conclusions. Par-
ticularly, it states that axiom 11 is necessarily true and as a consequence stating that the
maximum participation for mOrigin is 5, as shown in Fig. 4. A simple trace of this
result is:

MobileCall v Call

mOrigin v origin

MobileCall mOrigin max ≡MobileCall u (≤ 5 mOrigin)

The general idea of this approach is to assert axioms such as (10) and (11) for each
cardinality to be reviewed, choose the equivalents ones after reasoning and as a con-
sequence, reveal the hidden constraints (if any). In this spite of the fact that the number
of asserted axioms grows linearly on the number of binary association, it also depends
on the minimum and maximum cardinality supported in the models, in which case the
growth in the amount of axioms should be considered at the moment of evaluating the
performance of a concrete tool. Still, we can consider this maximum cardinality number
for all constraints in the model as a constant.

MobileCall_mOrigin_min

MobileCall_mOrigin_max

HomePoint

FixedCellMobileCall

PhoneCall

{covering,exclusive}

m O r i g i n

o r i g i n
1..5

Figure 3. Original ontology showing how axioms (10) and (11), represented as classes, are related to the
existing classes from which cardinalities will be analysed.

MobileCall_mOrigin_min

MobileCall_mOrigin_max

HomePoint

FixedCellMobileCall

PhoneCall

{covering,exclusive}

m O r i g i n
0..5

o r i g i n
1..5

Figure 4. After reasoning on the previous graphical ontology in 3, one of such new classes,
MobileCall mOrigin max is now equivalent to its related class indicating the new maximum cardinality
for the association mOrigin.

Discussion Automated reasoning is key to ensure the quality of ontologies. Thus, ex-
ploiting it in depth in order to make impact on the visualisation of ontologies is an aspect
relevant. In this case of study, we have analysed a feature not completely undertaken in
existing tools. Only ICOM [6] proposed an initial approach for revealing cardinalities
in conceptual models by taking advantages from automated reasoning in DL. However,
its algorithm is limited to cardinalities between 0 and 1 and none comprehensive formal
analysis of it has been yet reported.

In this work, we proposed a preliminary version of an enhanced algorithm, whose
pseudo-code is sketched in Alg. 2 and currently implemented in our tool crowd. For a
sake of space, we write the core of the algorithm leaving out other aspects about how
stricter cardinalities are visualised back in a tool, which is a similar to the code in Alg.
1. The algorithm takes a UML input with n binary associations and a specific cardinality
value, named card. After that, it asserts axioms as (10) and (11) for each cardinality
value between 1 and card. Finally, when an answer returns from a reasoning system, the
algorithm looks for axioms equivalent to domain and range of each association, which
represent precise cardinality values. Under this approach, the number of new concepts is
lineal to the number of associations in the input model, i.e. 4cardn, being being card the
allowed maximum cardinality and n the number of associations in the input model. This
upper bound is acceptable considering middle-size models, and mainly it relies on the
capabilities of the reasoning tool for processing a potentially huge number of concepts
and/or roles.

Algorithm 2 Reasoning on graphical ontologies in crowd
Result: A set of stricter cardinalities for each association in the graphical model

1 $diag← Input UML graphical ontology in crowd with n associations;
2 foreach $class and $attribute in $diag do
3 $owlFile← encodeOWL($class) ; /* each class is encoded in OWL */
4 $owlFile← encodeOWL($attribute);
5 end
/* $card: threshold of max cardinality to be checked */
/* the algorithm incorporates 4 ∗ $card ∗ n classes to the initial UML */

6 foreach $association in $diag do
7 $domain← getDomain($association);
8 $range← getRange($association);
9 for i = 1 to $card do

10 $domain min ← $domain min ∪ {domain mini ≡ getName($domain) u (≥ i

getName($association))};
11 $domain max ← $domain max ∪ {domain maxi ≡ getName($domain) u (≤ i

getName($association))};
12 $range min ← $range min ∪ {range mini ≡ getName($range) u (≥ i

getName($association)−)};
13 $range max ← $range max ∪ {range maxi ≡ getName($range) u (≤ i

getName($association))−};
14 $withCards← $withCards∪ {$domain min} ∪ {$domain max} ∪ {$range min} ∪ {$range max};
15 end
16 $owlFile← encodeOWL($association, $withCards);
17 end
18 $answer← send $owlFile to a reasoning system;
19 while not at end of this $answer document do
20 foreach $domain and ($domain mini in $domain min) and ($domain maxi in $domain max) do
21 if $domain mini ≡ $domain in $answer then
22 $dmin← $dmin ∪ $domain mini
23 end
24 if $domain maxi ≡ $domain in $answer then
25 $dmax← $dmax ∪ $domain maxi
26 end
27 end
28 foreach $range and ($range mini in $range min) and ($range maxi in $range max) do
29 if $range mini ≡ $range in $answer then
30 $rmin← $rmin ∪ $range mini
31 end
32 if $range maxi ≡ $range in $answer then
33 $rmax← $rmax ∪ $range maxi
34 end
35 end
36 end
37 return max({$dmin}) ∪ max({$rmin}) ∪ min({$dmax}) ∪ min({$rmax})

4. Conclusions

Automated reasoning is a powerful way to help to users in modelling tasks, and simple
examples are enough to see that integrating reasoning to ontology engineering processes
should be explored in more depth. Along this final discussion, we revisit our starting
motivation and extend the findings of this work by detailing about specific dimensions
related to the use of automated reasoning in engineering tasks, and the need of defining
standard ways of providing them in the context of visual tools.

About exploding the popular myth of interoperability Both described scenarios increase
the myth of the interoperability. Firstly, equivalent ontologies are not interpreted as equi-
valents in Protégé but do in other tools querying the ontology differently, however, all
of them are built on top of the same OWL API. With reference to the second scenario,
the motivating issue is similar to the previous one. Approaches coming from the DL re-
constructions of CMDLs in classic ontology engineering fail at the moment of visual-
ising more expressive ontologies through standard languages. Non-standard languages
could be able to depict complex axioms and implicit properties but not in a user-friendly
way [14, 13]. These findings bring to light some not yet solved interoperability issues in
current tools, while the proposed algorithms try to undertake these challenging features
without being the cure-all for them.

Defining standardised importing and exporting processes in tools The lack of a more
robust interoperability support in tools is closely related to the definition and standard-
isation of tools and some ontology engineering processes. Making focus on tools in the
literature and particularly in visual ones, we see that both importing and exporting pro-
cesses are typical read from and write to OWL documents. This is fine in environments
where the content of these documents does not present semantic definitions. In particular,
tools are not considering this when importing OWL 2 document, leaving the manipula-
tion of the document to an API, which identify axioms according to OWL definitions. As
a conclusion, the already discussed standardisation of ontology languages [11] should go
hand in hand not only for the development of tools but also for the standardisation of the
same and the ontology engineering processes [3].

About the use of automatic reasoning in visual tools Taking into account that the con-
sequences of bad ontologies become more critical in real applications, we have to provide
access to even more sophisticated tools for modelling ontologies in order to assure cer-
tain quality parameters. Visual aspects are fundamental in this sense because they help
to modellers in detecting anti-patterns and debugging models. However, the increasing
complexity of ontologies because of their size requires closely integrating both visual
and automated reasoning in comprehensive engineering tasks. In this direction, we are
working hard on crowd, which is a meta tool making use of graphical languages and reas-
oning in an environment for ontology engineering. Without being a silver bullet, crowd
implements the algorithms presented in this work bringing together research on semantic
formal and visual approaches for knowledge representation. Lastly, the tool is able to be
interfaced to other ones (commonly, reasoners) for handing models to diverse systems
that enabling possible different diagnoses and results.

As a conclusion, we present two novel algorithms derived from a number of experi-
ments in related tools, which are implemented in a concrete visual tool, crowd, integrat-
ing automated reasoning in engineering tasks. These proposals aim to bring together re-
search on two under-explored aspects to bad or good ontology design, particularly, tech-
niques and tools for maintaining and manipulating good ontologies as well as explaining,
and repairing bad ones.

References

[1] F. Baader, I. Horrocks, C. Lutz, and U. Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

[2] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 2005.

[3] G. Braun. Metodologı́as y Herramientas Visuals para Ingenierı́a Ontológica. PhD
thesis, Universidad Nacional del Sur, Argentina, 2019.

[4] G. Braun, L. Cecchi, and P. Fillottrani. Integrating Graphical Support with Reason-
ing in a Methodology for Ontology Evolution. In JOWO@IJCAI, 2015.

[5] K. Cerans, J. Ovcinnikova, R. Liepins, and A. Sprogis. Advanced OWL 2.0 Onto-
logy Visualization in OWLGrEd. In DB&IS, 2012.

[6] P. Fillottrani, E. Franconi, and S. Tessaris. The ICOM 3.0 intelligent conceptual
modelling tool and methodology. Semantic Web Journal, 2012.

[7] P. Fillottrani and C. M. Keet. Dimensions Affecting Representation Styles in Onto-
logies. In Knowledge Graphs and Semantic Web, 2019.

[8] G. Gottlob, A. Pieris, and E.l Sallinger. Vadalog: Recent advances and applications.
In JELIA. Springer, 2019.

[9] M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL Ontologies.
Semantic Web Journal, 2011.

[10] M. Horridge, R. Gonçalves, C. Nyulas, T. Tudorache, and M. Musen. Webprotégé:
A cloud-based ontology editor. In Companion of The 2019 World Wide Web Con-
ference, 2019.

[11] I. Horrocks. Tool Support for Ontology Engineering. In Foundations for the Web of
Information and Services - A Review of 20 Years of Semantic Web Research., 2011.

[12] H. Knublauch, R. Fergerson, N. Noy, and M. Musen. The Protégé OWL plugin: An
Open Development Environment for Semantic Web Applications. In The Semantic
Web – ISWC 2004, 2004.

[13] D. Lembo, D. Pantaleone, V. Santarelli, and D. Fabio Savo. Drawing OWL 2 onto-
logies with eddy the editor. AI Communication., 2018.

[14] S. Lohmann, S. Negru, F. Haag, and T. Ertl. Visualizing ontologies with VOWL.
Semantic Web Journal, 2016.

[15] J. Moreira, T. Sales, J. Guerson, B. Braga, F. Brasileiro, and V. Sobral. Menthor
Editor: An Ontology-Driven Conceptual Modeling Platform. In JOWO@FOIS.
CEUR-WS.org, 2016.

[16] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz, edit-
ors. OWL 2 Web Ontology Language Profiles. W3C, second edition edition, 2012.
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.

[17] D. Nardi and R. J. Brachman. The description logic handbook. chapter An Intro-
duction to Description Logics, pages 1–40. Cambridge University Press, 2003.

[18] E. Sirin and B. Parsia. SPARQL-DL: SPARQL Query for OWL-DL. In OWLED,
2007.

[19] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A Practical
OWL-DL Reasoner. Journal of Web Semantics, 2007.

[20] F. Sportelli. NORMA: A Software for Intelligent Conceptual Modeling. In
JOWO@FOIS. CEUR-WS.org, 2016.

[21] M. Vigo, S. Bail, C. Jay, and R. Stevens. Overcoming the pitfalls of ontology
authoring: Strategies and implications for tool design. Journal of Human Computer
Studies, 2014.

[22] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and M. Za-
kharyaschev. Ontology-Based Data Access: A Survey. In IJCAI, 2018.

https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/

