
PSL as a Foundational Ontology for the
Industrial Ontologies Foundry

Michael GRÜNINGER a and Megan KATSUMI a

a Department of Mechanical & Industrial Engineering, University of Toronto, Canada

Abstract. In today’s global economy, manufacturing enterprises must employ in-
creasingly effective and efficient information systems. Such systems should result
in the seamless integration of manufacturing applications and exchange of man-
ufacturing process information between applications. The Industrial Ontologies
Foundry (IOF) seeks to create a set of core ontologies that spans the entire domain
of digital manufacturing. In this paper we explore the adequacy for the Process
Specification Language (PSL) to serve as the foundational ontology that can be
used to axiomatize the ontologies within IOF. We provide conservative definitions
for the Top 20 Classes within the IOF signature, and show how PSL formalizes the
competency questions for the IOF ontologies.

Keywords. ontology design, upper ontologies, foundational ontologies

1. Introduction

The goal of the Industrial Ontologies Foundry1 is the creation of a set of core ontolo-
gies that spans the entire domain of digital manufacturing. This set of ontologies will be
non-proprietary and are expected to serve as the foundation from which other domain-
dependent and/or application ontologies can be derived in modular fashion across all in-
dustrial domains and manufacturing specializations. The scope spans all industrial do-
mains and types of manufacturing (batch/continuous process, discrete high/low volume,
make-to-order), all operational areas of a manufacturing enterprise (design, engineering,
manufacturing, sourcing, supply-chain management), and all stages of the product life
cycle from inception through end of life.

One approach to the design of the IOF Ontologies is to use a foundational ontology
as the basis for the axiomatization of the intended semantics of the classes, relations, and
functions in the signature of the IOF Ontologies. The Process Specification Language
(PSL) ([5], [9]) was designed to support automated reasoning and semantic integration of
software within manufacturing applications. This led to a perspective that stressed plan-
ning and scheduling problems over use cases that considered more general interactions
of agents within the physical world. More recently, PSL is being incorporated into the
TUpper ontology [6] as Part 4 of ISO 21838 (Top Level Ontologies). In particular, TUp-

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).

1https://sites.google.com/view/industrialontologies/home

6

6

6

6

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
.........

........

�

@
@

@
@
@@I

@
@
@

@
@@I

.........
....

.........
.........

........

�

Tpsl core

Tactocc

TocctreeTsubactivity

Tcomplex

Tduration

Tatomic Tdisc state

Figure 1. Modules in the PSL Ontology.

per extends PSL with modules for physical objects, location, and units of measure, thus
addressing the shortcomings of using PSL alone. In these notes, we summarize various
aspects of PSL and TUpper with respect to the IOF selection criteria for a foundational
ontology.

2. PSL as a Foundational Ontology

The Process Specification Language (PSL) has been designed to facilitate correct and
complete exchange of process information among manufacturing systems Included in
these applications are scheduling, process modelling, process planning, production plan-
ning, simulation, project management, workflow, and business process reengineering.

PSL is a modular ontology, with each module consisting of at most twenty axioms.
Overall, there are approximately 250 axioms spread across 31 modules. (This counts
only those CLIF texts that axiomatize primitive concepts, since we have adopted the
practice in which defined relation is found in its own CLIF text). The modules of the PSL
Ontology2 can be seen in Figure 1.

The goal for the TUpper Ontology is to support the ontological analysis of relevant
existing standards and to integrate the ontologies within those standards ([8]). The scope

2The axioms for these modules can be found at
colore.oor.net/psl_core/psl_core.clif

colore.oor.net/psl_occtree/occtree.clif

colore.oor.net/psl_subactivity/subactivity.clif

colore.oor.net/psl_disc_state/disc_state.clif

colore.oor.net/psl_atomic/atomic.clif

colore.oor.net/psl_complex/complex.clif

colore.oor.net/psl_actocc/actocc.clif

cardworldboxworld

codi

multidim_occupy

SoPhOs

Morpheusmultidim_motion

ProSPerO

component

assembly

constitution

matter_change

occupy

motion

FOUntOVid

Figure 2. Modules in TUpper.

of the TUpper Ontology is determined by the task of standards integration – each of
the generic ontologies is needed to support one of the participating standards. Each of
the generic ontologies is a reductive module of TUpper. There are no additional bridge
axioms in a combined signature across these modules. The verification of TUpper is
therefore trivial, being equivalent to the verification of each of the generic ontologies.

TUpper also contains modules for reasoning about state designed using the method-
ology of [1], so that domain state ontologies and domain process ontologies are specified
based on corresponding generic ontologies. For example, the location module Toccupy
within TUpper leads to the motion ontology (i.e. how location changes), the mereotopol-
ogy of physical objects leads to the assembly ontology (i.e. how the mereological rela-
tionships among components of a physical object change), and the ontology of physical
objects Tsophos leads to physical process ontology. This latter ontology includes the ax-
iomatization of temporary parthood. The complete set of modules in TUpper are shown
in Figure 2.

2.1. Ontological Completeness

As proposed in ISO 21838-4, TUpper (which includes PSL as a module) is a top level
ontology since it satisfies the criteria for breadth of coverage.

Space and Time As axiomatized by Tpslcore, an object exists at a timepoint and an ac-
tivity occurs at a timepoint. Each activity occurrence has a beginof timepoint at which
it starts to occur and an endof timepoint at which it ceases to occur. Similarly, each ob-
ject has a beginof timepoint at which it starts to exist and an endof timepoint at which
it ceases to exist. Timepoints are linearly ordered by the before relation, with endpoints
at infinity. The existence of timeintervals is axiomatized in Tinterval psl – each interval
corresponds to a pair of timepoints.

Tregion mt is the mereotopology that is specified over the set of spatial regions.
Toccupy root is the module that is the location ontology in TUpper. It is consistent with the

ontology for more than one material object to occupy exactly the same spatial region at
the same time.

Actuality and Possibility Models of Tocctree are occurrence trees, which consist of all
possible sequences of atomic activity occurrences. The set of activities that actually oc-
cur in a model are elements of one branch of the occurrence tree. Models of Tcomplex con-
sist of subtrees of the occurrence tree that correspond to possible occurrences of com-
plex activities. A legal occurrence tree is the subtree of an occurrence tree in which all
activity occurrences satisfy precondition axioms that specify the conditions under which
an activity can possibly occur. Dispositions are treated via such precondition axioms.

Parts, Wholes, Unity, and Boundaries TUpper adopts mereotopological pluralism –
there are multiple distinct parthood and connection relations for different classes of en-
tities. The mereologies on matter and spatial regions are complete extensional mereolo-
gies with complementation, as is the mereology of atomic (concurrent) activities. On
the other hand, the mereology of complex activities is logically synonymous with the
weakest mereology, and does not require the existence of sums or complements. The
mereology on components and timeintervals entails Strong Supplementation, but does
not require the existence of sums for underlapping parts.

Space and Place Toccupy is the module that is the location ontology in TUpper. Tmotion
classifies all activities that can possibly change the location of an object.

Shape is represented using the Tboxworld module of TUpper. Holes are specified as
physical objects which have shape but which are not constituted by matter.

While Tmatter∪Tconstitution axiomatizes material objects and their constitution by mat-
ter, Tmatter change classifies all activities that can change the mereology of matter and that
can change a material object by changing the matter that constitutes the object.

Quantities and Mathematical Entities The FOUnt module within TUpper axiomatizes
the units of measure, constraints on how units can be algebraically manipulated), and the
relationship between physical objects and processes and the units of measure.

Processes and Events Processes appear as the class of activities within Tpslcore. Within
the module Tdisc state, fluents (states) are achieved or falsified by activity occurrences,
and only activity occurrences can change fluents. There are no constraints on the kinds
of processes that exist. Each activity occurrence has a duration (Tduration), which can be
zero in the case of an instantaneous activity occurrence (i.e. one in which the beginof
timepoint is equal to the endof timepoint).

Constitution Tconstitution axiomatizes the constitutes relation between an object and its
matter. Constitution only holds between objects and matter, and there is no analogue of
constitution that holds between processes or nonmaterial entities.

Causality Constraints are definable between activities, as well as between activities
and fluents (states). In particular, one activity can achieve the preconditions of another
activity, or a fluent may trigger the occurrence of an activity.

2.2. Logical Consistency

The PSL Ontology is verified – the models of all core theories within the ontology have
been characterized up to isomorphism ([7]). The logical consistency of the PSL Ontology

follows from the verification of the ontology, in which PSL is shown to be logically
synonymous with the union of a set of mathematical theories. For example, Tpsl core (the
module imported by all PSL subtheories) is synonymous with

Tbounded linear order ∪Tscatter graph partitioning∪Tgraphical incidence∪Tpresent bundle

The consistency of PSL-Core follows from the consistency of each of these mathematical
theories.

2.3. Multiple Representations

TUpper and PSL have a natural language representation, and they are axiomatized in
both Common Logic and OWL-2. However, the OWL-2 is far too weak to satisfy any of
the initial requirements or to support any of the motivating scenarios in decision support
and semantic integration in the next section of this paper. In particular, any OWL-2 ax-
iomatization will have unintended models, and the existence of such models prevents the
specification of reasoning problems for planning and scheduling. It is therefore not clear
how the OWL-2 axiomatization of PSL would be used.

3. Use Cases

3.1. Software Integration

Many tasks require correct and meaningful communication and integration among in-
telligent agents and information resources. A major barrier to such interoperability is
semantic heterogeneity: different applications, databases, and agents may ascribe dis-
parate meanings to the same terms or use distinct terms to convey the same meaning.
The development of ontologies has been proposed as a key technology to support seman-
tic integration—two software systems can be semantically integrated through a shared
understanding of the terminology in their respective ontologies.

A semantics-preserving exchange of information between two software applications
requires mappings between logically equivalent concepts in the ontology of each appli-
cation. The challenge of semantic integration is therefore equivalent to the problem of
generating such mappings, determining that they are correct, and providing a vehicle for
executing the mappings, thus translating terms from one ontology into another.

The work by [4] summarizes how PSL was used to integrate the following manufac-
turing software systems.

• SAP ERP ([12]) is an enterprise resource planning solution that among many other
capabilities can be used to design manufacturing processes and manage manufac-
turing operations. Production orders in the ERP system are used to represent the
enterprise’s demand on manufacturing operations to deliver a certain quantity of a
specific product to be available by a give date and time.

• MetCapp ([11]) is a computer-aided process planning system that generates pro-
cess plans, given a set of workstations, machines, setups, routing sequences, and
generic part feature data. A machining capability database provides automated ca-
pabilities of cutting tools selection, speed and feed calculations, processing time
estimation, and operation sequencing.

• ILOG Scheduler ([10]) consists of an extensible library of C++ classes and func-
tions that implement scheduling concepts such as activities and resources. The li-
brary enables the representation of scheduling problems as a collection of schedul-
ing constraints, such as activity durations, release dates and due dates, precedence
constraints, resource availability, and resource sharing. These constraints in turn
are used as input for ILOG Solver, which can solve the constraints to provide
schedules, in which activities are assigned to resources over different time inter-
vals.

A reproduction of this use case with the other foundational ontologies (BFO and
DOLCE) for the IOF Ontologies would be another approach to the evaluation of the
fitness of the foundational ontologies.

3.2. Next Generation Software

Whereas use cases for semantic integration are based on existing engineering software
applications, the IOF Ontologies are also intended to support the design of new manu-
facturing software systems that automate decision support tasks performed by engineers
at all phases of the product lifecycle.

Scenario 1: Manufacturability As products are being designed, software automatically
checks to determine whether the product will be manufacturable, that is, whether there
exists a process plan whose execution produces objects that satisfy the product’s quality
constraints. If a design is not manufacturable, potential modifications to the design are
recommended.

Scenario 2: Proactive Manufacturing A new approach to achieve this integration has
been the notion of proactive computing, in which information systems act in anticipation
of future problems, needs, or changes of the user. To be proactive, a computer system
must understand the user’s context and how it changes over time. Within manufactur-
ing enterprises, this can be facilitated by the recording of process constraints associated
with a particular resource as it passes through the set of activities performed within the
supply chain. RFID technology can be combined with ontologies (e.g. use a process and
time ontology to store information directly on the RFID tags) to create smart items and
demonstrate this approach using a motivating scenario of manufacturing process control
[3]. As an item flows through a manufacturing process, information about the item can be
stored on its tag. This information, along with the ontology’s axioms can be used to make
decisions about the future possible manufacturing processes that might be performed on
the item.

4. Competency Questions

Several automated reasoning problems arise within the motivating scenarios introduced
in the preceding section. In this section, we give a brief overview of how PSL can be used
to represent these problems so that they can be treated as competency questions relevant
for the IOF Ontologies.

4.1. Temporal Projection

The problem of temporal projection is closely related to prediction about how the world
changes: given a set of activity occurrences and an initial state, what is the final state?

Problem 1. Given a partially ordered set of activity occurrences Σocc and an initial
state ΣF , determine whether the ground state formula Q(O) holds in after the activity
occurrence O:

Tpsl ∪Σocc∪ΣF |= Q(O)

It is important to understand the significance of this formal definition of temporal
projection. Given a sequence of activity occurrences, we must determine from the axioms
in Tpsl alone whether the formula Q(O) is entailed after the activity occurrence O. We
therefore need to determine the necessary set of axioms in such a process ontology in
order to specify the problem of temporal projection and to characterize the solutions to
this problem.

What are the minimal ontological commitments to define temporal projection? Since
we are given a sequence of activity occurrences, and we must determine what fluents
(states) hold after the sequence, we need to axiomatize preconditions (fluents that must
hold in order to perform an action) and effects (fluents that hold after performing an
action).

4.2. Plan Existence

The problem of plan existences asks whether there exists a sequence of activity occur-
rences such that a given state holds after the sequence. Such a set of activity occurrences
constitutes a plan that achieves the goal state.

Problem 2. Given a simple state formula Q(o), an initial state ΣF and a set of precon-
dition and effect axioms Σactivity determine

Tpsl ∪ΣF ∪Σactivity |= (∃s)Q(s)

4.3. Scheduling

Given a set of deadlines, operations, and resources, does there exist a sequence of activity
occurrences that achieve a set of goals by the deadlines?

Problem 3. Let Q(s) be a sentence with no free variables except s. For some temporal
ground term T , determine

Tsucc∪Tpre∪ΣF |= (∃s, t)S0 ≤ s∧Q(s)∧ start(s, t)∧ t < T

This is equivalent to the existence of a plan that can achieve the goal Q(s) by the
deadline T .

4.4. Process Plan Generation

Process plan generation differs from plan existence in two ways. First, the process plan
is a complex activity (that is, an activity composed of primitive activities with partial
ordering constraints and nondeterminism). Second, the intended effects of occurrences
of the process plan must be equivalent to the specification of a product. Process plan
generation is the construction of a plan whose occurrences produce an object with a given
set of features.

Problem 4. Given a product specification formula Σproduct(x) for a product P(x), find a
process description Σactivity(A) such that

Tpsl∪Σ
activity(A)∪Σ

product(x) |=(∀o,x)occurrence o f (o,A)∧P(x)⊃ holds(product(x),o)

4.5. Plan Verification

Given a partially order complex activity that specifies a plan, is the goal achieved after
every occurrence of the plan?

Problem 5. Given a simple state formula Q(o) and a process specification Σactivity(A),
determine

Tpsl ∪Σactivity(A) |= (∀o)occurrence o f (o,A)⊃ Q(o)

Closely related to plan verification is the problem of reasoning about the interaction
of a plan with external activities (i.e. activities that are performed by actors outside of the
plan). Which activities external to the plan can interfere with the plan? Must activities
external to the plan occur in order for the plan to occur?

5. Axioms for the Top 20 Classes

The set of terms in the initial IOF signature focus on classes of resources and processes
within manufacturing. In this section, we present the axiomatization of the intended se-
mantics of the IOF signature using PSL, as required to support the competency questions
specified in the preceding section. Note that the axioms for this initial set of terms in
the IOF Ontologies forms a definitional extension of the PSL Ontology; no additional
ontologies outside of PSL and TUpper were used.

5.1. Resources

Several classes within the IOF Top 20 terms are related to objects that are resources
for manufacturing processes. The challenge is to provide an axiomatization that distin-
guishes resources from other objects that participate in an activity occurrence. Within the
PSL Ontology, resources exist wherever there are concurrency constraints on activities –
if two activities cannot be concurrent, there exists a resource that they both require. The
different relationships between resources and activities are classified by the roles that the
resources play in the activities.

5.2. Material Resources

A resource r is consumable by an activity a if any other activity that also requires r is not
possible to perform after a completes its occurrence. Examples of consumable resources
include wood in a fire, or raw materials in a manufacturing production process.

Definition 1. A material resource is a material object that is consumable by an activity.

(∀x) iof:MaterialResource(x)≡ (∃a)MaterialOb ject(x)∧ consumable(a,x) (1)

5.3. Manufacturing Tool

A resource r is reusable by an activity a if any other activity that also requires r is still
possible to perform after a completes its occurrence, in every possible future. A hammer
or screwdriver is an example of a reusable resource – as soon as one activity occurs, it is
always possible to perform the next activity.

A resource r is weakly reusable by an activity a iff for any other activity that also
requires r is still possible to perform after a completes its occurrence, in every possible
future situation unless it is prevented. For example, a paintbrush is reusable only if we
put it into varsol after use; otherwise, it is not reusable.

Definition 2. A manufacturing tool is a solid physical object that is reusable by an
activity.

(∀x) iof:ManufacturingTool(x)≡ (∃a) solid physical ob ject(x)∧ reusable(a,x) (2)

5.4. Manufacturing Machine

A resource r is possibly reusable by an activity a iff for any other activity that also
requires r is still possible to perform after a completes its occurrence, in some possible
future situation. A machine that requires some setup between different activities. After
the first activity occurs, it is possible for the other activity, but only if the setup activity
occurs first.

Definition 3. A manufacturing machine is a solid physical object that is possibly
reusable by an activity.

(∀x) iof:ManufacturingMachine(x)≡ (3)

(∃a) solid physical ob ject(x)∧ possibly reusable(a,x)

5.5. Fixture

A resource r is wearable with respect to an activity a1 iff after the occurrence of a1 there
is always a situation in every possible future where any other activity that requires r is
no longer possible. An example of a wearable resource is a drill bit – in every possible
future, there will exist a situation where the bit has worn down to the point where it can
no longer be used.

Definition 4. A fixture is a solid physical object that wears out through use by an activity.

(∀x) iof:Fixture(x)≡ (∃a) solid physical ob ject(x)∧wearable(a,x) (4)

5.6. Other Classes of Resources

The PSL Ontology axiomatizes other classes of resources that play a role within planning
and scheduling, although they did appear in any of the IOF Top 20 Terms.

A resource r is weakly consumable with respect to an activity a1 iff after the occur-
rence of a1, there always exists a possible future along which any other activity that re-
quires r will never be possible. Consider, for example, a paintbrush – if we do put it into
varsol after using it, then any activity that requires the brush will no longer be possible.

A resource r is renewable with respect to an activity a iff for any other activity
that also requires r is still possible to perform after a completes its occurrence, in every
possible future situation unless it is prevented. An example of a renewable resource is
a solar-charged battery – once it is depleted, there will always exist a future situation
where the sun recharges the battery so that it can be used again.

5.7. Domain Process Ontologies

PrOSPerO (Process Ontologies for Solid Physical Objects) is the collection of domain
process ontologies within TUpper that axiomatize the classes of activities that change
objects within manufacturing.

The approach [1] is to classify all possible activities in a domain by characteriz-
ing possible all changes in the domain. A domain ontology is translated into a domain
state ontology (i.e. relations are mapped to fluents). Activity occurrences correspond to
mappings between models of the domain ontology. Activities with respect to possible
changes.

With ProSPerO, we treat SoPhOs and Occupy as the domain ontologies, leading to
the following domain process ontologies:

• Material removal / addition activities
• Shape-changing activities
• Assembly / disassembly activities
• Motion activities

In particular, there is a domain ontology that axiomatizes the mereological relation
for the components of a solid physical object.

Definition 5.

(∀x) iof:Assembly(x)≡ (5)

solid physical ob ject(x)∧ (∃y) component o f (y,x)∧ (x 6= y)

Definition 6.

(∀x) iof:Component(x)≡ (6)

solid physical ob ject(x)∧ ((∀y) component o f (x,y)⊃ (x = y))

Within the corresponding domain process ontology, assembly and disassembly ac-
tivities change the comp(x,y) mereological fluent.

Definition 7. An assembly process achieves the comp(x,y) fluent.

(∀x) iof:AssemblyProcess(x)≡ (7)

activity(x)∧ ((∀o)occurrence o f (o,x)⊃ (∃y,z)achieves(o,comp(y,z))

Similarly, transportation processes change the location of objects.

Definition 8.

(∀x) iof:TransportationProcess(x)≡ (8)

activity(x)∧ ((∀o)occurrence o f (o,x)⊃ (∃y,z)achieves(o, loc(y,z))

5.8. Manufacturing Processes

A processor activity is an activity which uses some set of resources, consumes or modi-
fies some other set of resources, and produces or modifies a set of objects.

Definition 9.

(∀x) iof:ManufacturingProcess(x)≡ processor activity(x) (9)

5.9. Processes: Composition

Activities can be composed together to construct complex activities, or decomposed into
primitive activities. Occurrences of complex activities correspond to sets of occurrences
of their subactivities. Different occurrences of complex activities may contain occur-
rences of different subactivities or different orderings on the same subactivity occur-
rences. There is a partial ordering of subactivity occurrences for a set of complex activity
occurrences.

Definition 10.

(∀x) iof:Task(x)≡ primitive(x) (10)

5.10. Plans

A set of activity occurrences is a plan in the PSL Ontology if and only if all occurrences
of subactivities that agree on state also agree on being subactivity occurrences. (i.e. there
exists a set of fluents that are achieved by all occurrences of the activity).

Definition 11. An IOF plan is an activity all of whose occurrences are plans in the PSL
Ontology.

(∀a) iof:Plan(a)≡ ((∀o) root(o,a)⊃ plan(o)) (11)

5.11. Products

Definition 12. A product is an object that satisfies a design specification.

(∀x,o)P(x)⊃ (prior(product(x),o)≡Φ(x,o) (12)

where P(x) is a specific class of objects and Φ(x,o) is a formula.

5.12. Process Plans

Definition 13. A process plan is a plan whose goal is a product.

(∀a) iof:Process plan(x)≡ (13)

((∀o) iof:plan(a)∧occurrence o f (o,a)⊃ (∃x)achieves(o, product(x))

5.13. Manufacturing Process Plans

An activity occurrence occ2 is the next processor subactivity occurrence after occ1 in an
activity a iff the output material of a1 is the input material of a2, and there is no other
processor subactivity of a which consumes the output material from a1, and which occurs
between a1 and a2. There exists a material flow ordering, which is a partial ordering over
the processor subactivity occurrences of a with respect to resource flow. An activity is
a resource path iff the subactivity occurrence ordering is equivalent to the material flow
ordering.

Definition 14. A manufacturing process plan is a resource path that is also a process
plan for a product.

(∀a) iof:ManufacturingProcessPlan(a)≡ (∃x) iof:Process plan(a,x)∧ resource path(a) (14)

6. Summary

We have seen how the PSL Ontology, together with the modules of the TUpper Ontol-
ogy, can be used to provide conservative definitions that axiomatize the intended seman-
tics for the Top 20 Classes in the IOF signature. Furthermore, PSL has the expressive-
ness to formally specify the competency questions that arise from motivating scenarios
within IOF, and earlier work (e.g. [3]) has demonstrated how PSL can be used to support
automated reasoning.

Nevertheless, major challenges remain unresolved. What role does the foundational
ontology play? Can multiple foundational ontologies be used together for the axiomati-
zation of the IOF Ontologies? For example, can the mappings between PSL and DOLCE
[2] be used to specify axioms that use both ontologies?

More importantly, we still do not know what we need to axiomatize – the IOF com-
munity has not yet agreed upon the signature of the IOF Ontologies, let alone the in-
tended semantics of the signature. Without a specification of the intended semantics of
the IOF signature, it is difficult to make any claims about the adequacy of an existing
ontology to be reused to axiomatize the intended semantics.

Finally, many of the issues that are being encountered in the design of IOF are
open research problems in ontological engineering. We must be careful to avoid easy
approaches that do not ultimately lead to solutions to these problems.

References

[1] Bahar AAmeri. Using Partial Automorphisms to Design Process Ontologies. In
FOIS, pages 309–322, 2012.

[2] Carmen Chui and Michael Grüninger. Merging the DOLCE and PSL Upper On-
tologies. In KEOD 2014 - Proceedings of the International Conference on Knowl-
edge Engineering and Ontology Development, Rome, Italy, 21-24 October, 2014,
pages 16–26, 2014.

[3] M. Gruninger, S. Shapiro, M.S. Fox, and Weppner. Combining RFID with On-
tologies to Create Smart Objects. International Journal of Production Research,
48:2633–2654, 2010.

[4] Michael Grüninger. The Ontological Stance for a Manufacturing Scenario. J. Cases
on Inf. Techn., 11(4):1–25, 2009.

[5] Michael Grüninger. Using the PSL Ontology. In Steffen Staab and Rudi Studer, ed-
itors, Handbook on Ontologies, International Handbooks on Information Systems,
pages 423–443. Springer Berlin Heidelberg, 2009.

[6] Michael Grüninger, Carmen Chui, and Megan Katsumi. Upper ontologies in colore.
In Proceedings of the Joint Ontology Workshops 2017 Episode 3: The Tyrolean
Autumn of Ontology, Bozen-Bolzano, Italy, September 21-23, 2017, 2017.

[7] Michael Grüninger, Torsten Hahmann, Ali Hashemi, Darren Ong, and Atalay
Özgövde. Modular First-Order Ontologies via Repositories. Applied Ontology,
7(2):169–209, 2012.

[8] Michael Grüninger, Torsten Hahmann, Megan Katsumi, and Carmen Chui. A side-
ways look at upper ontologies. In Formal Ontology in Information Systems - Pro-
ceedings of the Eighth International Conference, FOIS 2014, September, 22-25,
2014, Rio de Janeiro, Brazil, pages 9–22, 2014.

[9] Michael Grüninger and Christopher Menzel. The Process Specification Language
(PSL) Theory and Applications. AI Mag., 24(3):63–74, September 2003.

[10] Inc. ILOG. ILOG Scheduler 6.3 Reference Manual. 2008.
[11] Institute of Advanced Manufacturing Sciences. MetCapp Utilities Manual. 1994.
[12] SAP. SAP Library. 2008.

