
Hierarchical Representation of
Manufacturing Process Plans using PSL

Dusan SORMAZ
a,1 and Arkopaul SARKAR

a
a

 Industrial and Systems Engineering, Russ College of Engineering, Ohio University

Abstract. This paper describes the modeling of manufacturing process plans by
proposing the extension to the Process Specification Language. First, we briefly
describe a hierarchical nature of the process plan model which results from process
planning activity. Few levels of hierarchy: part level, machine level, setup level,
and process level were defined with the last, process level, being a level of atomic
manufacturing processes. After the application-oriented description, we utilize the
Process Specification Language (PSL) in order to provide formal definitions of
described hierarchy, which is based on the usage of various resources in
manufacturing and process planning. We extend the PSL activity to include
resources with their roles in atomic processes and then build a hierarchy of PSL
activities that correspond to the manufacturing process plans. We complement the
hierarchical process plan model with two important considerations, namely,
process sequence and ordering constraints and we illustrate how the model can
accommodate them. The discussion of the proposed model is supported by an
example.

Keywords. Manufacturing Ontology, Process Planning, PSL

1. Introduction

Process planning primarily consists of “determining the most appropriate
manufacturing and assembly processes and the sequence in which they should be
accomplished to produce a given part or product according to the specifications set
forth in the product design.” Selection of necessary processes is also the most complex
phase of process planning, due to the subjective nature of the act of planning.
Traditionally, manufacturing industries depended on the knowledge of craftsmen,
artisans, and machinists for planning their production strategy. In variant type of
process planning, templates of plans for common design specifications are stored and
re-used for generating plans by matching the design requirements with the template
specifications. In modern computer-aided process planning systems, generative type
planning mainly focuses on capturing manufacturing best practices, standards and
machinists' knowledge in reusable formats, which are referred to generate process plan
from the design specification. In the area of CNC machining, such as drilling, milling,
and turning, these type of knowledge may include the process-specific capability for
generating features of particular quality and precedence among tasks, which is to be

1 Dusan Sormaz, Ohio University, Department of Industrial and Systems Engineering, 1 Ohio

University, Stocker Center 284, Athens , OH 45710-2979, USA E-mail: sormaz@ohio.edu. Copyright ©
2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

maintained for achieving the desired result, based on inherent constraint in the design
and commonly prescribed ordering in the application of processes.

In this paper, we focus on two fundamental aspects of process planning, which are
(1) aggregation of processes based on their attributes, such as resources and output of
the process, (2) precedence among processes, stemming from the constraints in design
specification and applicability of process. The domain-focused brief explanation of
process plan representation is given in Section 3. The ontological commitment for the
proposed resource-based aggregation and technological precedence between activities
are discussed in section 4, based on the theory of manufacturing planning from our
previous research work. The formal definitions of sub-types of activity based on the
aggregation factors are presented in section 4.1, and process sequence in section 4.2.
Then, various precedence constraints are discussed in section 4.3. Before we delve into
these topics, we present a brief overview of previous researches on the topic of our
interest, including semantic modeling of process flow based on Process Specification
Language, which we heavily adopt in our proposed model.

2. Previous Work

The importance of the nonlinear process plan concepts including dynamic and flexible
process plans has been identified and considered as a benchmark for process planning
and integration by most of the research approaches [1]. Since its inception in 1984, ISO
10303 (an ISO standard for exchange of product manufacturing information aka STEP)
has published a number of Application Protocols (AP) covering product knowledge in
different domains [2]. The semantic representation of industrial knowledge using
ontology and formal languages have garnered popularity, because of the benefits that
formal logic-based languages provide in contextual data integration of heterogeneous
information and interoperability of models built on such languages though automated
reasoning. ONTOStep provides an ontology to map the STEP functions in OWL model
[3]. ONTO-PDM is an ontology developed based on STEP PDM to define fine-grained
knowledge structure for product assembly, bill-of-material, and material types [4].
Attempts to build ontologies for a manufacturing focused on describing products,
manufacturing process, resources and controls which describe the relations among
resources and processes. One of the early work on the core terms of manufacturing was
conducted by Borgo and Leitão, who proposed a set of such core concepts related to
manufacturing based on foundation ontology DOLCE [5].

Open assembly model (OAM) proposed by NIST, defines generic concepts to
integrate requirement, functional design, kinematic synthesis, and tolerance analysis
along with basic part and assembly information [6]. OAM extends the object-oriented
Core Product Model (CPM), also proposed by NIST [1]. MASON ontology proposed
by Lemaignan et al. tried to capture the precedence relationship among different
manufacturing operations required to produce a part with the desired quality [7]. It also
links material, machine, tools, and cost information with every manufacturing
operation. Another ontology proposed by Kim et al. describes a number of widely used
assembly processes; such as joining, bonding, riveting, welding, and their sub-
processes [8]. Ameri et al. developed an ontological model describing manufacturing
processes and resources as services, which included a detailed study on the capability
of machine and tool [9].

Process Specification Language (PSL), developed by Gruninger, describes such a
formal model for representing planning and scheduling problems, especially suited for
manufacturing industries [10]. PSL has been standardized as ISO 18629 within TC 184
(Automation systems and integration) SC4 (Industrial Data) and is axiomatized in full
first-order logic (FOL) based languages such as initially Knowledge Interchange
Format (KIF) and Common Logic (CL). PSL served as a foundational model for a
number of researches in shop-floor level decision making, agent-based communication,
and orchestration of web services. Furthermore, PSL has been used in prototype
implementations by companies such as SAP, Siemens, Rolls-Royce, KBSI, and IBM.
Still, PSL has not found its use in knowledge-based generative process planning.

While PSL is originally built for interoperability of process flow information
among manufacturers and CIM software, generative process planning involves actual
planning before such flow may be construed. In a dynamic shop-floor condition, these
plans sometimes need to be re-generated or modified based on real-time conditions. In
this type of scenario, canonical models of process plans are not enough as some level
of flexibility should be achieved in dynamic process planning with good support of the
rules and query system to the knowledge representation language. A semantic model of
generative process plan should include the necessary planning criteria and constraint
embedded in the plan in lieu of a mere collection of processes universals (Activity in
PSL terminology). Based on this argument, we are going to present the semantic model
for generative process plan in first-order logic, which heavily adopts the process flow
related concepts from PSL, with an honest admission that such model may not be
directly interpretable in the standard version of PSL.

3. Overview of Manufacturing Planning

Manufacturing planning mainly consists of a series of tasks, performed in a sequence to
manufacture a part with the desired quality. However, more often tasks from one step
need feedback from previous steps. Production management decision made at every
step influences the decision for subsequent steps. This inter-dependency among phases
of development is classically tackled by concurrent engineering. The main idea behind
concurrent engineering is to integrate various phases of the product life cycle, such as
design, manufacturing, assembly, quality assurance, and maintenance; so that the
designers can design the product keeping the manufacturability of the product in mind
(Design for manufacturing/Design for Assembly). In practice, this demands an
integrated system able to analyze the design data and compute the necessary processes,
machines, and tools necessary at the design time. Integrated Manufacturing Planning
tool (IMPlanner), developed by Sormaz and Khoshnevis (1999) addressed the
aforementioned inter-dependency among various planning variables [11], [12].

Figure 1: Manufacturing process plan model represented in three dimensions

IMPlanner uses a three-dimensional object-oriented model to represent the non-
linearity in manufacturing process planning (MPP) information, shown in Figure 1. In
this model, various stages of non-linear MPP are filed along the aggregation
dimension. At each aggregation level, a set of planning variables, such as (features,
processes, machines, and tools) are selected to be part of the overall process plan.

At the bottom-most level, each process is identified based on the output it
produces. In this model, the most granular form of output of a manufacturing process is
a feature, which can be broadly defined as some special areas of interest in a part — “a
set of geometric entities (surfaces, edges, and vertices) together with specifications of
the bounding relationship between them and which have engineering function and/or
provide assembly aid” [13]. In this study, we extend this definition to include features
for every kind of products, e.g. thickness of a liquid, fat content of the milk, a grip on a
pen, and relief on the sheet metal. For many cases, especially in prismatic parts,
features can be conceived as fiat objects, which are part of the product. In other cases,
features are simply quality of the product. However, in both cases, features cannot exist
independently. From this point of view, features are ubiquitous in every kind of product
and manufacturing of a product should primarily concern generating the specified
features of that product. Not every feature specification may be produced by a single
process and multiple processes required for achieving the target specification for the
feature are aggregated at the process level. Then the layers above process level
aggregate processes based on common machine, tool and other resources respectively.
In this study, we choose machine and fixture to be used as resources for such
aggregation. We justify the importance of these resources in process definition in the
next section.

Moreover, planning variables at every aggregation level also vary along with
variety and time dimension. Variety dimension captures alternative selections of
planning variables for a certain manufacturing task, whereas the time dimension
captures the temporal dependency among the planning variable values at every
aggregation dimension. Such temporal ordering among processes at each aggregation
level arises from constraints related to each aggregation factor. In this study, we model
two fundamental precedence constraints: feature precedence and process precedence,
which are presented in section 4.3.1and 4.3.2 respectively.

4. Manufacturing Process Plan Representation

In this section, we present the model of the manufacturing process plan based on the
ontological argument and present important definitions by extending PSL terminology.
First, process hierarchy is described, which is followed by a discussion on process
sequences and ordering constraints in the subsequent sections.

4.1. Process Hierarchy

The general meaning of a process in manufacturing is polysemous in nature, as the
contexts for the use of the word are often assumed in the purported meaning when we
use the word in different situations. For example, a process may address a singular task
to be performed as well as an entire series of processes undertaken for manufacturing a
product. It is therefore required to classify process based on the difference in contexts.
We argue that some combination of machine and fixture is always required whatever
type of process is concerned. For example, for metal fabrication industry a CNC type
machine (e.g. mill, drill lathe, stamp) along with an appropriate tool works on raw
material, which is normally a stock, metal bar or rod, held in a specially designed
fixture. The use of the machine is also compulsory in many other types of industrial
processes, such as the injection molding machine in casting, and blenders in mixing,
however, such statement may not be strictly asserted for the tool as the semantic
distinctions between machine and tool is debatable and out of the scope of this
document2. The fixture in the industrial process is responsible for holding the raw
material, or in-process workpiece in the right position and orientation for the machine
and the tool to operate on them. For example, the workpiece is placed in the orientation
so that the tool path can cut the shape of the feature. The fixture may also be a rack, a
conveyor belt, or a vessel when the scope is extended to a wider variety of
manufacturing. The ubiquity of some kind of machine and fixture in manufacturing
processes may be established by considering the situation for the simplest type the
processes, take for example the manual packaging of an artifact, which needs a pair of
dexterous hands (the machine) and at least a platform (the fixture) in order to carry out
the packaging process.

In PSL, Axiom 16 dictates that an object can participateIn an activity only at those
timepoints at which both the object existsAt and the activity isOccurringAt, where an
activity-occurrence is the occurrenceOf a single activity [14]. In manufacturing process
plan, the collection and order of the process are not about the actual occurrence of the
process but behavior specification based on its allocation of resources and specific
configuration, which are better suited to be asserted for activity. In an effort to enable
the allocation of resources in the process plan, Solano et al. conjured up an abstract
type called Resource, which is used as a reified type to link Object (machine, tool,
fixture) to instances of Activity [15]. During the actualization of such Activity, the
Object instance assumes a role to fulfill the capability and capacity of the Resource
attached to the Activity. In reality, every machine and tool is different from each other

2 The ontological distinction between machine and tool is needed before examining

the co-dependence of machine and tool in an industrial process, as some processes
similar to CNC machine need a mechanized system uses some replaceable tool to carry
out the process, whereas in other processes, the machine and tool are tightly integrated
into one system such as a furnace.

when their capability is analyzed in detail. Therefore, the essence of the resources is
grounded in its capability, which is directly derived from the actual Object, and not
from the abstraction of it. The model proposed by Solano et al. still links these actual
objects to occurrences [15], whereas the knowledge of the actual objects and their
capability is a priori for process planning, thus making the use of abstract type
Resource redundant. Rather we propose a modicum extension to PSL, in which the
participateIn predicate links object to activity without any predicate requiring the
object to existsAt the timepoint. In order to classify processes based on the participants
of the process, e.g. the machine, tool, and fixture, three subtypes of activity are defined.

The PSL Ontology uses the subactivity relation to capture the basic intuitions for
the composition of activities. Subactivity relationship is a transitive relationship which
holds between two activities [14]. Using this property of the subactivity relationship,
the process aggregation can be defined using the sub-types of activity as defined in the
following axioms for PartActivity, MachineActivity, and SetupActivity, and ultimately
provides a grouping of StepActivities. The factor of the aggregation is based on the
resources and outputs of the process, which is necessary for creating some desirable
order in the process plan. For example, one may want to process every step, which can
be processed by the same machine, consecutively in order to minimize the machine
transfer cost. Similarly, the steps under the same setup may also be grouped in a similar
fashion. Such aggregation will provide the necessary grouping constraints on the
ordering of the occurrences of the activity. Here we show that the structure generated
by applying the given aggregation is a kind of a tree.

StepActivity: Step is an atomic activity, i.e. no other activity can be a subactivity of

StepActivity, in a process plan. An activity is a step activity if the output of a
StepActivity is a single feature, i.e., no two features can be the output of the same
StepActivity. This definition is based on the definition of working step in ISO 14649,
however, while ISO 14649 is focused on CNC machining, this definition is its
extension to other manufacturing processes.

∀𝑎	𝑆𝑡𝑒𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎) ≡ 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎) ∧ ∃𝑓, 𝑝	𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠(𝑎, 𝑝𝑎𝑟𝑡𝑂𝑓(𝑓, 𝑝)) ∧
(∃𝑎′	𝑆𝑡𝑒𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎9) ∧ (𝑎 ≠ 𝑎9) → ∃𝑓′	𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠(𝑎, 𝑝𝑎𝑟𝑡𝑂𝑓(𝑓′, 𝑝)) ∧ (𝑓 ≠ 𝑓′))

The predicate achieves is borrowed from the PSL axioms for fluent attached to the
occurrence [14]. In PSL ontology, a fluent is defined as the change of the state which
takes place due to the occurrence of an activity. When the same concept is used or
desired for an activity, it denotes only the intuitive change of state for the
corresponding occurrence of that activity, i.e. ∀𝑎, 𝑥	𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠=𝑎, 𝜙(𝑥)? 	↔
∃𝑜, 𝑡B, 𝑡C	𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑂𝑓(𝑜, 𝑎) ∧ 𝑏𝑒𝑔𝑖𝑛𝑂𝑓(𝑜, 𝑡B) ∧ 𝑒𝑛𝑑𝑂𝑓(𝑜, 𝑡C) ∧ 𝑝𝑟𝑖𝑜𝑟(𝜙(𝑥), 𝑡B) ∧
ℎ𝑜𝑙𝑑𝑠(𝜙(𝑥), 𝑡C), where tb and te are time points. It can be observed from the definition
of StepActivity that every instance of StepActivity is devoted to producing a single
feature. We already described the features as fiat objects belonging to some part. Here,
we introduce a new predicate processingStepOf, which links a StepActivity to that part,
containing the feature produced by StepActivity. This predicate is introduced with little
ontological value but to make the subsequent axioms simpler.

SetupActivity: A SetupActivity is composed of one or more StepActivity, each of

which is performed using the same fixture, i.e. no two StepActivity, which are
subactivity of the same SetupActivity can use different fixture. Also every StepActivity
under a SetupActivity works on features, which all belong to the same part.

∀𝑎J	𝑆𝑒𝑡𝑢𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦=𝑎J? ≡ 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦=𝑎J? ∧ ∃𝑎	𝑆𝑡𝑒𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎) ∧
𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦=𝑎, 𝑎J? → ∃𝑠	𝑢𝑠𝑒𝑠𝐹𝑖𝑥𝑡𝑢𝑟𝑒(𝑎, 𝑠) ∧ (∀𝑠9𝑎9	∃𝑝	𝑆𝑡𝑒𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎9) ∧
𝑢𝑠𝑒𝑠𝐹𝑖𝑥𝑡𝑢𝑟𝑒(𝑎9, 𝑠9) ∧ 𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦=𝑎9, 𝑎J? ∧ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑆𝑡𝑒𝑝𝑂𝑓(𝑎, 𝑝) ∧
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑆𝑡𝑒𝑝𝑂𝑓(𝑎9, 𝑝) → (𝑠 = 𝑠9))

, where usesFixture is a sub-property of PSL is_participant_of and Fixture is a
sub-type of Object. It should be mentioned here that this definition does not imply that
all StepActivities with the same fixture have to belong to the same SetupActivity.

MachineActivity: A MachineActivity is a type of activity such that each of its sub-

activity is processes in the same machine, i.e no two activities, which are subactivity of
the same MachineActivity, can be processed on two different machines.
∀𝑎M	𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎M)

≡ 𝐴𝑐𝑡𝑣𝑖𝑡𝑦(𝑎M) ∧ ∃𝑎J	𝑆𝑡𝑒𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎) ∧ 𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎, 𝑎M)
→ ∃𝑚	𝑢𝑠𝑒𝑠𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑎,𝑚) ∧ (∀𝑚9𝑎J9 ∃𝑝	𝑆𝑡𝑒𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎9)
∧ 𝑢𝑠𝑒𝑠𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑎9,𝑚9) ∧ 𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎9, 𝑎M)
∧ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑆𝑡𝑒𝑝𝑂𝑓(𝑎, 𝑝) ∧ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑆𝑡𝑒𝑝𝑂𝑓(𝑎9, 𝑝) → 	 (𝑚
= 𝑚9)

, where usesMachine is a subproperty of isParticipantOf and Machine is a sub-type
of Object.

PartActivity: A PartActivity is a type of activity such that each of its subactivity

makes some change in the workpiece, targeted to make a single part, i.e no two
subactivities of the same PartActivity can have output features belonging to two
different parts.
∀𝑎P	𝑃𝑎𝑟𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦=𝑎P? ≡ 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦=𝐴P? ∧ ∃𝑎	𝑆𝑡𝑒𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎) ∧ 𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦=𝑎, 𝑎P?

→ ∃𝑝	𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑆𝑡𝑒𝑝𝑂𝑓(𝑎, 𝑝) 	∧ (∀𝑎9𝑝′	𝑆𝑡𝑒𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎9)
∧ 𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦=𝑎9, 𝑎P? ∧ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑃𝑎𝑟𝑡𝑂𝑓(𝑎9, 𝑝) → (𝑝 = 𝑝9)

Based on the aggregation factor, the activities at every level of the activity

hierarchy can be classified as a type of complex activity, except for the StepActivity,
which should always be an atomic or primitive activity. The hierarchy of activities may
be formed by classifying the activities at each level as one of the activity types,
described above. The aggregation hierarchy, shown in Figure 2, is for a simple part
with four features. Table 1 shows the machines and tools participating in the instances
of StepActivity and corresponding features achieved. The part will be completely done
if all four of its features are processed successfully, each of which is the output of one
of StepActivity shown as the leaves of the hierarchy. At the root of this hierarchy is
PartActivity, which contains every required step as its subactivity. Two instances of
MachineActivity are included for two types of CNC machine needed for generating four
of its features. Under the MachineActivity, different SetupActivity(s) group step
activities base on tool direction. Note that SetupAct1-A and SetupAct2-A have same
tool direction, still distinct as they are applied to different machines.

Figure 2: A simple part design with four features and corresponding activity aggregation.

Table 1. Machine and fixture assignments for various StepActivities

 StepAct1 StepAct2 StepAct43 StepAct4
usesMachine Mill1 Mill1 Drill1 Mill1
usesFixture Fixture1 Fixture2 Fixture1 Fixture2
achieves Slab1 Slab2 Hole Slot

The primary purpose of the aggregation in a manufacturing plan is to group steps

under the same machine, tool, and other resources, so that the resource allocations,
which are expressed at the complex activity level, can be deduced from atomic step
level. The reason for such aggregation is that, whenever some resource is changed,
there are other non-manufacturing activities required to accomplish that change (for
example, if the machine is changed, some transport is necessary). Furthermore, the
step activities can be grouped by resources as required. This is possible because PSL
declares subactivity as transitive. For example, StepAct2 is a subactivity of SetupAct1-
B, which is, in turn, a subactivity of MachineAct1. Therefore, StepAct2 uses milling
machine Mill1 and fixture Fixture2. On the other hand, one may query which steps can
be allocated to Mill1 and find three answers Step1, Step2, and Step4.

4.2. Process Sequence

The successor relationship between two occurrences of activity occurrences is the basis
of the occurrence tree in PSL. “The PSL successor relation associates occurrences with
each other to represent all temporal orderings of runtime execution of activities whether
they conform to a behavior specification or not, and even including orderings that are

physically impossible. The relation forms a tree where every occurrence has exactly
one successor for each activity, indicating the possibility of that activity happening next,
so the branches represent possible execution traces” [16]. Every node of an occurrence
tree is a primitive or atomic activity occurrence, which can be safely described by the
leaf nodes of the activity tree that are the activities which are not decomposed further.
Every occurrence in the tree denotes a single step in a possible routing. Therefore every
path from the root to leaf occurrence of the occurrence tree provides a possible routing.
For example, the activity tree shown in Figure 2 has 4 leaves which are instances of
StepActivity. The corresponding occurrence tree is shown in Figure 3, which contains
the primitive activities from the activity tree shown in Figure 2.

Figure 3: Occurrence tree for the simple part shown in Figure 2.

4.3. Ordering Constraints

It is apparent that without any constraint on the occurrence of the steps, every branch of
the occurrence tree is a viable execution trace, or in other words, a possible plan for the
part. However, ordering constraints may be applied based on the intrinsic and extrinsic
ordering constraints stemming from participating resources to each StepActivity. For
example, one may wish to work with a particular machine before going to other
machines, or always perform all the steps using the same fixture together. In the
presence of such constraints, only some of the branches of an occurrence tree can be
regarded as a valid process plan. PSL provides minPrecedes and nextSubocc
relationships for expressing ordering constraints among sub-occurrences of an
occurrence.

Apart from these resource-based constraints, two other types of constraints govern
the validity of a process plan. The first one stems from precedence imposed by the
processing order among features of a part and type of processes to be applied for
producing a feature.

4.3.1. Feature Precedence

Features (e.g. Hole, Slot, Pocket, Chamfers, and Bevel)
in product design can only be machined in a specific
order due to their overlapping spatial location (position)
and orientation (vector) [17]. Such ordering among
tasks is also common in assembly processes. For

Figure 4: Precedence between
assembly processes of a pen

example, the Liaison graph is used to show the interaction between different
components in a pen assembly (Figure 4). Clearly, the ‘button’ cannot be attached to
the body until the ‘tube’ is filled with ink and the ‘head’ is capped. In this case, each
assembly process creates one of the features of the product. In general, this type of
precedence constraints is imposed by design specification, such as the dimension of
datum reference and tolerances.

 As described in section 4.1, features are uniquely tied to the instances of
StepActivity. Being primitive activities, the occurrences of the StepActivity instances
constitute various branches of the corresponding occurrence tree. PSL prescribes the
use of nextSubocc relationship among the subactivities of a complex activity to denote
such precedence constraint strictly. During planning, the following axioms impose
ordering constraints among the occurrences of the steps (primitive activity) based on
the precedence constraints among features. In order to capture the constraints among
the features, which is not itself temporal
precedence and derived from the positioning and
orientation of those features in the part design, a
new predicate nextFeature is introduced. This new
property can only be held between two features,
generating a complete or partial ordering among
the features. For example, the partial order among
four features of the simple part shown in Figure 2
is shown in Figure 5. It should be noted here that
feature precedence is a minimal set of constraints that the product or part requires for
their manufacturing, on the other side process precedence may include more constraints
(some will be mention later). Based on this feature precedence, a temporal ordering
may be applied among planned activities, using the following minPrecedes axiom.
∀𝑜, 𝑜R, 𝑜R9	𝑚𝑖𝑛𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑜R, 𝑜R9, 𝑜)

→ ∃𝑎, 𝑎R, 𝑎R9 , 𝑓, 𝑓′	𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑂𝑓(𝑜, 𝑎) ∧ 	𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑂𝑓(𝑜R, 𝑎R)
∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑂𝑓(𝑜R9, 𝑎R9) ∧ 𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎R, 𝑎) ∧ 𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎R9 , 𝑎)
∧ 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠(𝑎R, 𝑝𝑎𝑟𝑡𝑂𝑓(𝑝, 𝑓) ∧ 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠(𝑎R9 , 𝑝𝑎𝑟𝑡𝑂𝑓(𝑝, 𝑓9)
∧ 𝑛𝑒𝑥𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑓, 𝑓9)		

For the activity composition shown in Figure 2, Slab1 is processed by Step1, Slab2
by Step2, Slot by Step4, and Hole by Step3. The constraints among the features can be
translated to the order among the corresponding occurrences of these steps by the
following facts.

occurrenceOf(“op”, “PartAct”) ∧ minPrecedes(“o3”, “o1”, “op”) ∧
minPrecedes(“o4”, “o2”, “op”) ∧ minPrecedes (“o4”, “o3”, “op”)

 PSL suggests the relation legal to specify an atomic occurrence (occurrenceOf a
primitive activity) o is an element of the ‘legal’ occurrence tree. A legal occurrence tree
is the subtree of the complete occurrence tree, which captures both possible and
impossible branches. For example, 	𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑂𝑓(𝑜S, "𝑆𝑡𝑒𝑝4") ∧ 𝑙𝑒𝑔𝑎𝑙(𝑜S) →
ℎ𝑜𝑙𝑑𝑠=𝑜V, 𝑝𝑎𝑟𝑡𝑂𝑓("𝑆𝑙𝑎𝑏2", 𝑝)? ∧ ℎ𝑜𝑙𝑑𝑠=𝑜X, 𝑝𝑎𝑟𝑡𝑂𝑓("𝐻𝑜𝑙𝑒", 𝑝)? ∧
𝑝𝑟𝑖𝑜𝑟(𝑜4, 𝑝𝑎𝑟𝑡𝑂𝑓("Slot", 𝑝)). This set of facts can also be deduced from the following
rule by applying the minPrecedes axiom and avoiding the fluent predicate.
∀𝑜X	𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑂𝑓(𝑜S, "𝑆𝑡𝑒𝑝4") ∧ 𝑙𝑒𝑔𝑎𝑙(𝑜S) →
∃𝑜, 𝑜V, 𝑜S𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑂𝑓(𝑜V, "Step2") ∧ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑂𝑓(𝑜X, "Step3") ∧
𝑚𝑖𝑛𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑜S, 𝑜V, 𝑜) ∧ 𝑚𝑖𝑛𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑠(𝑜S, 𝑜X, 𝑜).

Figure 5: Feature precedence among
the features of simple part

Similar rules can check the ordering constraint on occurrences of Step1, Step2, and
Step3. The branches of the occurrence tree, in which every occurrence is legal then can
be selected as a valid process sequence. The valid sequences are marked with green in
the occurrence tree shown in Figure 3.

4.3.2. Process Precedence

Similar to the precedence among features of the part, a valid process plan also needs to
follow a particular ordering for the processes applied in order to make one feature
meeting its specification. This sort of situation is normal for CNC machining, in which
more than one machining step may be required in order to make the product feature in
order to meet tolerance speculations such as dimension tolerance and surface finish,
however, this may occur in another type of manufacturing depending on the definition
of feature adopted. For example, multiple heat treatments may be required to harden a
metal bar, a welded joint may require polishing before welding, and paint job may
require a coating of primer before the color is applied. The precedence among process
stems from the technological limitation of the machine and tool used in a particular
manufacturing method, for example, a pilot hole needs to be drilled before drilling a
deep hole with a strict straightness requirement in order to avoid the deflection of the
drill bit under mechanical stress.

The precedence among processes is best handled if an intermediate object is
generated for every step. Following this approach, we may generate intermediate
features for the part design whenever more than one process is required to satisfy the
specified tolerance requirements. This also corresponds to practice, as such partially
completed part may need to be transported from one machine to another (e.g. from a
lathe to heat treatment, then to a grinder if grinding operations are required). Those
intermediate features become an integral part of the part model for manufacturing
planning. Therefore, the extended part model is a union of manufacturing features for
the part design and all intermediate features that were identified as necessary during the
process selection procedure. In order to complete the extended part manufacturing
model, it is necessary to consider the impact of intermediate features on the feature
precedence network (FPN).

In order to generate the Extended FPN (EFPN), we will assume that the process
selection procedure produced the processes for design features as shown in Figure 5.
From the figure it is visible that to make Slab we need only milling process (M), while
for the other three features we need two processes for each: for Hole we need twist
drilling (Step3) and boring (Step3i), for Slot we need rough (Step4) and finish (Step4i)
milling operations. The activity hierarchy for the corresponding EFPN is shown in
Figure 6 by adding the intermediate features.
In order to accommodate the intermediate features, we need to extend our original
aggregation to include another level of aggregation, which can combine steps having
the feature outputs belonging to one feature specification. Every subactivity of this new
type of complex activity FeatureActivity is targeted to the same feature specification.
The specification of the feature is distinguished from an actual (physical) feature. The
intermediate features are a distinct physical feature with different dimensions and
properties, whereas the design feature is specified in the product design document. It is
expected that only one of the intermediate features will match the specification, and
thus may be called the final feature. In Figure 6, The activity hierarchy shown in
Figure 5 is redrawn by introducing this new complex activity.

Figure 6: Extended FPN of SimplePart and activity hierarchy including FeatureActivity

The axiom of FeatureActivity is given below, in which the property specificationOf(fs,f)
describes that feature f (possibly intermediate or final) is one of the features created in
course of achieving the specification fs.

∀𝑎^	𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎^) ≡ 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎^) ∧ ∃𝑎	𝑆𝑡𝑒𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎) ∧
𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎, 𝑎^) → ∃𝑝, 𝑓, 𝑓R	𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠=𝑎^, 𝑝𝑎𝑟𝑡𝑂𝑓(𝑓, 𝑝)? ∧
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑂𝑓(𝑓R, 𝑓) ∧ (∀𝑓9, 𝑓R9, 𝑎9	𝑆𝑡𝑒𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎9) ∧ 𝑠𝑢𝑏𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑎9, 𝑎^) ∧
𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠=𝑎9, 𝑝𝑎𝑟𝑡𝑂𝑓(𝑓9, 𝑝)? ∧ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑂𝑓(𝑓R9, 𝑓9) → (𝑓R9 = 𝑓R))

The aggregation based on the feature can also be imposed on the occurrence tree
using the required precedence among processes for subactivities of a FeatureActivity.
For example, when applied as subactivity of the same FeatureAct3, twist drilling
(Step3i) should precede boring (Step3), which can be stated as
∀𝑜B	𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑂𝑓(𝑜B, "Boring") ∧ 𝑙𝑒𝑔𝑎𝑙(𝑜B) →
∃𝑜_, 𝑜	𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑂𝑓(𝑜_,	TwistDrilling")∧ occurrenceOf(o, "𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐴𝑐𝑡3") 	∧
𝑛𝑒𝑥𝑡𝑆𝑢𝑏𝑜𝑐𝑐(𝑜B, 𝑜_, 𝑜)	

5. Conclusion

This paper presents the manufacturing process plan representation in a first-order logic
by extending a concept from the Process Specification Language (PSL). The primary
contribution of the paper is the formal definition of complex activities based on the
type of resources being used and the output of the activity. We have shown how these
complex activities can be combined to make a hierarchical aggregation and
representation of manufacturing process plans. After the basic model description, it has
been augmented to accommodate two types of precedence, namely feature and process
precedence, which act as constraints on the flow of the processes. This extension was
presented using the PSL occurrence tree concept.

The model is illustrated with the help of simple mechanical design (called simple part),
which has only four features and corresponding manufacturing steps. However, the
proposed model did not go through formal validation using reasoning algorithms and
case studies for a variety of situations. Therefore, future work with the model will
include completion of formal representation and axioms in first-order logic (FOL), the
model application on more realistic examples, and its verification using reasoners to
answer typical manufacturing planning questions.

References

[1] S. J. Fenves, S. Foufou, C. Bock, and R. D. Sriram, “CPM : A Core Model for Product Data 1
Introduction 2 The Core Product Model,” pp. 1–14.

[2] S. Staab and R. Studer, “Handbook on Ontologies,” in Decision Support Systems, S. Staab and R.
Studer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, p. 654.

[3] R. Barbau, S. Krima, S. Rachuri, A. Narayanan, X. Fiorentini, S. Foufou, and R. D. Sriram,
“OntoSTEP: Enriching product model data using ontologies,” Comput. Des., vol. 44, no. 6, pp. 575–
590, Jun. 2012.

[4] H. Panetto, M. Dassisti, and A. Tursi, “ONTO-PDM: Product-driven ONTOlogy for Product Data
Management interoperability within manufacturing process environment,” Adv. Eng. Informatics, vol.
26, no. 2, pp. 334–348, 2012.

[5] S. Borgo and P. Leitão, “Foundations for a Core Ontology of Manufacturing,” in Integrated Series in
Information Systems, Springer {US}, pp. 751–775.

[6] M. M. Baysal, U. Roy, R. Sudarsan, R. D. Sriram, and K. W. Lyons, “The Open Assembly Model for
the Exchange of Assembly and Tolerance Information: Overview and Example,” 2004, vol. 2004, pp.
759–770.

[7] S. Lemaignan, A. Siadat, J.-Y. Dantan, and A. Semenenko, “MASON: A Proposal For An Ontology Of
Manufacturing Domain,” in IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence
and Its Applications (DIS’06), 2006, pp. 195–200.

[8] S. Kim and K. Lee, “An assembly modelling system for dynamic and kinematic analysis,” Comput.
Des., vol. 21, no. 1, pp. 2–12, Jan. 1989.

[9] F. Ameri, C. Urbanovsky, and C. McArthur, “A systematic approach to developing ontologies for
manufacturing service modeling,” CEUR Workshop Proc., vol. 886, pp. 1–14, 2012.

[10] M. Grüninger, “Using the PSL Ontology,” Handb. Ontol., pp. 423–443, 2009.
[11] D. Sormaz and B. Khoshnevis, “Process Planning Knowledge Representation using an Object-oriented

Data Model,” Int. J. Comput. Integr. Manuf., vol. 10, no. 1–4, pp. 92–104, 1997.
[12] D. N. Sormaz, J. Arumugam, and S. Rajaraman, “Integrative process plan model and representation for

intelligent distributed manufacturing planning,” International Journal of Production Research, vol. 42,
no. 17. pp. 3397–3417, 2004.

[13] J. J. Shah and M. T. Rogers, “Functional requirements and conceptual design of the Feature-Based
Modelling System,” Comput. Eng. J., vol. 5, no. 1, p. 9, 1988.

[14] C. Schlenoff, J. Lubell, and M. Gruninger, “The Process Specification Language (PSL) overview and
version 1.0 specification,” no. 6459, 2000.

[15] L. Solano, P. Rosado, and F. Romero, “An Ontological Approach For Manufacturing Resources
Modeling,” 21th Int. DAAAM Symp., vol. 21, no. 1, pp. 779–781, 2010.

[16] C. Bock and M. Gruninger, “PSL: A semantic domain for flow models,” Softw. Syst. Model., vol. 4, no.
2, pp. 209–231, 2005.

[17] D. N. Sormaz and B. Khoshnevis, “Modeling of manufacturing feature interactions for automated
process planning,” J. Manuf. Syst., vol. 19, no. 1, pp. 28–45, 2000.

