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Abstract. The successful determination and analysis of phenotypes plays a key role 
in the diagnostic process, the evaluation of risk factors and the recruitment of 
participants for clinical and epidemiological studies. The development of 
computable phenotype algorithms to solve these tasks is a challenging problem, 
caused by various reasons. Firstly, the term ‘phenotype’ has no generally agreed 
definition and its meaning depends on context. Secondly, the phenotypes are most 
commonly specified as non-computable descriptive documents. Recent attempts 
have shown that ontologies are a suitable way to handle phenotypes and that they 
can support clinical research and decision making. 
The SMITH Consortium is dedicated to rapidly establish an integrative medical 
informatics framework to provide physicians with the best available data and 
knowledge and enable innovative use of healthcare data for research and treatment 
optimization. In the context of a methodological use case “phenotype pipeline” 
(PheP), a technology to automatically generate phenotype classifications and 
annotations based on electronic health records (EHR) is developed. A large series 
of phenotype algorithms will be implemented. This implies that for each algorithm 
a classification scheme and its input variables have to be defined. Furthermore, a 
phenotype engine is required to evaluate and execute developed algorithms. 
In this article we present a Core Ontology of Phenotypes (COP) and a software 
Phenotype Manager (PhenoMan), which implements a novel ontology-based 
method to model and calculate phenotypes. Our solution includes an enhanced 
iterative reasoning process combining classification tasks with mathematical 
calculations at runtime. The ontology as well as the reasoning method were 
successfully evaluated based on different phenotypes (including SOFA score, socio-
economic status, body surface area and WHO BMI classification) and several data 
sets. 
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1. Introduction 

Despite its long ago introduction in 1909 by Wilhelm Johannsen, the term ‘phenotype’ 
still has no generally agreed definition [1]. Usually, a phenotype is considered as an 
observable characteristic or trait of an organism, such as its morphology, function, 
behaviour, or its biochemical and physiological properties [1–3]. Correct determination 
of phenotypes plays a key role for diagnosis of diseases, evaluation of risk factors and 
recruitment of patients for clinical and epidemiological studies [4,5]. One challenge is to 
translate phenotype algorithms, which “are most commonly represented as non-
computable descriptive documents and knowledge artifacts” [6], into machine-readable 
form. Recent attempts have shown that ontologies are suitable to handle phenotypes and 
that they can support clinical research and decision making [7–9]. 

The main goal of the German Medical Informatics Initiative (MII) [10,11] is making 
clinical data available for research. Most German university hospitals participate in one 
of the four funded consortia. Smart Medical Information Technology for Healthcare 
(SMITH) is one of these consortia [12]. Within the ongoing SMITH project, a 
phenotyping pipeline (PheP) will be established to systematically develop, evaluate and 
execute validated algorithms and models for classifying and annotating patient data 
based on routine EHR. These annotations and derivatives will be provided for triggering 
alerts and actions, data sharing and deep analyses of patient care and outcomes. 
Phenotype engines and factories are required as an overall infrastructure to specify, set 
up and execute phenotype algorithms. 

In this article, we propose a novel ontology-based method to model and calculate 
phenotypes. Our approach provides an extended reasoning combining phenotypic data 
to derive complex phenotypes based on calculations and classifications. The developed 
tools are designed to work as phenotype engine and factory in SMITH context. 

2. Methods 

This section outlines the embedding of the PhenoMan in the SMITH infrastructure 
(Figure 1).  

The required EHR data will be integrated in a Health Data Storage (HDS) in a 
standardized manner based on HL7 FHIR [13]. Structured data from different source 
systems in hospitals as well as unstructured documents are taken into account. Natural 
Language Processing (NLP) techniques are used to extract and transform relevant data 
from unstructured EHR documents into structured form. For the specification of the HDS 
schema (i.e., metadata including single data elements, data element groups, value sets, 
referenced terminologies, etc.) required to transform and integrate data from various 
sources, the software ART-DECOR® [14] is used. ART-DECOR® is an open-source 
tool suite that enables creation and maintenance of HL7 templates, value sets, scenarios 
and data sets and supports, inter alia, FHIR capabilities. 

The PhenoMan imports the data elements from ART-DECOR® and inserts them 
into the ontology. The phenotype designer uses the Phenotype Editor to develop 
phenotype algorithms/models based on the source data elements. Each phenotype 
algorithm is saved as a Phenotype Algorithm Specification Ontology (PASO) by 
PhenoMan. For the communication with the FHIR Server, the PhenoMan Service is 
established, which encapsulates the PhenoMan API. The service generates subscriptions 
(rest-hook) [15] for each PASO and transmits them to the FHIR Server. As soon as FHIR 



resources (e.g., patient or observation resources) are present that fulfil the criterion of a 
subscription (e.g., after update or create), the FHIR Server sends the resources to the 
PhenoMan Service. Additionally, the PhenoMan Service can request further resources 
(e.g., observations, conditions or medications) required for phenotypes 
calculation/reasoning. After receiving required resources, the PhenoMan Service 
calculates phenotypes (using PhenoMan API and PASOs) and writes the results as 
observation resources back to the FHIR Server. For the specification of the subscription 
criteria and querying the FHIR Server, FHIR Search [16] is used. 

 
Figure 1. Proposed PheP architecture 

This work focusses on the ontology-based modelling and reasoning of phenotypes 
using PhenoMan. The SMITH infrastructure components as well as the integration of 
PhenoMan in SMITH will be described in details in further papers. 

3. Results 

3.1. Core Ontology of Phenotypes (COP) 

We developed the Core Ontology of Phenotypes (COP, Figure 2) to model, classify and 
calculate phenotypes based on instance data sets (e.g., of a patient). In this article, we 
consider a phenotype as an individual (in sense of General Formal Ontology, GFO [17]), 
for example, the weight of a specific person. Hereinafter, abstract instantiable entities 
that are instantiated by phenotypes are called phenotype classes. For instance, the 
abstract property ‘weight’ possess individual weights as instances. We distinguish 
between single and composite properties (traits), and correspondingly, between single 
and composite phenotypes. A composite property is defined as a property that has single 



properties as parts [18]. Based on the definitions of single and composite properties [18], 
we define single phenotypes as single properties (e.g., age, weight, height) and composite 
phenotypes as composite properties (e.g., height and weight, BMI, SOFA score [19]) of 
an organism2  or of one of its subsystems. Composite phenotypes are divided into 
combined and derived phenotypes. A combined phenotype is only a combination of 
corresponding phenotypes (e.g., a combination of height and weight), whereas a derived 
phenotype is an additional property (e.g., BMI) derived from the corresponding 
phenotypes (height and weight). In the framework of GFO we modelled properties or 
traits using the class gfo:Property. In the present article, composite phenotype classes are 
modelled using a Boolean expression based on has_part relation (e.g., weight and height: 
has_part some height and has_part some weight). Derived phenotype classes additionally 
define a calculation rule/mathematical formula (e.g., BMI = weight[kg] / height[m]²). 
Furthermore, combined phenotype classes can associate certain conditions with specific 
predefined values (scores), which can be used, e.g., in further formulas. For example, if 
bilirubin value is greater than 12 mg/dl, then the value 4 is used for the calculation of the 
SOFA score [19].  

 
Figure 2. Core Ontology of Phenotypes (COP) 

Additionally, we distinguish between restricted and non-restricted phenotype classes, 
depending on whether their extensions (set of instances) are restricted to a certain range 
of individual phenotypes by defined conditions or all instances are allowed. For example, 
the phenotype class ‘age’ is instantiated by the ages of all living beings (non-restricted), 
whereas the phenotype class ‘young age’ is instantiated by the ages of the young ones, 
e.g., if the age is below 30 years (restricted). 

3.2. Phenotype Algorithm Specification Ontologies (PASO) 

Specific phenotypes (algorithms) are modelled in Phenotype Algorithm Specification 
Ontologies (PASO)3 using the COP. PASOs are embedded in the COP in such a way that 
the classes of the PASO are subclasses of the COP classes. Every PASO subclass of the 
COP classes cop:Single_Phenotype, cop:Combined_Phenotype or 
cop:Derived_Phenotype is a phenotype class and is instantiated by phenotypes. The 
direct subclasses are non-restricted (e.g., Bilirubin, Figure 4), while the subclasses of 
the non-restricted phenotype classes are restricted (e.g., Bilirubin_s_ge_2_0_l_6_0, i.e., 
bilirubin between 2 and 6 mg/dL).  

Phenotype classes possess various common attributes (e.g., labels, descriptions and 
links to external concepts). Other attributes vary depending on the type of the phenotype 

 
2  Properties of an organism are considered as all documentable information about it, whereby the 

modeller is left to decide what is relevant to the current situation. 
3 A PASO is not a usual domain ontology describing a domain by suitable concepts, different relations 

between them and axioms (like "patient is treated in some hospitals", "patient has some diseases" or "disease 
was diagnosed by some doctors"). The main purpose of a PASO is to efficiently model concrete phenotypes 
(algorithms) that should be calculated by the software based on relevant patient characteristics. 



class. Non-restricted single phenotype (NSiP) classes, for example, define the datatype, 
a unit of measure and an optional aggregate function; non-restricted derived phenotype 
(NDeP) classes – a mathematical formula; restricted single (RSiP) and derived 
phenotype (RDeP) classes – a restriction; and restricted combined phenotype (RCoP) 
classes – an optional score value. The logical relations between phenotype classes as well 
as range restrictions are represented in OWL by anonymous equivalent classes or general 
class axioms based on property restrictions. 

 
Figure 3. SOFA score [19] 

The modelling procedure is illustrated by means of an example for calculating the 
SOFA (Sequential (or Sepsis-related) Organ Failure Assessment) score [19]. The SOFA 
score plays an important role in medicine to quantitatively describe the degree of multiple 
organ dysfunction/failure over time in patients. The total score is calculated as a sum of 
the 6 single organ scores (respiration, coagulation, liver, cardiovascular, central nervous 
system and renal). Each single organ score may take values from 0 (normal) to 4 (most 
abnormal), so that the maximum SOFA score is 24 (Figure 3). 

First, we model the NSiP classes, e.g., Bilirubin, Dopamine and Eye_Opening 
representing single patient characteristics relevant for calculating the SOFA score as 
subclasses of cop:Single_Phenotype (Figure 4). Labels, descriptions, related concepts, 
etc. can be specified as annotations. Next, the RSiP classes (e.g., 
Bilirubin_s_ge_2_0_l_6_0, Dopamine_s_g_5_0_le_15_0 or 
Eye_opening_to_verbal_command) for value ranges are defined as subclasses of the 
NSiP classes. For every RSiP class, the anonymous equivalent class is created that 
represents the corresponding restriction (Figure 4: B, C). The single organ scores can be 
modelled using combined phenotype classes. For each score a subclass of 
cop:Combined_Phenotype is defined (e.g., SOFA_Liver_Score, 
SOFA_Cardiovascular_System_Score or GCS_Eye_Opening_Score). The subclasses of 
these non-restricted combined phenotype (NCoP) classes represent the single score 
values (e.g., SOFA_Cardiovascular_System_Score_3). These classes reference the 
corresponding RSiP range classes using a general class axiom and define the score values 
(Figure 4: D1, D2). 

The score for nervous system, the Glasgow Coma Scale (GCS) [20], is calculated as 
a sum of three single scores “Eye opening”, “Verbal response” and “Motor response”. 
We model the GCS as a NDeP class. The formula is defined as annotation using the 
names of NCoP classes (Figure 4: E). Now, the RDeP classes for GCS ranges are defined 
(e.g., GCS_Score_s_ge_10_0_le_12_0). Then, the overall nervous system score is 
modelled as NCoP class SOFA_Nervous_System_Score with RCoP classes (e.g., 



SOFA_Nervous_System_Score_3), which reference the GCS range classes and define 
the score values. 

The final step is to define the SOFA score as NDeP class and to specify the formula 
‘SOFA_Cardiovascular_System_Score + SOFA_Coagulation_Score + 
SOFA_Kidneys_Score + SOFA_Liver_Score + SOFA_Nervous_System_Score + 
SOFA_Respiratory_System_Score’. 

 
Figure 4. Parts of the SOFA PASO in Protégé 

3.3. Phenotype Manager (PhenoMan) 

We developed the software Phenotype Manager (PhenoMan), which implements a 
multistage reasoning approach combining standard reasoners (e.g., Pellet or HermiT) and 
mathematical calculations. This section briefly outlines the main ideas of our solution 
based on the example from section 3.2. 

First, an instance data set received from the FHIR Server as FHIR resources (Figure 
5: A-C) is interpreted by PhenoMan and inserted into the ontology. On the one hand, the 
individual properties (single phenotypes) are inserted as instances of the direct subclasses 
of cop:Single_Phenotype (Bilirubin, Dopamine, Eye_Opening, etc.) and the values are 



modelled as property assertions based on the has_value relation (e.g., “has_value 10” for 
Dopamine). On the other hand, a composite phenotype is defined as instance of the class 
cop:Composite_Phenotype, which combines all the single phenotype instances using 
property assertions based on has_part relation. In the first step (classification step), a 
standard reasoner classifies the single phenotype instances in restricted classes. In our 
example, the instance of Eye_Opening is classified in the class 
Eye_opening_to_verbal_command, the instance of Bilirubin – in the class 
Bilirubin_s_ge_2_0_l_6_0 (i.e., the Bilirubin value is >= 2.0 and < 6.0 mg/dL), the 
instance of Dopamine – in the class Dopamine_s_g_5_0_le_15_0, etc. 

 
Figure 5. FHIR-JSON example (A-C: input resources; D: output resource) 
A: The value of the “Glasgow coma score eye opening” (LONC: 9267-6) observation is “Eye opening to verbal 
command” (LOINC: LA6555-2). 
B: The value of the Bilirubin (LONC: 1975-2) observation is 3.5 mg/dL. 
C: The dose of the medication administration of Dopamine (RxNorm: 1114879) is 10 µg/kg/min. 
D: The SOFA score calculated by PhenoMan is 13. 

Next, the composite phenotype instance is classified in the suitable score value 
classes. For instance the cardiovascular system score has the score value 3, because the 
composite phenotype instance is classified in the class 
SOFA_Cardiovascular_System_Score_3 (Figure 4: D1, D2). In the next step 
(calculation step), the formula of the derived phenotype class GCS_Score can be 
calculated by PhenoMan. It inserts the determined score values for “Eye opening”, 
“Verbal response” and “Motor response” in the formula and calculated the sum. After 
the calculation the classification step must be performed again. The GCS_Score instance 
is classified in the class GCS_Score_s_ge_10_0_le_12_0, so that the score value of the 
nervous system score can be determined. In the final calculation step, the overall SOFA 
score value is calculated based on the six single organ scores. 

In the case of complex phenotypes (e.g., SOFA) the classification and calculation 
steps can be executed several times. That is the case if a NDeP class has subclasses, i.e., 



RDeP classes, which are in turn used in combined phenotypes. Both steps are repeated 
until all formulas are calculated and all phenotypes are classified. Then, all derived and 
calculated phenotypes are returned by PhenoMan as FHIR resources (Figure 5: D). 

The PhenoMan supports 4 primitive datatypes xsd:decimal, xsd:string, xsd:boolean 
and xsd:date. All other complex datatypes (e.g., FHIR code or quantity) are mapped to 
the primitive datatypes (e.g., code to xsd:string with additional attributes and quantity to 
xsd:decimal with additional unit attribute). Furthermore, the PhenoMan provides, inter 
alia, aggregate functions, Boolean, date and measurement unit arithmetic, integration of 
external terminologies as well as reading and writing FHIR resources. Nevertheless, it is 
not our aim to completely model the EHR. Instead, our approach can support the 
modelling and calculation of selected phenotypes in a user-friendly standardized manner. 

3.4. Phenotype Editor 

The Phenotype Editor is an interactive user interface for managing and developing 
PASOs. In Figure 6 you can see how the phenotype 
SOFA_Cardiovascular_System_Score_3 is defined with the Phenotype Editor forms. 
The phenotype is a restricted combined phenotype and thus, requires a Boolean 
expression, which was built by drag-and-dropping the phenotypes from the left site into 
the expression form field. The form data is transferred to the backend service via JSON 
and the service uses the PhenoMan API to insert the phenotype metadata into a PASO.  

 
Figure 6. Screenshot of the Phenotype Editor. We left out some of the metadata fields for better visibility. 

3.5. Implementation 

The PhenoMan is implemented in Java using OWL API [21] and two reasoners, HermiT 
[22] and Openllet [23]. For calculations we utilize the Java Expression Evaluator 
(EvalEx) [24], but the integration of other libraries (e.g., for executing R scripts) or rule 
systems (e.g., SWIRL or Drools) is also possible. The EvalEx enables evaluating 



mathematical and Boolean (inter alia, Boolean operators and IF-THEN-ELSE structures) 
expressions and supports defining custom functions and operators. 

The Phenotype Editor4 is a desktop app, designed with JavaScript and is shipped as 
cross platform Electron [25] app with an integrated lightweight web browser 
(Chromium). We decided to outsource the logic (i.e., creation/update of a phenotype and 
reasoning) into a backend service 5 , which provides information and management 
functionalities of a PASO via REST interface. The backend is a DropWizard [26] 
application, which serves as a mediator to the PhenoMan API. The advantage of splitting 
the phenotype managing application into frontend and backend is, that users are able to 
work on one ontology collaboratively and all created ontologies are centrally stored. The 
ontology service could also be executed on the local machine, so that the user could use 
it to create his own ontologies. Additional features like access control or audit logging 
are currently not available, but we plan to add them in future releases. 

4. Related Work 

We developed a novel approach to support ontological modelling and reasoning of 
phenotypes. In contrast to [7,8], our solution serves to determine and to classify 
phenotypes based on instance data (e.g., EHR). Moreover, the proposed reasoning 
process includes calculation of mathematical formulas at runtime.  

Very similar to our approach, Fernández-Breis et al. [27] propose to take advantage 
of the best features of EHR standards and ontologies. The authors developed methods 
allowing a direct use of EHR data for the identification of patient cohorts leveraging 
current EHR standards and semantic web technologies. In [27], openEHR [28] 
archetypes were used as EHR standard. An ontological infrastructure was designed 
including different ontologies for representing domain entities (colorectal-domain), the 
rules for determining the risk level and the data. The mappings between the phenotyping 
archetype and the colorectal-domain ontology were defined and are automatically 
executed on the archetyped data instances to generate the OWL dataset. The data is then 
transformed into OWL, where the classification is performed. We use HL7 FHIR as a 
standard for exchanging healthcare information in the SMITH infrastructure. But the 
main difference to the approach of Fernández-Breis et al. lies in our three-level 
ontological architecture. The COP is founded by GFO and provides a framework for 
developing PASOs. In this way, each particular phenotype algorithm specified as a 
PASO has the same standardized structure and can be executed by PhenoMan in the same 
manner. A further advantage of our solution is that the PhenoMan supports classification 
as well as calculation tasks and works directly with FHIR format, so that no further 
transformations are required. The mapping between EHR data and ontology is performed 
by PhenoMan automatically using terminology associations, which are defined for each 
data element in ART-DECOR® (and imported into ontology) as well as in FHIR 
resources (e.g., Observation). 

The main objective of SHARPn [29] is to develop methods and modular open-source 
resources for enabling secondary use of EHR data for high-throughput phenotyping. The 

 
4 Source code and releases of the Phenotype Editor are available on GitHub under the GPL-3.0 license: 

https://github.com/ChristophB/phenotype_editor 
5 Source code and releases of the Ontology Service (backend) are available on GitHub under the GPL-

3.0 license: https://github.com/ChristophB/ontology_service 



phenotype algorithms are specified based on Quality Data Model (QDM) [30] and 
represented in the HL7 Health Quality Measures Format (HQMF or eMeasure) [31]. 
According to the authors, there are two main challenges. Firstly, data elements in an EHR 
may not be represented in a format consistent with the QDM. Secondly, an EHR typically 
does not natively have the capability to automatically consume and execute eMeasure 
logic. To address these challenges, a translator tool was developed that converts QDM-
defined phenotyping algorithm criteria into executable Drools rules scripts.  

The Phenotype Execution and Modeling Architecture (PhEMA) [32] is an open-
source infrastructure for standards-based authoring, sharing, and execution of 
phenotyping algorithms. Similarly to SHARPn, PhEMA uses QDM and HQMF to model 
phenotype definitions. Phenotyping algorithms are represented using the PhEMA 
Authoring Tool (PhAT), are exported from the PhAT into executable KNIME [33] 
workflows and are executed against data warehouses or data repositories. 

In contrast to the rule- or workflow-based description of phenotyping algorithms, 
we use an ontology-based one. Our approach is rather generic and enables a standardized 
and structured modelling as well as the reuse of phenotyping algorithms and their parts 
(e.g., concepts and restrictions). Furthermore, the PhenoMan is compatible with the 
native representation of EHR data (HL7 FHIR) in the SMITH infrastructure and does not 
need an additional import of the data into a data warehouse. 

In [34] a FHIR-compatible model was designed to support capture of cancer clinical 
data. Our approach allows the modelling of different phenotypes based on a core 
ontology (COP) and is independent of the EHR representation standards. The 
interpretation of FHIR data and the mapping to specified phenotypes using terminology 
associations are provided by PhenoMan. 

A method to enable automated transformation of clinical data into OWL ontologies 
is presented in [35]. The developed system generates OWL representations of openEHR 
archetypes and automatically transforms openEHR data to OWL individuals. In our 
approach, the phenotypes are directly modelled in the ontology and are automatically 
mapped to the EHR data. Moreover, our solution supports classification as well as 
calculation of phenotypes. 

As described in section 3.1, phenotypes can possess links to concepts of external 
ontologies. For instance, they may be annotated with concepts of anatomic structures 
(e.g., Foundational Model of Anatomy [36]), or situations, respective processes, where 
phenotypes are observed (e.g., electrocardiographic monitoring). The linkage is similar 
to the Entity-Quality method [37] (entity: anatomic structure or process, quality: 
phenotype) and may improve comparison of COP across multiple domains. 

Hoehndorf et al. [8] proposed the PhenomeNET for incorporation of phenotype 
ontologies from different species. PhenomeNET can predict orthologous genes with 
common pathways and common related diseases. Apart from the different interpretation 
of the term ‘phenotype’, the main focus of our attempt is to deduce complex phenotypes 
from a set of basic phenotypes of an individual. 

The Human Phenotype Ontology (HPO) [7] associates phenotypic abnormalities 
with underlying diseases and participating genes, whereas COP can contain all sorts of 
properties of an organism (including non-abnormalities). Currently, COP does not offer 
weights for phenotype-disease relations, like HPO does to sort diseases for a phenotype 
set by relevance. We will investigate ways to add this functionality to COP in future. 



5. Conclusion and Future Work 

We developed a novel ontology-based method to model phenotypes of living beings with 
the aim of automated phenotype reasoning based on instance data (e.g., patient data). 
Our solution includes an enhanced reasoning process, which is iterative and combines 
classification tasks with mathematical calculations at runtime. This new approach can be 
used in clinical context, e.g., for supporting the diagnostic process, evaluating risk factors 
or recruiting appropriate participants for clinical or epidemiological studies. About 20 
phenotype algorithms have already been modelled and the ontology as well as the 
reasoning method were successfully evaluated based on several data sets. Some 
algorithms (such as socio-economic status6, SES [38]) were evaluated in comparison 
with the corresponding SPSS derivatives based on the research database of the LIFE 
study [39]. 

An integration of more complex algorithms into the reasoning process is possible 
and has to be investigated in respect of accessing external libraries (e.g., R scripts). The 
current formalism will be extended in the future to include the further desiderata 
expounded by Mo et al. [6]. PhenoMan and Phenotype Editor will function as phenotype 
engine and factory in SMITH context. 
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