
Ontology Validation as Dialogue

Michael GRÜNINGER a

a Department of Mechanical & Industrial Engineering, University of Toronto, Canada

Abstract. Ontology verification is concerned with the relationship between the in-
tended models of an ontology and the models of the axiomatization of the ontology.
An even more difficult challenge is ontology validation – are the intended mod-
els of the ontology indeed the correct models for the ontology? The identification
and specification of the intended models of an ontology is inherently a dialogue
between the user of the ontology (who implicitly knows the intended models) and
the ontology designer (who is attempting to axiomatize the class of intended mod-
els). In this paper we explore techniques for eliciting intended models from the user
and evaluating these models with respect to user responses. We consider how this
procedure can be applied to several first-order ontologies.

Keywords. ontology design, verification, validation, intended models

1. Introduction

The design of high quality ontologies is an overarching challenge for the applied ontol-
ogy community. Following Ontology Summit 2015, we consider ontologies to be arte-
facts that are designed with respect to a set of requirements, analogous to software engi-
neering. In particular, these requirements may be characterized by the class of structures
which capture the intended semantics of the signature of the ontology. If we carry the
analogy of software engineering further, we see that ontology evaluation also focuses
on verification and validation. Ontology verification is concerned with the relationship
between the intended models of an ontology and the models of the axiomatization of
the ontology. An even more difficult challenge is ontology validation – are the intended
models of the ontology indeed the correct models for the ontology?

In this paper, we take the position that the identification and specification of the in-
tended models of an ontology is inherently a dialogue between the user of the ontology
(who implicitly knows the intended models) and the ontology designer (who is attempt-
ing to axiomatize the class of intended models). After an overview of ontology verifica-
tion and validation, we motivate the need for an interactive approach by considering three
large first-order ontologies. We then propose a procedure for eliciting intended models
from the user and evaluating these models with respect to user responses.

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).



2. Ontology Evaluation

2.1. Ontology Verification

When selecting or developing an axiomatization of an ontology1 for an application do-
main, the knowledge engineer typically has some requirements in mind. These require-
ments for the ontology are specified with respect to the intended semantics of the ter-
minology; from a mathematical perspective the requirements may be characterized by
the class of structures which capture the intended semantics, and such structures can be
referred to as the required structures for the ontology. Previous work in this approach
[1,2] has focused on the case in which the required models and the axioms of the on-
tology have the same signature. In this case, the correctness of the ontology is defined
with respect to the relationship between the required structures for the ontology (which
we will denote by Mreq) and the models of its axiomatization Tont (see Figure 1). If the
ontology is too weak, then there exist models which are spurious (that is, they are not
required structures):

M ∈Mod(Tont) and M 6∈Mreq

If the ontology is too strong, then there exist required models which are omitted:

M ∈Mreq and M 6∈Mod(Tont)

In other words, an axiomatization is correct if and only if it does not include any spurious
models, and it does not omit any required models:

M ∈Mod(Tont) iff M ∈Mreq (C)

Verification is therefore concerned with the relationship between the intended mod-
els of an ontology and the models of the axiomatization of the ontology. In particular,
we want to characterize the models of an ontology up to isomorphism and determine
whether or not these models are equivalent to the intended models of the ontology. This
relationship between the intended models and the models of the axiomatization plays a
key role in the application of ontologies in areas such as semantic integration and deci-
sion support.

We can say that two software systems are semantically integrated if their sets of in-
tended models are equivalent. However, systems cannot exchange the models themselves
– they can only exchange sentences in the formal language that they use to represent
their knowledge. We must be able to guarantee that the inferences made with sentences
exchanged in this way are equivalent to the inferences made with respect to the system’s
intended models – given some input the application uses these intended models to infer
the correct output.

In the area of decision support, the verification of an ontology allows us to make
the claim that any inferences drawn by a reasoning engine using the ontology are ac-

1By an ontology, we mean an axiomatic theory in the language of first-order logic. We, therefore, use the
words ‘ontology’ and ‘theory’ interchangeably. We consider a theory to be a set of first-order sentences closed
under logical entailment, and a subtheory to be a subset of the corresponding theory. For a theory T , Mod(T )
denotes the class of all models of T .



Conceptualization C

Logical language L

Models
MD(L)

Intended models
IK(L)

Ontology models
OK

Unintended models

Omitted models

Figure 1. The possible relationships between the models of an ontology and the required structures (modi-
fied after [2]). Note that Guarino’s notions of intended and unintended models corresponds to our notions of
required and spurious structures.

tually entailed by the ontology’s intended models. If an ontology’s axiomatization has
unintended models, then it is possible to find sentences that are entailed by the intended
models, but which are not provable from the axioms of the ontology.

Unfortunately, it can be quite difficult to characterize the models of an ontology
up to isomorphism. Ideally, since the classes of structures that are isomorphic to an on-
tology’s models often have their own axiomatizations, we should be able to reuse the
characterizations of these other structures.

2.2. Ontology Validation

If ontology verification is concerned with the relationship between the models of the
axioms of the ontology and the intended models for the ontology, ontology validation
addresses the problem of whether the intended models are actually the right ones for the
user. Following the Ontology Application Framework developed during Ontology Sum-
mit 2013, there are three major kinds of applications that motivate the design of ontolo-
gies – search, decision support, and semantic integration. Ontology validation seeks to
evaluate the ontology with respect to its application.

When integrating software applications, we are faced with the additional challenge
that almost no application has an explicitly axiomatized ontology. We can model a soft-
ware application as if it were an inference system with a formal ontology, and use this
ontology to predict the set of sentences that the inference system decides to be entailed
or satisfiable. This approach, known as the Ontological Stance ([3]), is an operational
characterization of the set of intended models for the application’s terminology.

The Ontological Stance also addresses the relationship between the intuitions and
the intended models; this is, of course, informal, but we can consider the domain intu-



itions as providing a physical interpretation of the intended models. In this sense, we can
adopt an experimental or empirical approach to the evaluation of the class of intended
models in which we attempt to falsify these models. If we can find some objects or be-
haviours within the domain that do not correspond to an intended model, then we have
provided a counterexample to the class of model. In response, we can either redefine the
scope of the class of models (i.e. we do not include the behaviour within the characteri-
zation of the models) or we can modify the definition of the class of models so that they
capture the new behaviour.

If a software application already has an ontology, then the Ontological Stance can
be used to evaluate the ontology with respect to the application’s intended models. This
is distinct from ontology verification – even if we have a complete characterization of all
models of the ontology’s axiomatization, the models of the ontology may not be intended
models. Using the Ontological Stance, if the models of the application ontology are not
equivalent to the intended models, then there are two possibilities:

1. there exists a model M of the ontology’s axioms T that is not an intended model;
2. the intended models entail some sentence Φ that is not entailed by the axioms T .

These two possibilities provide the fundamental distinctions that we need to imple-
ment any procedure for ontology validation.

3. Case Studies

The challenges of ontology verification and validation can be illustrated with several
large first-order ontologies.

3.1. MoSt

The field of medicinal chemistry involves the design, synthesis, and development of new
drugs that can be further enhanced with the application of ontologies. The work of [4]
introduces a molecular structure ontology MoSt to aid in the task of drug discovery. MoSt
combines conventional graph theory and ontological approaches to describe the shape of
molecules. This ontology allows us to consider molecules from the shape perspective by
identifying basic functional groups of the ring and chain types, and to use the axioms of
the ontology to combine these functional groups together.

The verification of MoSt proves that models of MoSt correspond to the class of
tripartite incidence structures for cyclic and path subgraphs of a graph. Intuitively, the
graph is isomorphic to the structure axiomatized by ontologies for conventional chem-
ical graph theory, in which atoms are the vertices and bonds are the edges. Primitive
functional groups are either chains (which are path subgraphs of the molecular graph) or
rings (which are cyclic subgraphs of the molecular graph).

Intended models of MoSt correspond to physically realizable molecules, so that the
validation problem is composed of two parts:

1. Every molecule is a model of the ontology.
2. Every model of the ontology is a molecule.



Molecules are Models of MoSt Molecules that currently exist and are chemically feasi-
ble are named in accordance with the IUPAC naming rules from which an unambiguous
structural formula can be created, which in turn can be used to build the underlying chem-
ical graph. The MoSt Ontology axiomatizes the chemical graphs by taking the graphs and
decomposing them into their primitive functional groups, and then re-composing them
again via an attachment theorem. Furthermore, MoSt has the property that two models
of the ontology can be combined together to form another model of the ontology. Con-
sequently, we can say that all IUPAC-named molecules that have underlying chemical
graphs are therefore models of the ontology.

Models of MoSt are (Chemically Feasible) Molecules Conversely, a model of MoSt is
essentially a chemical graph: we can give this graph to a chemist and ask her to deter-
mine whether it is possible to synthesize the molecule. Whether or not a chemical graph
can be physically realized is dependent on the difficulty of the synthesis process, along
with the number of steps required. The motivation for MoSt is that a model can result in
a potential molecule that has not yet been discovered and physically realized. Drug dis-
covery becomes the process of building models by answering queries with the ontology
and constructing models of the ontology using additional constraints and extensions.

To prove that the models of MoSt are indeed molecules therefore requires a dialogue
with users of the ontology. Models of MoSt are generated and then presented to medicinal
chemists. If they reject a model (i.e. it is not a feasible molecule), we would need to
generate new axioms to eliminate the model. In other words, user interaction is needed to
identify and eliminate unintended models. To guarantee that there are no omitted models
(i.e. physically feasible molecules that are not models of MoSt), we can search through
existing molecule knowledge bases (e.g. ChemSpider) to verify that each molecule is a
model of MoSt. We first generate molecular descriptions from IUPAC names and then
construct models of the molecular descriptions; in such a case, no user interaction is
required.

3.2. BoxWorld

The BoxWorld Ontology Tboxworld ([5]) is a modular first-order ontology of shape that
supports intelligent manufacturing and commonsense reasoning about cutting, joining,
and folding sheets of materials such as cardboard and metal. The verification of Tboxworld
demonstrates that models of Tboxworld are equivalent to mathematical structures that are
generalizations of polyhedra and abstract polytopes. The question remains, though, as
to exactly which shapes are models of Tboxworld . In particular, are all intuitive shapes
also models of the axioms? Are there models of the axioms which do not correspond
to intuitive shapes? Tboxworld has no omitted models iff all physically possible shapes
are models of Tboxworld . Tboxworld has no unintended models iff all models of Tboxworld
are physically possible shapes. To some extent, ontology verification can address this
by providing representation theorems that characterize the models up to isomorphism;
however, by itself, this does not give any indication of whether or not the models are
intended.

Who judges the feasibility of a shape? An additional difficulty in this regard is that
the answer might indeed vary across different users. An ontology for shapes composed
of surfaces also has applications in sheet metal fabrication, in which products are man-



ufactured by folding, cutting, and joining pieces of sheet metal. A shape ontology for
sheet metal processes would be able to answer questions such as:

• What objects can we make from a single sheet of metal, either by cutting or fold-
ing?

• What objects can we make from joining multiple surfaces?

On the other hand, an ontology of shape for furniture might well have a different
set of intended models. As a result, there is no single correct answer to the problem
of specifying intended models. Instead, we need a flexible way of allowing different
users to interact with the ontology and specify those models that are intended from their
perspectives.

3.3. CardWorld Vision

The CardWorld Vision Ontology Tcardworld vision provides an axiomatization of images
and depiction for 2D polygonal surfaces in scenes with occlusion and noise (errors in
edge detection). It consists of eight modules that axiomatize intuitions about scenes, im-
ages, depiction, and occlusion for 2D polygonal surfaces. Strictly speaking, we only need
to show that a model exists in order to demonstrate that a theory is satisfiable. However,
for ontology validation, we need a complete characterization of the possible models. For
example, since we are considering the domain of computer vision, to show that a theory
is satisfiable, we need only specify an image and scene which together with the axioms
are satisfied by some structure. The problem with this approach is that we run the risk
of having demonstrated satisfiability only for some restricted class of images, scenes, or
surfaces. For example, a theory of scenes and images may be shown to be consistent by
constructing a satisfying interpretation, but the interpretation may require that there is no
occlusion in the scene; although such a model may be adequate for such scenes, it would
in no way be general enough for our purposes. Tcardworld vision is supposed to support a
comprehensive theory of 2D image interpretation, so we need to explicitly characterize
the classes of images, scenes, surfaces, and other assumptions which are guaranteed to
be satisfied by the specified structures. For example, within CardWorld, we are only con-
sidering 2D surfaces which are opaque, which are not self-occluding, which cannot inter-
penetrate each other. In addition, we are not considering scene features such as colour,
surfaces markings, or texture. Since these properties are not considered within the scope
of the ontology, they are not formalized within any structures. Of course, if someone
wished to represent these properties, then they would need to extend the class of intended
structures appropriately.

Tcardworld vision has no omitted models iff all interpretations of the image are mod-
els of Tcardworld vision. In other words, an omitted model exists if there exists a possible
interpretation of the image that is not a model. On the other hand, Tcardworld vision has
no unintended models iff all models of Tcardworld vision are possible interpretation. Unin-
tended models are not a problem for Tcardworld vision, but omitted models are – how do we
have a sense of all possible interpretations of an image, particularly in cases where there
is heavy noise? One approach is to use annotation by users – given an image, the user
specifies which scene objects are depicted by which image objects, which image objects
are noise, and which objects are undepicted (either by occlusion or because of noise).
However, this typically identifies only one possible interpretation of the image. People



abandon such a preferred interpretation only when presented with refuting evidence (in
which case the interpretation is not actually a model).

The relationship between the intuitions and the structures is, of course, informal,
but we can consider the domain intuitions as providing a physical interpretation of the
structures. In this sense, we can adopt an experimental or empirical approach to the eval-
uation of the class of intended structures in which we attempt to falsify these structures.
If we can find some objects or behaviour within the domain which do not correspond to
an intended structure, then we have provided a counterexample to the class of structures.
In response, we can either redefine the scope of the class of structures (i.e. we do not
include the behaviour within the characterization of the structures) or we can modify the
definition of the class of structures so that they capture the new behaviour.

3.4. Upper Ontologies

Upper ontologies characterize the semantics of general concepts that underlay every
knowledge representation enterprise. Since upper ontologies are expected to be broadly
reused, verifying that they do not have unintended models and that they are not missing
any intended models are of paramount interest for the knowledge representation commu-
nity. Work has been initiated on the verification of upper ontologies. For example, in [6]
and [7], a number of novel classes of mathematical structures were axiomatized in order
to adequately represent the models of DOLCE.

A much more difficult challenge is the validation of upper ontologies. How do we
discover the models that the designers of upper ontologies intended? For example, the
work of [8], a model of SUMO-Time was discovered in which there was not a linear
ordering over the set of timepoints. This is unusual insofar as most other time ontologies
enforce linearity, but absent any interaction with the ontology designer it is not clear
whether this should in fact be allowed as an intended model.

4. Finding the Right Models

In each of the ontologies discussed in the preceding section, we noted the role that the on-
tology user plays in identifying which models are unintended and which intended models
are omitted. We now consider procedures that can be used to support the validation of an
ontology as a dialogue between the ontology curator and the ontology user/designer.

At the heart of any such procedure is the identification of unintended and omitted
models, followed by decisions about how to modify the ontology in light of the existence
of any such models. For example, with an early version of Tboxworld , a proof could not be
found for the competency question stating that an edge cannot meet another edge at two
distinct points:

(∀e1,e2,e3, p1, p2)meet(e1,e2, p1)∧meet(e1,e3, p2)

∧¬(p1 = p2)⊃ ¬(e2 = e3)

In this case, no proof existed because there existed a model of the axioms that did not
satisfy this sentence, that is, there existed a surface with a hole consisting of only two



edges. But is this model indeed unintended? If so, we need to extend the axioms. If not,
then we need to relax the specification of the class of intended models.

On the other hand, intended models of an ontology are omitted if the axioms of the
ontology are not satisfied by the intended models, that is, the ontology is too strong. In
this case, a proof can be found for a sentence that contradicts the intended semantics of
the ontology. Given this possibility, a thorough inspection of all proofs found must be
performed; if this case is detected, it is indicative of at least one of two possible errors
with the ontology. First, an examination of the proof may lead to the identification of
some axiom in the ontology which is not entailed by the intended models, and the prob-
lem can be resolved by removing the axiom. A second possible error arises when exam-
ination of the proof leads to the detection of some error in the definition of the require-
ments, that is, in the specification of the intended models. It is important to devote con-
siderable attention to the detection of this possibility so that the ontology is not revised
to satisfy incorrect requirements.

For example, the following sentence was entailed from an early version of Tboxworld :
Every edge meets at most two distinct edges. Upon inspection, however, it was discov-
ered this was actually a proof of:

Tboxworld |= (¬∃p)point(p)

Examination of the proof showed that the axiom:

(∀e, p1, p2, p3)edge(e)∧ point(p1)∧ point(p2)∧ point(p3)∧ part(p1,e)

∧part(p2,e)∧ part(p3,e)⊃ (p1 = p3)∨ (p2 = p3)

was incorrect, and needed to be weakened. We will refer to this as the existence of an
unintended proof, since it is not a sentence that should be provable from the ontology.

It is interesting to see the relationship between this case and the failure of verifi-
cation for the ontology. Part of the methodology for verification shows that a sentence
that is entailed by axioms is also entailed by the set of intended models. Hidden conse-
quences such as the above are counterexamples to this part of the verification, since it is
a sentence that is provable from the axioms, yet it is not entailed by the intended models.
One can either weaken the axioms (so that the sentence is no longer provable), or one
can strengthen the requirements by restricting the class of intended models (so that the
sentence is entailed by all intended models).

4.1. Hashemi Procedure

[9] proposed an interactive procedure for using an ontology repository to find the axiom-
atization of an ontology. The Hashemi Procedure finds the best match between a theory
in a given ontology repository and the set of intended and unintended models as iden-
tified by an ontology designer. Since the class of intended models Mintended is not al-
ways explicitly specified, the system elicits a subset N from the user. It is not enough to
jump from N to a theoryT . Further interaction is required, in which the system provides
models of existing ontologies and the user identifies them as either intended or not.

The Hashemi Procedure presumes that there is an existing set of axiomatized theo-
ries with the same signature (known as a hierarchy in [10]):



Definition 1. A hierarchy H= 〈H ,≤〉 is a partially ordered, finite set of theories H =
T1, ...,Tn such that

1. Σ(Ti) = Σ(Tj), for all i, j;
2. T1 ≤ T2 iff T2 is an extension of T1;
3. T1 < T2 iff T2 is a non-conservative extension of T1.

The Procedure consists of two parts – elicitation of user models and the proposal
of models for existing ontologies. The first component locates the user somewhere in
the hierarchy, providing “bounds” for theories which characterize the user’s intended
models. In the second part, models of existing ontologies, coupled with user responses,
tighten this bound, resulting in selecting the strongest (if any) theories from the hierarchy
which capture the user’s intuition.

4.2. The Dialogue of Validation

The Hashemi Procedure was actually motivated by the problem of ontology design rather
than ontology verification and validation. It was assumed that the user knows the class of
intended models but does not know how to axiomatize them. In the current paper, we are
considering a different problem – we have the axioms of the ontology, but we are unsure
whether or not the models of the axioms are equivalent to the intended models, and we
require interaction with the user to validate the ontology.

We start with a verified ontology T and crawl through the hierarchy by generating
unintended proofs and unintended models. The first InsertT heory Procedure adds T to
the hierarchy; this is a modification of the FindT heory Procedure introduced by [10].
Beginning with the root theory in a core hierarchy C, the procedure searches2 through
C to find the maximal theories that are interpretable by T . If there are multiple maxi-
mal theories, the procedure returns the union of their sets of axioms. The result com-
pletely specifies which theories in the hierarchy are weaker than T and which theories
are stronger than T .

Within the EliminateUnintende Procedure, the user distinguishes intended and un-
intended models of T that are generated from the ontology 3 Once an unintended model
has been identified, we find the weakest extension of T that eliminate these models. Since
extending T might lead to a theory that is too strong and omits models, the WeakenProo f
Procedure allows the user to select which axioms to eliminate from potential unintended
proofs generated from the ontology.

This dialogue with the user, through alternating requests for unintended models and
unintended proofs, leads to a theory whose models is the closest approximation to the
class of intended models.

Definition 2. A near-miss for a class of intended structures Mintended in a hierarchy H
is a theory T miss that has no omitted models with respect to Mintended , and all extensions
of T miss in H have either unintended models or omitted models.

2We assume the existence of three other algorithms related to partial orderings. The first is ChainDecomp(P)
which outputs the set of chains for a poset P, and the second is PosetSort(X ,P), which constructs a poset P
from an unordered set X . The third algorithm is NextT heory(T,P) which returns the elements in the poset P
that covers the element T .

3In the procedures introduced in this section, we restrict our attention to theories that have finite models, a
property that holds for all of the case study ontologies considered in Section 3.



Procedure 1 InsertT heory(H,T,H′)
Require: Hierarchy H= 〈T ,v〉, theory T 6∈T .
Ensure: Hierarchy H′ = 〈T ∪{T},v〉.

Chainsi←ChainDecomp(Ci)
Collecti← /0
for all Gi j ∈Chainsi do

Candidatei j← /0
5: Tcurrent ← minimal theory in Gi j

Tmax← maximal theory in Gi j
while Tcurrent 6= Tmax do

if T ∪∆i |= Tcurrent and T ∪∆i is a conservative extension of Tcurrent then
Candidatei j← Tcurrent

10: Tcurrent ← NextT heory(Gi j,Tcurrent)
else

Tcurrent ← Tmax
end if

end while
15: end for

Collecti←
⋃

j{Candidatei j}
PosetSort(Collecti,P)
Ti← set of axioms in the union of maximal theories in P
T ←T ∪{Ti}

Procedure 2 EliminateUnintended(T,H,T ′)
Require: Theory T , Hierarchy H= 〈T ,v〉.
Ensure: Theory T ′ with no unintended models.

Generate M⊆Mod(T )
User selects subset N⊆M of unintended models.
T ′← weakest extension of T in H such that N∩Mod(T ′) = /0

Procedure 3 WeakenProo f (T,H,T ′)
Require: Theory T , Hierarchy H= 〈T ,v〉.
Ensure: Theory T ′ with no omitted models.

Θ(T )←{θ : θ ∈ S < T such that θ is not an axiom in T}
for all θ ∈Θ(T ) do

Generate proof of θ

User selects subset Σ⊂ T of sentences that should be eliminated
5: EliminateUnintended(T \Σ,T ′)

if T ′ < T then
WeakenProo f (T ′,H,T ∗)

end if
end for



Procedure 4 Validate(T,H,T ∗)
Require: Theory T , Hierarchy H= 〈T ,v〉.
Ensure: Near-miss theory T ′.

InsertT heory(H,T,H′)
EliminateUnintended(T,H,T ′)
WeakenProo f (T,H′,T ∗)

It is easy to see from this definition that a near miss with no unintended models has
the property that Mod(T miss) is equivalent to Mintended .

Theorem 1. Given a theory T and hierarchy H, if the Validate(T,T ∗) Procedure termi-
nates, then T ∗ is a near-miss theory for the class of intended structures provided by the
user.

5. Summary

We have presented a procedure which incorporates interactions with an ontology user to
arrive at an ontology whose models are the closest approximation to the class of intended
models. The resulting ontology can be considered to be validated with respect to the
user’s selections of unintended and omitted models.

One limitation with the Procedure is that we can only guarantee a near-miss theory
as the output, since it can only add or remove axioms that already appear within some
other theory in the same hierarchy. In general, we must be able to weaken an axiom rather
than remove axioms (as illustrated by the example in Section 4).

A major challenge in the implementation of the validation procedures is the gen-
eration of models for the user to select. In the case of the BoxWorld Ontology, Mace4
was able to construct models of the CardWorld and BoxWorld axioms that correspond
to the common shapes. Unfortunately, Mace4 has been inadequate for exploring the set
of all models of the CardWorld and BoxWorld Ontologies, in the search for potentially
unintended models. Even if we restrict our attention to small domains (e.g. a box with
five surfaces, twelve edges, and eight vertices), Mace4 is unable to find models. We will
be pursuing the use of other model constructors such as Paradox to see whether they are
able to construct models on different domains.



References

[1] Megan Katsumi and Michael Gruninger. Theorem Proving in the Ontology Lifecycle. In Knowledge
Engineering and Ontology Design (KEOD 2010), pages 74–86, 2010.

[2] Nicola Guarino, Daniel Oberle, and Steffen Staab. What is an Ontology?, pages 1–17. Springer-Verlag,
Berlin, 2 edition, 2009.

[3] Michael Grüninger. The ontological stance for a manufacturing scenario. Journal of Cases in Informa-
tion Systems, 11:1–25, 2009.

[4] C. Chui and M. Gruninger. A molecular structure ontology for medicinal chemistry. In Proc. of the 10th
Int. Conference on Formal Ontologies in Information Systems (FOIS2016), pages 317–330. IOS Press,
2016.

[5] M. Gruninger and S. Bouafoud. Thinking outside (and inside) the box. In Proceedings of SHAPES 1.0:
The Shape of Things. Workshop at CONTEXT-11, volume 812. CEUR-WS, 2011.

[6] Carmen Chui and Michael Grüninger. Mathematical Foundations for Participation Ontologies. In For-
mal Ontology in Information Systems - Proceedings of the Eighth International Conference, FOIS 2014,
September, 22-25, 2014, Rio de Janeiro, Brazil, pages 105–118, 2014.

[7] C. Chui and M. Grüninger. Verification and modularization of the dolce upper ontology. In FOUST:
The Foundational Stance, Joint Ontology Workshop 2017, Bolzano, Italy, 2017.

[8] Lydia Silva Muñoz and Michael Grüninger. Mapping and verification of the time ontology in SUMO. In
Formal Ontology in Information Systems - Proceedings of the 9th International Conference, FOIS 2016,
Annecy, France, July 6-9, 2016, pages 109–122, 2016.

[9] Ali B. Hashemi and Michael Grüninger. Ontology design through modular repositories. In KEOD,
2009.

[10] Michael Grüninger, Torsten Hahmann, Ali Hashemi, Darren Ong, and Atalay Özgövde. Modular first-
order ontologies via repositories. Applied Ontology, 7(2):169–209, 2012.


