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Abstract. Ontologies  are  formal  specifications  that  enable  inferential
processes  over  shared  knowledge.  In  distributed  contexts,  applications
frequently need to access information from multiple ontologies. For this end,
concepts of two different ontologies must be matched through an alignment. If
the  alignment  is  not  semantically  sound,  however,  the  integration  of  the
ontologies  may  lead  to  unintended  consequences.  One  type  of  possible
consequences  is  the  introduction  of  new  subsumption  relations  between
concepts from one of the input ontologies,  which violate the conservativity
principle.  We  propose  a  method  based  on  the  mathematical  formalism  of
Category Theory for detecting such violations.

1. Introduction

The  Semantic  Web  is  an  extension  of  the  traditional  World  Wide  Web  where
information is given well-defined meaning [Berners-Lee et al. 2001]. Such meaning is
specified  in  ontologies,  i.e.,  formal  and  explicit  specifications  of  a  shared
conceptualization [Studer et al. 1998]. However, different people and groups may build
distinct  ontologies dealing with the same subject or domain.  Applications frequently
have to access multiple related ontologies in order to integrate all required information.
In order to allow this, modelers must create alignments between the ontologies, either
manually  or  automatically.  Such  alignments  frequently  match  concepts  imperfectly,
causing inconsistencies.

The conservativity principle states that the merge of two ontologies through an
alignment should not introduce new subsumption relations between concepts from the
same source ontology. We say that a concept c subsumes a concept d if every instance
of  d is also an instance of  c. If an alignment violates the conservativity principle, the
merged  ontology  does  not  preserve  the  original  meaning  specified  by  the  source
ontology. For example, if an alignment matches concepts  person,  client and  company
from two ontologies  A and B, where ontology A specifies that  person subsumes client
(that is, every client is a person) and ontology  B states that  client subsumes  company
(i.e., every company is a client), a query for person in the merged ontology will return
every instance of  company  in the knowledge base, which is clearly not the expected
result. We distinguish two types of conservativity principle violations:
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1. Violation of subsumption conservativity.  An alignment violates subsumption
conservativity if it introduces new subsumption relations between concepts from
the same input ontology.

2. Violation  of  equivalence  conservativity.  An alignment  violates  equivalence
conservativity if it introduces new equivalence relations between concepts from
the same input ontology. This may happen due to the introduction of a circular
chain  of  subsumption  relations  or  due  to  two concepts  in  one of  the source
ontologies being mapped to a single concept in the other ontology.

Category theory is a branch of mathematics that studies the structure present in
systems of composable relations.  These relations,  called morphisms, are abstractions
from several distinct mappings between mathematical objects, including functions, set-
theoretic relations, graph homomorphisms, linear mappings between vector spaces, and
others. Category theory and its morphisms provide a sound formal basis for the study of
ontologies and their alignments. We use the formalisms of category theory to reduce the
problem  of  detecting  conservativity  principle  violations  to  the  computation  of  two
pullbacks1 followed by a verification of the existence of a particular morphism between
them.

The remainder of this paper is organized as follows. Section 2 introduces the
fundamentals  of category theory and describes  the concepts  that  are relevant  to  this
work.  Section  3  presents  works  from  the  literature  that  deal  with  categories  of
ontologies  and  their  constructions,  and  discuss  other  approaches  to  the  problem of
detecting conservativity violations. We present a category of ontologies in Section 3 and
describe our method in Section 5. Section 6 contains a brief discussion of the merits of
our approach and aspects for future improvement.

2. Category Theory Fundamentals

[Adámek et al., 1990] defines a category as a quadruple C = (O, hom, id, ◦), consisting

of:

 a class O whose members are C-objects,

 for  each  pair  (A,B) of  C-objects,  a  set  hom(A,B),  whose  members  are  C-
morphisms from A to B,

 for each C-object A, a morphism idA:A→A, called the C-identity on A, and

 a composition law ◦ associating each pair of C-morphisms f:A→B and g:B→C to
a C-morphism g ◦ f:A→C, called the composite of f and g.

Subject to the conditions that (1) composition is associative, that is, for any three
morphisms f:A→B,  g:B→C and h:C→D,  h ◦ (g ◦ f) = (h ◦ g) ◦ f,  (2) C-identities are
neutral with respect to composition, i.e., for any morphism f:A→B, idB ◦ f = f = f ◦ idA,
and (3) the sets hom(A,B) are pairwise disjoint.

A diagram in a category A is a selection of some of its objects and morphisms. A
source for a diagram is a pair (x,fi), consisting of an object x and a family of morphisms
fi:x→di with  domain  x and  codomain  indexed  by  the  diagram,  that  is,  a  group  of
morphisms from  x to each object in the diagram. If for any morphism  g:di→dj in the
diagram the triangle formed by g, fi and fj commutes, i.e.,  g ◦ fi = fj, then the source (x,fi)

1 We describe pullbacks, morphisms and other category-theoretic concepts in Section 2.



is called a cone. If  (x,fi)  is a terminal cone, that is, for every other cone  (x’,fi’) there
exists a unique morphism h:x’→x such that the resulting diagram commutes, (x,fi) is a
limit. We show a cone and a limit for a diagram with the morphism g:d1→d2 in Figure
1a.
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Figure 1a. A limit x and a cone x’.

If we reverse the direction of the morphisms in the previous definitions,  that is,
if  we  exchange  each  morphism’s  domain  for  its  codomain,  we  arrive  at  the  dual
categorical constructions. Thus, the dual to a source is a sink, a pair (x,fi) consisting of
an object x and a family of morphisms fi:di→x with codomain x and domain indexed by
the diagram, that is, a group of morphisms from each object in the diagram to  x.  A
commutative sink is a cocone, which is dual to a cone. An initial cocone is a colimit,
i.e.,  the  dual  to  a  limit.  We show a  cocone  and  a  colimit  for  a  diagram with  the
morphism g:d1→d2 in Figure 1b.
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Figure 1b. A colimit x and a cocone x’.

In this work we are particularly interested in a specific type of limit and its dual
colimit, which are respectively pullbacks and pushouts. Pullbacks are limits of diagrams
containing two morphisms  f:A→C and  g:B→C with a shared codomain. Pushouts are
colimits  of diagrams containing two morphisms  f:A→B and  g:A→C  that share their
domain. Figure 2 depicts both constructions.
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Figure 2. A pullback x with a cone x’ (left) and a pushout x with a cocone x’ (right).



3. Related Work

Traditionally, authors define categories of ontologies with total mappings as morphisms.
Since alignments are rarely complete, dealing instead with only a subset of the ontology
concepts and relations, they need to be formalized as more complex structures. [Bench-
Capon  and  Malcom  1999]  defines  relations  between  two  ontologies  O1 and  O2 as
structures composed of a third ontology O and morphisms xi : O→Oi  for i = 1, 2. Thus,
entities in O1 and O2 are “matched” by being mapped from the same entity in O by x1

and x2. Later, [Zimmerman et al. 2006] named such structures V-alignments due to their
shape, and defined the operation of ontology merging as a pushout over the alignment,
as well as three operations over alignments using limits and colimits, namely alignment
composition, union and intersection. In addition to the category-theoretic constructions
described in previous works, [Cafezeiro and Haeusler 2007] and [Cafezeiro et al. 2008]
demonstrated that the pullback over two ontology mappings is the intersection of two
ontologies  in  the  context  of  a  third,  broader  one.  We  shall  build  upon  these
constructions in the following sections.

To the best  of our knowledge, no other work has dealt  with the problem of
detecting  conservativity  violations  in  a  category-theoretic  context.  However,  several
approaches based on different formalisms can be found in the literature. The approach
proposed  by  [Jiménez-Ruiz  et  al.  2009]  checks  only  for  violations  of  equivalence
conservativity  (type 2 described above) by verifying if the alignment maps directly two
different concepts from one source ontology to a single concept in the other, ignoring
the  cases  when  such  violations  arise  indirectly  from  the  inclusion  of  circular
subsumption relations.

The method  applied  by  [Ivanova and Lambrix  2013]  and [Lambrix  and Liu
2013]  computes  the  integrated  ontology  over  a  network  of  alignments  and  use  a
reasoner to infer new subsumption relations. Nevertheless, they treat the introduction of
new subsumption relations as evidence of incompleteness in the source ontologies, and
not of an incorrect alignment.

[Solimando  et  al.  2014]  reduce  the  problem  of  detecting  conservativity
violations  to  one of  concept  satisfiability.  In  order to  do so,  the authors follow the
assumption of disjointness, which states that all concepts that do not share subsumees
are disjoint. For many ontologies, however, this is not a reasonable assumption, since
expliciting  common  subsumees  for  every  pair  of  concepts  frequently  leads  to  a
combinatorial explosion of concepts. The same authors later introduced a technique for
the detection of equivalence conservativity violations by searching for loops in graphs
where each node represent a concept and each arc a subsumption relation, using the two
approaches together in a multi-strategy method for detecting conservativity violations of
both types [Solimando et al. 2017].

4. A Category of Ontologies

We begin by defining our category Ont of ontologies. Objects in Ont are ontologies in
the form of tuples  (C, R, S, A), where  C is a set of concepts,  R is a set of relations
between concepts,  S  C×C⊆ C×C  is a transitive, reflexive and antisymmetric subsumption
relation given by S(c, d), i.e., c subsumes d ↔  x, instanceOf (x, d) → instanceOf (x,∀ x, instanceOf (x, d) → instanceOf (x,
c), and A is a set of axioms governing such concepts and relations. With this definition
we intend to abstract from representational aspects and therefore we assume that every
concept and relation is explicit in the ontology tuple. If the actual representation of the



ontology (in some ontology representation language) contains implicit knowledge that
needs to be inferred, the required reasoning tasks must be performed as a preparatory
step. Morphisms in Ont are total ontology mappings f:A→B between ontologies A and
B  with  components  fC:CA→CB and  fR:RA→RB which  map  respectively  concepts  and
relations2, such that the mappings preserve relations, that is:

(1)  c, d  C∀ x, instanceOf (x, d) → instanceOf (x, ∈ C A, SA(c, d) → SB (fC(c), fC(d)), and

(2)  r  R∀ x, instanceOf (x, d) → instanceOf (x, ∈ C A,  c, d  C∀ x, instanceOf (x, d) → instanceOf (x, ∈ C A, r(c, d) →  r’  R∃ r’ ∈ R ∈ C B, fR (r) = r’ ∧ r’(fC (c), fC (d)).

Composition in  Ont is  usual function composition on each component of the
morphisms. Since function composition is associative and always exists  for any two
functions  f  and  g with  Codomain(f) = Domain(g), in order to prove that the category
laws  for  composition  hold  in  Ont,  we  must  prove  that  the  composition  of  two
morphisms is always a morphism and that identities exist and are neutral with respect to
composition. This means that given two morphisms f:A→B and g:B→C, which follow
rules (1) and (2), g ◦ f must also follow such rules. Since f preserves relations, for any
relation r in RA that holds between concepts c and d in CA, fR(r) must hold between fC(c)
and fC(d). Since g is a total mapping on both concepts and relations, it maps fR(r) to a
relation  in  RC and both  fC(c) and  fC(d) to concepts in  CC.  Additionally,  since  g also
preserves relations,  we have that  gR(fR(r)) must  hold between  gC(fC(c)) and  gC(fC(d)).
Similarly, since both f and g preserve subsumption, for any pair of concepts c and d in
CA, if c subsumes d, then fC(c) subsumes fC(d) and gC(fC(c)) subsumes gC(fC(d)). Identities
simply map each concept and relation to itself, i.e., iC(c) = c and iR(r) = r. As required
for  identities,  such mappings  are  neutral  on  composition,  since  for  any  f, g  and x,
i(f(x)) = f(x) and g(i(x)) = g(x).

5. Our Approach

Given ontologies A and B and a V-alignment (V, fi:V→i) for i = A, B, we wish to verify
if the alignment leads to a violation of the conservativity principle. Since every concept
and relation in V must be mapped by each fi to a concept or relation in the corresponding
ontology, the new subsumption relations introduced by the alignment cannot possibly be
in V. Instead, they must hold in the other aligned ontology, between concepts which are
mapped by fj, where j ≠ i. Thus, in order to answer our original question, we must find
the sub-ontologies  A’ and  B’, where  A’ contains only the concepts and relations in  V
plus every subsumption relation between the mapped concepts in A and B’ contains only
the concepts and relations in  V plus every subsumption relation between the mapped
concepts in B, and check if A’ and B’ share all their subsumption relations, i.e., there is
no subsumption relation in A’ that is not in B’ and vice versa.

Therefore,  first  we must  find  A’ and  B’.  We achieve  this  by  computing  the
pullbacks (i’, gi :i’→i, hi :i’→V*) of the diagrams containing the morphisms ji :i→i* and
k:V*→i*, where V* is an ontology with the same concepts and relations from V but with
additional subsumption relations such that each concept subsumes every other, and i* is
the merge of V* and i computed through a pushout using V as alignment, along with fi

and the trivial inclusion v:V→V*. That is, i* is the ontology i extended with additional
subsumption relations so that each concept in the image of fi subsumes every other. We
propose that the ontology i’ in the pullback just described is the smallest sub-ontology
from i with every concept in V and every subsumption relation that holds between them
in i.

2 Axioms are not yet in the scope of this definition



Proof. Suppose there exists a concept c in i to which a concept in V is mapped
by  fi  and there is no concept in  i’ that is mapped by  gi to  c. Then, we may build an
ontology i’’ that contains every concept and relation in i’ plus c, along with morphisms
q:i’’→i and r:i’’→V* which map every concept and relation to itself. Thus, (i’’, q, r) is
a cone for the diagram with morphisms ji and ki and there is no morphism p:i’’→i’ such
that gi ◦ p = q and hi ◦ p = r, since c is in the image of q but not of gi. Therefore, i’ is not
the pullback, contradicting our initial assumption. Similarly, if we suppose that there
exists a subsumption relation s in i that is not in i’, we may construct a different i’’ with
every concept and relation in i’ plus s, mapping concepts and non-subsumption relations
exactly as for i’. Thus, we again have a cone for the diagram, and again no morphism
p:i’’→i’ can be found, since such mapping would break the requirement that morphisms
should preserve subsumption relations. Therefore,  i’  again is not the pullback. On the
other hand, if there exists a concept c in i’ that is not in V, then it either is mapped to a
concept in  i that  is  also not in  V,  and thus there exists  no  hi such that  the diagram
commutes, or it is mapped to a concept in i to which another concept d is also mapped,
and then there would exist  an ontology  i’’ where  c and  d are collapsed in  a single
concept  e,  along  with  morphisms  q:i’’→i and  r:i’’→V* such  that
gi (c) = gi (d) = q(e) and hi (c) = hi (d) = r(e). However, there are two morphisms p1 and
p2:i’’→i, with  p1  (e)  =  c and  p2  (e)  =  d,  such  that  the  diagram commutes,  that  is,
gi ◦ p1 = q = gi ◦ p2 and hi ◦ p1 = r = hi ◦ p1, contradicting the uniqueness restriction from
the definition of limit.
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Figure 3. Our approach step by step.

Since (i’, gi, hi) is the pullback and (V, fi, v) is a cone for the diagram, depicted
respectively in (2) and (1) in Figure 3, then there exists a single morphism fi’ :V→i’ such
that gi ◦ fi’ = fi and hi ◦ fi’ = v. Considering that A’ and B’ have exactly every concept and
relation  in  V plus  any  subsumption  relation  between  those  concepts  in  A  or  B
respectively,  if there is  a morphism  mA  :A’→B’ such that  mA ◦ kA = k B,  then every



subsumption relation between concepts in V that holds in A also holds in B. Otherwise,
i.e.,  if  there  is  no  such  morphism,  the  alignment  introduces  at  least  one  new
subsumption  relation  between concepts  from  B and  thus  violates  the  conservativity
principle.  Symmetrically,  if  there is  no  mB  :B’→A’ such that  mB ◦  k B = k A,  a new
subsumption relation is introduced between concepts from A.

Figure 3 depicts our approach step by step. Step (1) is the construction of  i*
trough a pushout. Step (2) is the computation of  i’ as a pullback. Then, (3) shows the
complete diagram after both sides of the alignment  have been analyzed. (4) and (5)
show the commutative triangles formed with mA and mB respectively. We note that this
approach is  also enough to detect equivalence conservativity violations,  since if two
concepts  c and c’ in  A are mapped to a single concept  d in  B, then it is impossible to
build a mapping mB:B’→A’ such that mB(d) = c ∧ mB(d) = c’ unless c = c’.

From the  category-theoretic  constructions  previously  described,  we build  the
Algorithm 1 to find the sub-ontologies A’ and B’. Taking advantage of the knowledge
that  i* is  the  pushout  over  fi and  v,  and  that  therefore  the  only  concepts  and non-
subsumption  relations  in  i’ are  those  in  the  image of  fi,  the  algorithm constructs  i’
directly from the mapping and then includes the subsumption relations found in i.

Algorithm 1. findSubOntology algorithm for finding minimum sub-ontology
Input: V, i: ontologies; fi:V→i: mapping.
Output: i’: minimum sub-ontology containing all subsumption relations in i between concepts in V.

fi’:V→i’: ontology mapping.
1: Ci’ ← ∅ // initialize the set of concepts of the sub-ontology as an empty set
2: Si’ ← ∅ // initialize the subsumption relation in the sub-ontology as an empty relation
3: fCi’ ← ∅
4: for each c1 ∈ C CV do // for every concept in V
5: if fCi(c1)  ∉ Ci’ do // if it is not yet in i’
6: Ci’ ← Ci’  {∪ { fCi (c1)} // add it to i’
7: for each fCi (c2) ∈ C Ci’ do // then, for every concept already in i’
8: if (fCi (c1), fCi (c2))  ∈ C Si do // check if they should subsume
9: Si’ ← Si’  {(∪ { fCi (c1), fCi (c2))} // each other and add the relation
10: end if
11: if (fCi (c2), fCi (c1))  ∈ C Si do
12: Si’ ← Si’  {(∪ { fCi (c2), fCi (c1))}
13: end if
14: end for
15: end if
16: fCi’ ← fCi’  {(∪ { c1, fCi (c1))} //update fi’ with the new concept mapping
17: end for
18: Ri’ ← ∅
19: fRi’ ← ∅
20: for each r ∈ C RV do // for every relation in V
21: if fRi(r)  ∉ Ri’ do // if it is not yet in i’
22: Ri’ ← Ri’  {∪ { fRi (r)} // add it
23: end if
24: fRi’ ← fRi’  {(∪ { r, fRi (r))} //update fi’ with the new relation mapping
25: end for
26: i’ ← (Ci’, Ri’, Si’, )∅
27: fi’ ← (fCi’, fRi’)
28: return (i’, f i’)



Algorithm 2 takes two ontologies and a V-alignment as input and checks if the
alignment  is  conservative.  We use  the  Algorithm  1  to  find  the  corresponding  sub-
ontologies  and then build  mappings between them by matching each entity  in  each
ontology  to  the  concept  or  relation  in  the  other  to  which  it  is  aligned.  Then,  the
algorithm checks if the mappings are functional (i.e., no entity may be mapped to more
than one entity in the target ontology) and if they preserve the subsumption relations, as
required  for  morphisms  in  our  category  Ont of  ontologies.  If  they  do,  we  have  a
morphism between the sub-ontologies  and, as previously discussed, the V-alignment
does  not  violate  the  principle  of  conservativity.  We note  that  the  operator  here⊕ here
denotes exclusive logical disjunction, i.e.,  p ⊕ here q is true if and only if  p is true or q is
true, but not both.

Algorithm 2. isConservative algorithm for detecting conservativity violations
Input: A, B: ontologies; (V, fA:V→A, fB:V→B): V-alignment.
Output: true if the alignment is conservative, false otherwise.
1: (A’, fA’) ← findSubOntology(V, A, fA) // find sub-ontology A’
2: (B’, fB’) ← findSubOntology(V, B, fB) // find sub-ontology B’
2: mA ← ∅
3: mB ← ∅
4: flag ← true
5: for each e ∈ C CV  ∪ { RV do // for each entity in the alignment
6: if fA’ (e) ∈ C Dom (mA) do // if its match in A’ is already mapped to something by mA

7: if mA (fA’ (e)) ≠ fB’ (e) do // and it does not match the mapping by fB’

8: flag ← false // then the alignment is not conservative
9: end if
10: else do: // if it is not mapped to anything by mA

11: mA ← mA  {(∪ { fA’ (e), fB’ (e))} // map it to the same entity to which e is mapped
12: end if // by fB’

13: if fB’ (e) ∈ C Dom (mB) do // if its match in B’ is already mapped to something by mB

14: if mB (fB’ (e)) ≠ fA’ (e) do // and it does not match the mapping by fA’

15: flag ← false // then the alignment is not conservative
16: end if
17: else do: // if it is not mapped to anything by mB

18: mB ← mB  {(∪ { fB’ (e), fA’ (e))} // map it to the same entity to which e is mapped
19: end if // by fA’

20: if e ∈ C CV do // if the entity is a concept
21: for each c ∈ C Dom (mA) do // for each concept already mapped
22: if (fA’ (e), c) ∈ C SA’  (⊕ here fB’ (e), mA (c)) ∈ C SB’ do
23: flag ← false // if subsumption is different in A’ and B’
24: end if // then the alignment is not conservative
25: if (c, fA’ (e)) ∈ C SA’  (⊕ here mA (c), fB’ (e)) ∈ C SB’ do
26: flag ← false
27: end if
28: end for
29: end if
30: end for
31: return flag



Complexity Analysis. First,  we  note that  variable  assignments,  equality  checks and
logical operations such as exclusive disjunction all have constant time complexity, i.e.
O(1). With the right choice of data structure, checking if an element is in a set and
inserting a new element also present the same complexity.  This is the case if we use a
presence-absence array for the concepts and an adjacency matrix for the subsumption
relation, for example. For Algorithm 1, we have two nested conditional loops, Loop 1.1
in lines 4-17 and Loop 1.2 in lines 7-14, followed by another loop, Loop 1.3, in lines
20-25.  Loop  1.1  runs  for  nV iterations,  where  nV is  the  number  of  concepts  in  the
alignment V. Loop 1.2 runs a single iteration in the first iteration of Loop 1.1, two in the
second, and so forth, up to nV iterations in the last. This sum is the result of the formula
nV*(nV+1)/2.  Loop 1.3 runs  mV iterations,  where  mV is the number of relations in  V.
Since many different relations may hold between any pair of concepts in V, mV may be
greater than  nV

2. Every other operation has constant complexity,  as previously noted.
Therefore, the time complexity of Algorithm 1.1 is O(nV

2 + mV). With the data structures
we have described, auxiliary space complexity is nV for the concepts, mV for the relations
and nV

2 for the adjacency matrix for subsumption relations.

In Algorithm 2, there are two nested loops, Loop 2.1 in lines 4-30 and Loop 2.2
in lines 21-28. Loop 2.1 runs for  nV +  mV iterations, and Loop 2.2 runs an increasing
number of iterations  up to  nV,  but only when the element  selected in  Loop 2.1 is  a
concept. Thus, the time complexity is nV*(nV+1)/2 + mV, which is bound by O(nV

2 + mV),
the same time complexity from both calls of Algorithm 1 in lines 1 and 2. We highlight
here that the complexity of both algorithms depends only on the size of the alignment,
and not of the aligned ontologies, which are usually much larger.

6. Conclusion

We  have  described  a  method  based  on  category  theory  for  the  detection  of
conservativity  violations  in  ontology  alignments.  The foundation  in  category  theory
allows the integration of our approach with other techniques and procedures defined in
the same mathematical formalism. Further, our proposal allows the detection of both
types of conservativity violations, i.e., subsumption conservativity violations as well as
equivalence  conservativity  violations,  without  requiring  the  merging  of  the  aligned
ontologies, the execution of reasoners, or the assumption of disjointness, all of which
lead to great complexity when the input ontologies are large, as discussed in Section 3.

The technique described in this  work still  needs to be extended to repair the
discovered violations, as well as implemented and evaluated against reference datasets,
such as the ones provided by the Ontology Alignment Evaluation Initiative [Thiéblin et
al. 2018]. The evaluation would allow us to check (1) the number of violations detected,
(2) repaired and (3) the execution time of the algorithm. Another aspect that needs to be
further investigated is the preservation of conservativity over the alignment operations
defined by [Zimmerman et al. 2006]. Intuitively, we expect that the intersection of two
conservative alignments should also be conservative – however, this proposition still
needs to be proved.
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