Advanced Features of Hierarchical Component
Models

Petr Hnétynka! and Tomas Bures?
! Performance Engineering Lab, School of Computer Science and Informatics,
University College Dublin, Ireland
petr.hnetynkaQucd.ie
2 Department of Software Engineering, Faculty of Mathematics and Physics, Charles
University, Malostranské namésti 25, Prague 1, 11800, Czech Republic
bures@dsrg.mff.cuni.cz

Abstract. Using software components has become a widely used de-
velopment technique for building large enterprise systems. However in
practice, component applications are still primarily built using simple
component models and advanced component models offering valuable
features like component nesting, multiple communication styles, behav-
ior validation, etc. are omitted (by industry in particular). Based on our
experience, such an omitting is mainly caused due to usually unbalanced
semantics of these advanced features. In this paper, we present a “next-
generation” component model SOFA 2.0, which in particular aims at a
proper support of such advanced features.

Keywords: Component models, dynamic architectures, connectors, com-
ponent runtime environment.

1 Introduction

Component-based development (CBD) [18] has become a commonly used tech-
nique for building not only large scale enterprise systems but also for virtually
any type of sotware. Thanks to the explicit specification of not only components’
provided services but also required ones, components have brought easier reuse,
better integration, and rapider development compared to former development
techniques.

There are many views and definitions of what a software component is but a
general agreement is that a component is a black-box software entity with well
defined interfaces and behavior. The set of all component features and rules for
component lifecycle, composition etc. is usually called component model. From
the composition point of view, component models can be divided into two cat-
egories — flat component models and hierarchical component models. In con-
trary to the flat ones, the hierarchical component models allow for composite
components (in addition to primitive components), which means components
hierarchically composed of other components. Thus, an application can be seen
as a tree of nested components.

4 P. Hnéetynka and T. Bures

Currently, there are a number of component models each of them trying to
provide an ideal solution for building applications. Component models developed
and driven mainly by industry (e.g. EJB, CCM, and Koala) offer to developers
a stable and mature environment but they use just a flat component model
(Koala uses a hierarchical one) and they do not provide advanced features like
multiple communication styles, composition verification, seamless distribution,
dynamic architectures etc. On contrary, component models developed mainly in
the academic environment use in almost all cases hierarchical component models
and provide above mentioned advanced features. However academic component
models focus very often just on component design and they provide no or very
limited runtime environment, which is a major factor that hinders a common
(and especially industrial) usage of hierarchical component models. The main
reason for the limited runtime support in the area of component models with
advanced features is in our view that it is quite hard to properly balance a
semantics of all these advanced features.

The goal of the paper is to show strong and weak points of contemporary
used component models and then to present the SOFA 2.0 [4] component model
that supports hierarchical components and a number of advanced features, while
it also provides a stable runtime environment, which serves for executing of
component applications.

2 Current component models

In this section, we discuss and compare representatives of common contemporary
component models with respect to their supported features and implementa-
tions. In particular, we focus on support for describing architectures, possibility
of dynamic architectures, support of-advanced features like behavior description,
multiple communication styles via connectors, etc. (see [4] for detailed explana-
tion of these particular features and the problems related to them), and an
existence of runtime support for components. We discuss Darwin, Wright, and
ACME component models, which although already rather old had a strong in-
fluence on component models developed later. Further, we present CCAI, EJB,
and Koala as the representatives of the industrial models, and we also devote
attention to several representatives of academic component models, namely Frac-
tal, ArchJava, and SOFA. At the end of the section, we briefly refer to several
non-standard component models

As it has been mentioned above, Darwin [12] is a classical component model
that influenced many later component models. It uses a hierarchical component
models without connectors. Darwin allows expressing dynamic changes of archi-
tectures using lazy and direct dynamic instantiation. The lazy dynamic instanti-
ation allows for deferred instantion of components described in the architecture,
while the direct dynamic instantiation allows for arbitrary changes. The archi-
tecture changes introduced by the direct dynamic instantiation are not captured
in the architecture description and thus they are completely uncontrollable. As

Advanced Features of Hierarchical Component Models 5

Darwin is just an architecture description language (ADL), it does not provide
any runtime environment.

Another classical ADL without a runtime environment is Wright [2]. It also
uses hierarchical component model but with connectors among components. Be-
havior of both components and connectors is described using CSP-like notation.
Wright does not allow any dynamic changes of an architecture. As it supports
connectors, it can use any communication style.

ACME [7] is an ADL intended to serve as a common representation for ar-
chitecture descriptions. It uses a hierarchical component model with connectors.
Both components and connectors can have associated properties (for describing
auxiliary information) and design constraints, which mainly serve for describing
dynamic changes of an architecture. The language for the design constraints is
based on first order predicate logic.

Enterprise Java Beans (EJB) component model [6] developed by Sun Mi-
crosystems uses just a flat component model. Even more, it has quite a limited
support for describing requirements of components and does not provide any
additional features. On the other hand, it provides a stable and mature runtime
environment and it is used in many enterprise applications. As it uses a flat
component model, EJB does not have any problems with dynamic adding and
removing components. From communication styles, it supports method invoca-
tion and sending messages.

OMG CORBA Component Model (CCM) is quite similar to EJB but it allows
for explicit description of component requirements. From communication styles,
it supports synchronous and asynchronous method invocation. Compared to
EJB, it is multiplatform and independent of a particular programming language.

Koala [14] has been created by Philips as a component model for developing
embedded software (for TVs, set-top-boxes, etc.). It uses a hierarchical com-
ponent model heavily inspired by Darwin. Primitive components in Koala are
implemented as a set of C functions. Koala strongly focuses on component de-
sign and optimizations; the Koala compiler (a tool which from ADL generates
C header files for implementation) allows removing unused components based
on components’ configuration properties and further architecture optimizations.
The runtime possibilities are however quite limited (as the model is targeted to
an embedded environment).

Fractal 3] is a general purpose component model. It uses a hierarchical com-
ponent model without connectors. Connectors can be simulated using “normal”
components (the Fractal specification even instructs to do so), however this
results into rather unclean and incomprehensible architectures mixing different
levels of abstraction. Fractal separates components functional and non-functional
(control) parts. The non-functional part is managed using controllers, which are
from the architectonic view provided interfaces. Fractal also introduces the con-
cept of shared components, i.e. a single subcomponent instance shared by several
composite components. Such an approach easily allows for runtime changes of an
architecture, but it breaks a component encapsulation hierarchy and can result
in clumsy and uncontrollable architectures. By itself, Fractal is just a specifica-

6 P. Hnétynka and T. Bure§

tion defining a set of component features and standard interfaces, and it has a
number of implementations.

Julia is a Java-based reference implementation of Fractal, which allows com-
ponent programming in Java. Components can be created either directly via
Julia API or using Fractal ADL. In addition to design time, components also
exist and can be referenced at runtime. For implementation of control parts of
components, Julia uses so called mizins, which are Java classes that are woven
with the original components’ classes using bytecode manipulation. The experi-
ence however shows that Julia’s approach the component control parts is poorly
manageable and hard to extend and debug.

AOkell [17] is another Fractal implementation. It is similar to Julia but it
has an elaborate mechanism for building control parts of components based on
aspect-oriented programming, thus it addresses several issues Julia has in this
context.

The SOFA component model [15] is like Fractal a general purpose compo-
nent model. It also uses a hierarchical component model but with connectors
(and therefore with multiple communications styles). In addition, these connec-
tors allow for transparently distributed applications. Components’ behavior can
be described using behavior protocol and these can be subsequently used to
verify component composition and communication. For describing components
and architectures, SOFA uses its own ADL. Similarly to Fractal, SOFA compo-
nents also exist and may be instantiated at runtime. The weak points of SOFA
comprise no support for dynamic changes of an architecture (it just supports a
dynamic update of a single component), not clearly separated and non-extensible
control part of components, and a limited set communication styles.

Both SOFA and all implementations of Fractal create a component platform
over the Java platform; in fact they are Java libraries. At runtime, instances
of components exist but they are mapped to a set of Java classes. The Arch-
Java [1] component system goes another way. It introduces components as a new
construct directly into the Java language. Such an approach should prevent vio-
lations of the architecture at runtime. However, neither in SOFA nor in Fractal
implementations, component developers can diverge from an architecture at run-
time. Moreover, as components in SOFA and Fractal are implemented in pure
Java, they can be much more easily integrated with other legacy systems.

In addition to the component models presented so far, there also exist compo-
nent models, which try to capture and describe architectures in a rather formal
way. For example CHAM [11] or system based on graph rewriting [19], both
targeting description of dynamic architectures. But these systems are very com-
plicated (even for simple architectures) and they do not provide any runtime
environment.

3 SOFA 2.0

As described above, currently there are either component systems with strong
support for describing architecture and no or almost no runtime support or

Advanced Features of Hierarchical Component Models 7

systems with a stable and functional runtime environment but rather poor pos-
sibilities for designing components. In the middle, there are system like SOFA
and the Fractal implementations, which provide both but still they have obsta-
cles that hinder from common usage. SOFA 2.0 which is a next generation of
the original SOFA tries address these obstacles and issues.

SOFA 2.0 has inherited a hierarchical component model with connectors and
most of other features from its ancestor. The main differences against the original
SOFA version are meta-model-based design of components, support of dynamic
architecture reconfigurations, support of any communication style, and clearly
separated and extensible control parts of components.

SOFA 2.0 is defined using a meta-model. In contrast to ADL-based defini-
tion used in the original SOFA, such an approach has many advantages like
automated generation of a repository with standardized interface, standardized
XML-based interchange format, support for automated generation of models’
editors, etc. (see [8] for details). The meta-model defines all features of the com-
ponent model (in detail described in {4]} and is employed in generation of a
repository, which stores component descriptions as well as component imple-
mentations. As a particular technology for defining meta-model and generating
repository we use EMF [5].

Components are described using frame and architecture constructs. The
frame defines a set of interfaces (services) provided and/or required by a com-
ponent. The architecture then defines an implementation of the frame; for prim-
itive components the architecture is empty and for composite components it
defines subcomponents (again using frames or other architectures) and connec-
tions among them.

The support of dynamic architecture reconfigurations is realized via well-
defined reconfiguration patterns [9]. Currently, three reconfiguration patterns
are provided: factory pattern, removal pattern, and service access pattern. As
their names suggest, in factory pattern a designated component serves as a
component factory. The removal pattern serves for destroying of a component
previously created, while the last pattern allows an access to external services
through utility interfaces.

For specifying component behavior formally, SOFA 2.0 uses behavior proto-
cols [16]. They can be used for verification of component composition during
designing an application architecture and also there is a possibility to check a
primitive component implementation classes versus protocols.

The SOFA 2.0 runtime environment is called SOFAnode. It consists of the
repository and a set of deployment docks, each of them can be located on a dif-
ferent computer. A deployment dock is a container for launching components. A
single application can spread over several docks; connectors among components
assure transparent distribution.

As it has been said above, the repository is generated from the meta-model
and stores both component descriptions and implementations. At development
time, developers store into it the component information and also reuse the in-
formation already stored there. The repository and in fact whole SOFA 2.0 allow

8 P. Hnétynka and T. Bures

versioning of components. The versioning model used in SOFA 2.0 is the same
as in the original SOFA. To guarantee integrity of the development of different
versions and the convenient development, the repository supports cloning. At
the beginning of the development, developers create a new clone of the reposi-
tory, which mirrors its content. Then they work with this clone and finally, they
merge the clone with the original repository. In the cloned working copy, devel-
opers can create temporary inconsistencies but the cloning and merging permits
to merge just fully consistent repository. The repository also allows export and
import of already developed components (e.g. developed by third parties).

From the implementation point of view, a component is set of Java classes.
For primitive components, developers have to provide implementation classes.
There are not any requirements on these classes, i.e. they do not have to imple-
ment /extend any SOFA-specific interfaces/classes. Instead, we use an annotation-
based approach where components’ provisions, requirements, initializing meth-
ods, ete. are marked using annotations. Benefits of this approach are no depen-
dencies on the underlying platform (a single implementation can be resused in
different component platforms) and implementation classes can be easily tested
by tools like JUnit without starting the whole SOFAnode. As composite com-
ponents are composed of other components, they do not have any direct imple-
mentation and developers do not create any code for them.

Due to versioning, Java class name clashes can occur at runtime, i.e. a situa-
tion, when two different classes having the same name are to be loaded into the
virtual machine. To address this, SOFA 2.0 uses bytecode manipulation; after
compiling component classes, the bytecode of the classes is modified and the
classes are renamed to have unique names. In detail, the approach is described
in {10].

All bindings among components in SOFA 2.0 are realized via connectors,
which are first-class entities in charge of addressing the communication logic.
Their use brings the transparent distribution, different communication styles
(e.g. synchronous method invocation, asynchronous message delivery, shared
memory, streaming, etc.) and the possibility of non-functional aspects (e.g. log-
ging, benchmarking, runtime behavior verification, security, etc.). A connector is
specified at design time as a binding (i.e. an hyper-edge connecting several com-
ponent interfaces) and as a communication style and a set of properties associ-
ated with each component interface participating in the binding. In our approach,
we use connectors not only in design but also at runtime as well-defined code ar-
tifacts. The transition from the high-level design time specification to connector
code is realized by a connector generator, which can automatically generate the
connector implementation based on design-time and deployment requirements.
We perform the generation of connectors only at deployment time, which is
when we have the complete information of the application to be launched (in-
cluding the distribution of particular components to deployment docks); thus,
we can choose the most appropriate middleware for addressing the distribution
and perform other potential optimizations.

Advanced Features of Hierarchical Component Models 9

In SOFA 2.0, we have striven to bring out the control part of components and
make it easily extensible. The control part (or component controllers) deals with
the management logic of a component, which includes management of bindings,
lifecycle, some sort of introspection, controlling the update, etc. In the existing
component systems (except Fractal), this logic is typically strictly defined by
the respective system and cannot be easily changed or extended. Inspired by
the Fractal component model, we have introduced to SOFA 2.0 the concept of
explicit component controllers. There is a dedicated micro-component model,
which allows defining an architecturc of the control part, and the concept of
a control aspect, which encapsulated a set of micro-components and defines a
consistent extension of the control part. Thus, we are able to easily model, extend
or even replace the control part of a component.

4 Conclusion and future work

In this paper, we have presented a short overview of contemporary component
models and pointed out their main limitations with respect to advanced compo-
nent features (such as component nesting and modeling, possibility of dynamic
architectures, description of component behavior, connectors, multiple commu-
nication styles, extensible component control functionality) and the existence
and maturity of a runtime environment. Then, we have described a new compo-
nent model SOFA 2.0 which aims at addressing these limitations. It allows for all
the mentioned advanced features and provides a balanced support for them at
design-time as well as at development-, deployment- and run-time. At present,
SOFA 2.0 has been formalized using meta-models and also an implementation
of its runtime is available. The development tools are work in progress.

This work was partially supported by the Grant Agency of the Czech Republic
project 201/06/0770. The support of the Informatics Commercialisation initia-
tive of Enterprise Ireland is gratefully acknowledged.

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architecture
to Implementation, Proceedings of ICSE 2002, Orlando, USA, May 2002
. Allen, R. J.: A Formal Approach to Software Architecture, Ph.D. Thesis, School
of Computer Science, Carnegie Mellon University, May 1997
3. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: The Fractal
Component Model and Its Support in Java, Software Practice and Experience, Spe-
cial issuc on Experiences with Auto-adaptive and Reconfigurable Systems, 36(11-
12), 2006
4. Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing Advanced Features in a
Hierarchical Component Model, Proceedings of SERA 2006, Seattle, USA, IEEE
CS, Aug 2006
Eclipse Modeling Framwork, http://www.eclipse.org/emf/
6. Enterprise Java Beans specification, version 2.1, Sun Microsystems, Nov 2003

[V]

[$11

10

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

P. Hnétynka and T. Bure§

. Garlan, D.; Monroe, R. T.; Wile, D.: Acme: Architectural Description of
Component-Based Systems, In Foundations of Component-Based Systems, Cam-
bridge University Press, 2000

. Hnetynka, P., Pise, M.: Hand-written vs. MOF-based Metadata Repositories: The
SOFA Experience, Proceeding of ECBS 2004, Brno, Czech Republic, May 2004

. Hnetynka, P., Plasil, F.: Dynamic Reconfiguration and Access to Services in Hier-

archical Component Models, Proceedings of CBSE 2006, Vasteras, Sweden, LNCS

4063, Jun 2006

Hnetynka, P., Tuma, P.: Fighting Class Name Clashes in Java Component Systems,

Proceedings of JMLC 2003, Klagenfurt, Austria, Aug 2003

Inverardi, P.; Wolf, A.L.: Formal Specification and Analysis of Software Archi-

tectures Using the Chemical Abstract Machine Model, Transactions on Software

Engineering, vol. 21, no. 4, Apr 1995

Magee, J.; Kramer, J.: Dynamic structure in software architectures, Proceedings

of FSE’4, San Francisco, USA, Oct 1996

OMG: CORBA Components, v 3.0, OMG document formal/02-06-65, Jun 2002

van Ommering, R., van der Linden, F., Kramer, J., Magee, J., The Koala Compo-

nent Model for Consumer Electronics Software, In IEEE Computer, Vol. 33, No.

3, pp. 78-85, Mar 2000

Plasil, I'., Balek, D., Janecek, R.: SOFA/DCUP: Architecture for Component Trad-

ing and Dynamic Updating, Proceedings of ICCDS’98, Annapolis, Maryland, USA,

IEEE CS Press, May 1998

Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components, IEEE

Transactions on Software Engineering, vol. 28, no. 11, Nov 2002

Seinturier, L., Pessemier, N., Duchien, L., Coupaye, T.: A Component Model En-

gineered with Components and Aspects, CBSE’06, LNCS 4063, Jun 2006

Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd

edition, Addison-Wesley, Jan 2002

Wermelinger, M.; Fiadeiro, J. L.: A graph transformation approach to software

architecture reconfiguration, Science of Computer Programming, Volume 44, Issue

2, Aug 2002

