
Transformations from EDOC to EJB by Composition
of Mapping Operations

Dariusz Gall

Computer Science and Management Faculty, Wrocław University of Technology, Wybrzeże
Wyspiańskiego 27, 50-370 Wrocław, Poland

dariusz.gall@pwr.wroc.pl

Abstract. Transformations from the Enterprise Distributed Object Computing
(EDOC) to Enterprise JavaBeans (EJB) are examined herein from the point of
view of an efficiency characteristic of result models. Transformations are
composed of mapping operations. Mapping operations map an element or a
group of elements of the EDOC model into an element or a group of elements
of the EJB model. A standard proposal of mapping operations is defined by the
Object Management Group (OMG). Alternative mapping operations, which
generate EJB models of a better efficiency characteristic under certain
circumstances, are proposed. Rules for composing mapping operations into
EDOC – EJB transformations are suggested and illustrated by examples of
EDOC – EJB transformations.

Keywords: model transformation, Model-Driven Development, EDOC, EJB,
efficiency

1 Introduction

Transformations play a key role in Model-Driven Development (MDD) [15]. We
consider transformations from the Enterprise Distributed Object Computing (EDOC)
to Enterprise JavaBean (EJB), which translate a model expressed in the EDOC
language to a model in the EJB language.

Transformations have to be correct, which informally means that they have to
generate a target model without “losing” information included in a source model.
Such transformation is proposed in [12]. However, it is not sufficient to produce
correct models, because transformations should also meet additional requirements.
We consider a good efficiency of generated model to be an additional requirement of
EDOC – EJB transformations.

The aim of the paper is to propose an alternative transformation that under special
circumstances may give better results. We present the transformation and compare it
to the standard transformation [12]. The scope of the paper is though limited to
structural aspect transformations of a subset of the EDOC, the Component
Collaboration Architecture (CCA). Such transformations to EJB and other platforms

D. Gall 14

are considered in [1], [2], and [13].
The paper consists of following sections: in Section 2, an introduction to CCA and

EJB is given. In the main Section 3, the alternative transformation is described and
compared to the standard transformation. In Section 4, example transformations’
executions are illustrated. The paper is concluded in Section 5.

2 Domain and codomain of transformation

A transformation can be considered as a function, which domain is a set of all CCA
models and codomain is a set of all EJB models.

The CCA is a language for describing software architectures [9]. The OMG has
prepared the CCA UML Profile [11], and the CCA model can be represented using
UML. Only subset of the CCA concepts, required to understand the paper, is herein
presented, in particular: a Process Component, a Port and its specialisation a Flow
Port. A Process Component represents some process in a modelled system. A Process
Component is modelled by a Classifier with stereotype «ProcessComponent». A
Process Component can be composed of other Process Components. A Port is
Process Component’s connection point. Each Port has properties, for instance,
considered Direction – direction of sending the first message in an interaction. The
simplest subclass of a Port is a Flow Port represented by a «FlowPort» stereotype. It
is capable for generating or consuming single typed data.

The EJB is a middleware platform [14]. The Java Community Process (JCP) has
prepared the standard representation of EJB-based software artefacts in the form of
the EJB UML Profile. A subset of the EJB concepts, required to understand the paper,
includes a Session Bean, an Implementation Class, a Session Home Interface, a
Remote Interface, and a Remote Method. A Session Bean is a server-side component.
It models a business process; it can perform certain actions [14]. It is represented by a
Subsystem with stereotype «EJBSessionBean», which consists of an Implementation
Class, a Session Home Interface, and a Remote Interface. An Implementation Class
contains implementation of a Session Bean. It is expressed by a Class with stereotype
«EJBImplementation». A Session Home Interface is an interface to an object
responsible for creating and destroying of Session Beans. It is modelled by a Class
with stereotype «EJBSessionHomeInterface». A Remote Interface contains business
methods available for clients or other enterprise beans using remote method calls. It is
modelled by a Class with stereotype «EJBRemoteInterface». Methods available
within a Remote Interface, Remote Methods, are modelled using an Operation with
stereotype «EJBRemoteMethod» [6].

3 Transformations

Operational transformations are considered herein [5]. In the operational
transformation approach, a transformation is a function taking as an argument a
source model, and returning a target model. The function can be decomposed into
mappings, which are responsible for transforming an element or a group of elements

 Transformations from EDOC to EJB by Composition of Mapping Operations

15

of a source model into an element or a group of elements of a target model. The
mappings are required to be correct in the same senses as the whole transformation.
An operational transformation is realized by a sequence of the mappings, each time
returning an intermediate model until a target model is generated.

3.1 Transforming CCA to EJB

A way for transforming a CCA model to an EJB model by mappings between CCA
and EJB is described in paper [12]. In Table 1, mappings limited to these examined
herein, are presented.

Model element

CCA EJB
Process Component Session Bean
Flow Port In Implementation Class - an Java Method without

return value, in Remote Interface – an Remote
Method without return value

Table 1. Mappings between CCA and EJB model elements [12]

Transformations built according to the mapping in the paper [12], in particular
Table 1, generate correct EJB models and are able to transform a specification of any
system expressed in the CCA. However, the proposal given in the paper [12], does
not avoid pitfalls related to remote methods call or a Session Bean component's life
cycle, which can cause a low overall performance of a system [7], [8], [14].

An alternative proposal is to change a Session Bean to a Java Class. A Process
Component may be represented by a Java Class, if it is a part of a compound Process
Component and interacts with, transformed to Java Classes, Process Components of
the compound one or interact with the compound one. This change entails changes in
the mappings of Ports. Ports of a Process Component transformed to Java Class do
not have to be represented as remote method. The rationale behind this way of
Process Component mapping is that during a Session Bean component’s life cycle
usually more resources are used than during a pure Java object's life cycle. Thus, it is
reasonable to substitute it, where possible, in particular because of performance issues
[3], [7].

Model element

CCA EJB
Process Component Java Class
Flow Port In Java Class - an Java Method without return value

Table 2. Enhancements of the mappings from Table 1

The enhancement of the mappings from Table 1, as alternative mappings of
Process Component and Ports is presented in Table 2. The proposed enhancement
does not ensure that a transformation defined according to it will generate a model of
a better efficiency characteristic. Nevertheless, if a system specification in the CCA is
made in accordance with good design practices, e.g., low coupling and high cohesion
of Process Components, alternative mappings might be used in more situations and
better performance of an application may be expected.

D. Gall 16

3.2 Building transformations

We consider CCA – EJB transformations as an unidirectional transformation, defined
on set of mappings.

Let SOURCE be a set of elements of a source model and TRANSF be a set of a
source model elements that have been already mapped during a transformation,
TRANSF:=∅. Let INTER be a set of intermediate model's elements, INTER:=∅. Let
TARGET be a set of elements of a target model.

During a transformation, mappings are executed on elements of a SOURCE and
INTER. After each execution of a mapping, an INTER is updated by a result of the
mapping. If the transformation is finished an INTER become a TARGET.

Let MAP be a set of mappings. A mapping is a function, two kinds of mappings are
possible, a new mapping new_map:2SOURCE→ 2INTER, an update mapping
update_map:2SOURCE ×2INTER→ 2INTER. A new type mapping takes one argument, a
group of a source model's elements, which are going to be mapped, and returns a
group of an intermediate model's elements that are created. An update type mapping
takes two arguments, a group of a source model's elements, which are going to be
mapped, and a group of an intermediate model's elements, which properties are going
to be updated. An update type mapping returns a group of elements of an intermediate
model, which contains updated and/or created elements of an intermediate model.

Let pre:MAP×2SOURCE×2SOURCE×2INTER→ Boolean be a Boolean function, which is a
precondition for execution of a mapping from MAP. The function arguments are the
mapping, a group of elements from 2SOURCE, a context of the group of elements from
SOURCE, and elements of a target model from INTER.

Let to_update:MAP×2SOURCE×2SOURCE×2INTER→ 2INTER be a function, which returns
a group of elements that are going to be updated by a mapping from MAP. The
function arguments are the mapping, a group of elements from 2SOURCE, a context of
the group of elements from SOURCE, and elements of a target model from INTER.

Mappings are executed according to the schema:
1. Select arbitrary e∈2SOURCE, and m∈MAP, such that

pre(m,e,SOURCE,INTER) returns true.
2. If a map m is a new type of mapping then

m(e)=e'; INTER:=INTER ∪ e'.
If a map m is an update type of mapping then
to_update(m,e,SOURCE,INTER)=e'; m(e,e')=e''; INTER:=INTER – e' ∪ e''.
Lastly, TRANSF := TRANSF ∪ e.

3. If TRANSF<>SOURCE then go to step 1 otherwise, TARGET:=INTER, and
stop execution of the schema.

It may happen that several alternative transformations are possible. In this
situation, we should consider models generated by these transformations and choose a
transformation, which generates a model of the best quality characteristics.

3.3 Mapping Operations

Mapping operations are realisation of mappings between models, and in this work we
focus on mappings between the CCA and the EJB elements.

 Transformations from EDOC to EJB by Composition of Mapping Operations

17

A mapping operation contains a pre-condition and a mapping body, see Listing 1.
A pre-condition is a condition that is a prerequisite for a mapping execution, and is
expressed in when section. A mapping body specifies an algorithm of creation and
adding new elements to a target model, or modification of a target model's elements.

Mapping operations of CCA elements to EJB elements, limited to proposed
alternative mappings, are presented herein. Four mapping operations are presented,
see Listing 1, and each is a realisation of the mappings in Table 1, and Table 2. They
are expressed using MOF QVT Operational Mapping language [10].

The pre-condition is a composition of three types of constraints, see Listing 1. A
first type of the constraints checks a mapping applicability for an element or a group
of elements. Next type of constraint is a constraint on context of mapped element
within an input model. Using this type of constraints, we specify context of an
element, prerequisite to execute a mapping operation. Third constraint type checks
whether an element or group of elements were mapped by a particular mapping.

The mappings presented in the Listing 1, reflect the transformation model proposed
in Section 3.2. PCtoEJBSessBean and PCtoJavaClass are new type mappings. The
pre function is realized in when sections of the mappings.
FlowPortToRemMethEJBSessBean and FlowPortToOperJavaClass are update type
mappings. A pre function is realized in when clauses of the mappings, and a
to_update function is realized in init sections of these mappings.

Mappings from Table 1 Mappings from Table 2

Mapping: Process Component to Session Bean Mapping: Process Component to Java Class
mapping Class::PCtoEJBSessBean()
when {
 // pre-condition:
 is_pc(self) // type of element
}
{
 // mapping algorithm
 population{
 object ejbBean:Subsystem{
 name:=self.name;
 stereotype += getStereotype('EJBSessionBean');
 ownedElement += object Class {
 stereotype +=
 getStereotype('EJBImplementation');
 }
 // similar algorithm for EJBRemoteInterface
 // and EJBSessionHomeInterface
 }
 }
 // outputModel is a global variable
 // representing an EJB model
 outputModel.ownedElement += ejbBean;
}

mapping Class::PCtoJavaClass()
when {
 // pre-condition:
 // type of element
 is_pc(self) and
 // input model context
 can_be_mapped_to_JC(pc)
}
{
 // mapping algorithm
 population{
 object jc:Class{
 name:=self.name;
 }
 }
 // adding to an output model
 outputModel.ownedElement += jc;
}

Mapping: Flow Port to Remote Method of Session Bean Mapping: Flow Port to Operation in Java Class
mapping Class::FlowPortToRemMethEJBSessBean()
when {
 // pre-condition:
 // type of element

low_port(self) is_f
 and is_responds_port(self) and
 // input model context
 is_associated_with_pc(self) and
 // mapping context
 was_mapped_by(PCtoEJBSessBean,
 get_associated_PC(self))
}
{
 init{ejbSessBean:=get_mapping_result
 (get_associated_PC(self));
 ejbImpl:=ejbSessBean.getEJBImplementation();
 // similar for ejbRemote

mapping Class::FlowPortToOperJavaClass()
when {
 // pre-condition:
 // type of element
 is_flow_port(self)
 and is_responds_port(self) and
 // input model context
 is_associated_with_pc(self) and
 // mapping context
 was_mapped_by(PCtoJavaClass,
 get_associated_PC(self))
}
{
 init{javaClass:=get_mapping_result
 (get_associated_PC(self));
 }
 // mapping algorithm

D. Gall 18

 }
 // mapping algorithm
 population{
 object implOper:Operation{
 name:=self.name+'Responds';
 parameter=object Parameter{
 kind=ParameterDirectionKind.in;
 }
 }
 // similar algorithm for remotOper
 }
 // updating elements of an output model
 ejbImpl.feature += implOper;
 ejbRemote.feature += remotOper;
}

 population{
 object operation:Operation{
 name:=self.name+'Responds';
 visibility:=VisibilityKind.public;
 parameter=object Parameter{
 kind=ParameterDirectionKind.in;
 }
 }
 }
 // updating elements of an output model
 javaClass.feature += operation;
}

Listing 1. CCA - EJB Mappings

4 Example transformations

We present two possible transformations of a CCA model, which contains a
compound Process Component: Seller. The Process Component is composed of two
Process Components: QuoteCalculator and SellerOrders, see Figure 1.

First, we consider a transformation made according to mappings proposed in Table
1. It is a composition of mapping operations in a following order: mapping operation
PCtoEJBSessBean executed for elements: Seller, QuoteCalculator and SellerOrders,
and mapping operation FlowPortToRemMethEJBSessBean for elements: Quote,
Order, QuoteCalculator and SellerOrders. A result of the transformation is shown in
the Figure 2. As we could predict, three Session Beans are created corresponding to
Process Components in the source model.

Figure 1. Input model - the compound Process Component Seller [12]

Now, let us consider a transformation based on mappings in the both Table 1 and

Table 2. The transformation is a composition of mapping operations in a following
order: PCtoEJBSessBean for Seller; PCtoJavaClass for QuoteCalculator,
SellerOrders; FlowPortToRemMethEJBSessBean for Quote and Order;
FlowPortToOperJavaClass for QuoteCalculator and SellerOrders. A result of the
transformations is shown in the Figure 3. One Session Bean corresponding to Seller is
created, and two Java Classes corresponding to QuoteCalculator and SellerOrders in
the source model are created.

In the first output model (Figure 2), three Session Beans are created, instead of one
Session Bean in the second output model (Figure 3). Hence, in the first case, a lot of
communication has to be done using remote method invocation, because each Process

 Transformations from EDOC to EJB by Composition of Mapping Operations

19

Components are represented by different Session Bean. In the second case, Process
Components are transformed to a Session Bean and Java Classes and such should
decrease a number of remote method's invocations. It seems that more execution time
of an EJB server is spent on communication in the first case, than in the second case
[4].

Figure 2. First possible output model - only Session Beans

However, it might be a different situation if an application, generated according to

the first model (Figure 2), is deployed on a cluster of EJB servers. The cluster might
be able to copy and put each Session Bean component individually on a different
server participating in the cluster. Such being the case, the Session Beans of the first
model can be individually distributed among the servers. Hence, an efficiency of the
model in the Figure 2 might be better than an efficiency of the second model (Figure
3) [14].

Figure 3. Second possible output model - Session Bean and Java Classes

Thereby, the choice of the transformation is an individual case depending on

requirements of a developed system. Referring to the example, if we deploy an
application on a single EJB server, then we will probably choose the transformation to
the model in the Figure 3. However, if we deploy the application on a cluster of EJB
servers, then it will be better to consider the transformation to the model in the Figure
2.

5 Conclusions

The main goal of this paper has been to examine transformations from EDOC to EJB,

D. Gall 20

taking into consideration an efficiency aspect of generated models. The
transformations have been composed of mappings. The approach for building
transformation has been proposed.

We have considered a set of mappings presented by the OMG, and we have
proposed alternative mappings in order to achieve EJB models of a better efficiency
characteristic. We have shown the proposal of implementation of these mappings
using mapping operations introduced in the MOF QVT [10]. We have given examples
of EDOC-EJB transformations and have discussed the transformations results.

The suggested herein transformation approach gives an ability to build many
transformations on a set of the mappings. Results of these transformations can be
examined from the perspective of an efficiency and other quality characteristics.
However, these transformations are not able to generate a complete EJB application.
Important problem are behavioural aspect mappings and generating an EJB model,
which contains both structure, and behaviour of a system.

References

1. Belaunde, M., and Peltier, M., “From EDOC Components to CCM Components: A Precise
Mapping Specification”, FASE 2002, 2002, p. 1-16.

2. Born, M., Blazarenas, A., Funabashi, M., Hirai, C., Kath, O., Ritter, T., and Soden, M., “An
Open Modeling Infrastructure integrating EDOC and CCM”, IEEE, 2001.

3. Broemmer, D., J2EE - Best Practices, Java Design Patterns, Automation and Performance,
John Wiley and Sons, 2003.

4. Cecchet, E., Marguerite, J., and Zwaenepoel, W., “Performance and Scalability of EJB
Applications”, Proc. 17th Ann. ACM Conf. Object-Oriented Programming, Systems,
Languages, and Applications, ACM Press, 2002, pp. 246-261.

5. Czarnecki, K., and Helsen, S. “Feature-based survey of model transformation approaches”,
IBM Systems Journal, Vol 45, No 3, 2006.

6. Java Community Process, Java UML/EJB Mapping Specification,
http://www.jcp.org/jsr/detail/26.jsp, 2001.

7. Kalidindi, R., and Datla, R., Best Practices to improve performance in EJB,
http://www.precisejava.com/javaperf/j2ee/EJB.htm, Nov. 2001.

8. Marinescu, F., EJB Design Patterns - Advanced Patterns, Processes, and Idioms, John Wiley
and Sons, 2002.

9. Object Management Group, Enterprise Collaboration Architecture (ECA) Specification,
formal/2004-02-01, 2004.

10. Object Management Group, MOF QVT Final Adopted Specification, ptc/05-11-01, 2005.
11. Object Management Group, UML Profile for Enterprise Collaboration Architecture

Specification, formal/2004-02-05, 2004.
12. Object Management Group, UML Profile for Enterprise Distributed Object Computing,

Part II Supporting Annexes, ad/2001-08-20, 2001.
13. Patrascoiu, O., “Mapping EDOC to Web Services using YATL”, Proceedings of the 8th

International IEEE Enterprise Distributed Object Computing Conference (EDOC 2004),
September 2004, pp. 286-297.

14. Roman, E., Sriganesh, R. P., and Brose, G., Mastering Enterprise JavaBeans, John Wiley
and Sons, 2005.

15. Sendall, S. and Kozaczynski, W., “Model transformation - the heart and soul of model-
driven software development”, IEEE Software, Special Issue on Model Driven Software
Development, 20(5):42–45, 2003.

