Genomial Co-Design: An MDA-compliant
approach for embedded architectures

Janis Silins

Riga Technical University, Institute of Applied Computer Systems, Meza str. 1/3,
[V-1048 Riga, Latvia
janis.silins@Qlep.lv

Abstract. This paper proposes a modified, genomial, version of func-
tion - architecture co-design method so that wider evaluation of architec-
tures from both functional and structural point of view can be performed.
The topological modelling technique is used to create the Computation
Independent Model that is absent in the original method. A case study
has been performed that clarifics the key ideas of this approach.

Keywords: Embedded, architecture, co-design, formal

1 Introduction

The rising complexity and quality requirements for modern embedded systems
calls for development and use of highly integrated and formal design approaches.
Many rescarchers agrec that a novel perception of embedded architecture is re-
quired - one that does not draw strict boundaries between hardware and softwarc
components of a single system. The problem of unified view on embedded sys-
tems is addressed by various formal techniques, such as function - architecture
co-design [4]. Unfortunately, this approach has certain drawbacks that have been
discussed in [5]. A number of modifications and improvements have been pro-
posed therein, having been consolidated into a new, genomial, approach.

2 The architectural genome

The most significant shortcomings of function - architecture co-design approach
can be corrected by inclusion of evolving architectures in its meta-model. In gen-
eral, the process of architecting should based on both functional and structural
aspects of the system. Although the functional specification still remains a cor-
nerstone for development of any architecture, the implementation details must
not be left out of the architecting scope. The method should provide means of
traceability; in the context of Model Driven Architecture (MDA), the trail is
used to prove correctness of transformations. Finally, multiple iterations of the
development process must be properly supported. The architecture, although
being modified, should keep its original integrity without any ad hoc solutions.

22 J. Silins

Such evolving architectures are materialised in the modified co-design method as
the ”architectural genome” - a collection of formal descriptions and transforma-
tions. It acts as a repository that holds architectural components, expressed in
pre-defined formal notation, supports join, merge and other operations on them,
and enables the developer to revisc and extend its contents during the develop-
ment process. The description of embedded architectures has been accordingly
extended and consists of:

— set of functional requirements or functional specification (X = {Xo ... X;});

— set of architectural constructs (A = {4y ... A;}) as a combination of primi-
tives: elements of the utilized programming language (L), services provided
by operating system (O) and services provided by hardware components
(H);

— set of requirements enforced on the model of communications (Cr).

It must be noted that the set of architectural constructs (set A) includes members
of various degrees of complexity and levels of abstraction, as listed below (in order
of increasing complexity):

— Architectural primitives that are perceived as ”black boxes”. Their descrip-
tions are included in the genome before development process starts, are
treated as read-only information and can be freely re-used. The primitive
set P = {0, H, L} contains both abstract and real-world elements.

— The set of architectural constructs contains various combinations of primi-
tives, therefore significantly more complex parts of the system can be devel-
oped. They still are not self-sufficient but nevertheless can be included in the
models of either current or future systems. The specifications of members
of this set K = {{01, Hl, Ll}, {02, Hz, Lg} .o {On, Hn, Ln}} are created
by using merge operations on members of specific subsets of P. The set of
architecturc constructs is also suitable for re-use in other projects.

— The set of architectures consists of implementation candidates that are fully
functional and self-sufficient. Its members are created from the elements of
set of architecture constructs and primitives (A = {{K1, P1}, {K2, P2}
...{Kn, P,}}), and differ from them by being non-universal and valid only
within boundaries of a particular project.

Genomial architectures are created as abstract entities (if the original require-
ments do not imply inclusion of particular COTS components), and after verifi-
cation the abstract parts are gradually replaced with their real-world equivalents.

Although the genomial approach scems to bear a strong resemblance to the
well-known component-based architecture design and style-based development
methods, it shows significant differences from them. Genomial architecture con-
structs, unlike those of the component-based architecture, can be extended at
will. If some of them are perceived as black boxes, it is an exclusion, not a
rule. Also, architectural designs derived from a common genomial base, do not
have the same vocabulary. In most cases, their constructions are only distantly
related: thcy may be derivatives of common abstract objects.

Genomial Co-Design: An MDA-compliant Approach for Embedded Architectures 23

Extension of function - architecture co-design approach also deals with selec-
tion of suitable formalisms with emphasis on aspects significant to architecture.
Onec of such methods is topological modelling of functioning [3]. Its role in the

] ?
' §»- Funaicoal taved e :

Absasion : X

Mapping kevel o ’
[pewesen | om

cim &

P P

P
-

¥ [
+ Erwirors I P) Notie
H onn andd ﬁy‘zﬁ”’ e ¢ 1 wrcticeal
fh ’ apiiosdion ¥ 31 requie
i * i H ¥
i : ety M menly
4

3 Architectural tlevel l . p

Fig. 1. Correlation between function - architecture co-design and MDA

genomial co-design environment is depicted in Figure 1. It covers all of the prob-
lem and application domain specification needs as well as a part of functional
description - the portion of it that deals with high-level abstractions. By us-
ing the topological model as basis, the white areas of functional specification
can be filled in with descriptions in functional algebraic notation (e.g., CSP).
This specialized part of functional specification can be created simultaneously
with the macro-architecture. Unlike the sct of high-level functional properties,
CSP-cxpressed requirements do not have to exist a prior:.

3 Architecture description language requirements

Since the genomial co-design process is intended to cover all levels of MDA,
including transition between CIM and Platform Independent Model (PIM), all
features of it must be applicable to functional specifications and architectural en-
tities alike. To keep the framework of genome as universal as possible, operations
on architecture should be performed only on such essential properties that are
provided by the most ”minimalist” architecture description languages (ADL).
As stated in [2], an ADL must provide a means of depicting at least (or seman-
tic equivalents of) components and their interfaces, connectors and architectural
configurations. For purposes of generality, a component and its interfaces can be
expressed as structure

C={B,L...I,};n>0

I = {Pl ...Pm};m >0

24 J. Silins

B Implements(X; ... X;), where

B - behaviour expressed in formal way (e.g., using CSP) as implementation of
one or more functional properties { X} taken from the topological model,

I - sct of interfaces,

P - set of ports that accommodate connectors.

Ports represent precise points of interaction between component and the outer
world via connectors; at least one port per interface is required. Likewise, ar-
chitectural configurations define topology and can be described as collections of
components and connectors arranged in such a way that no component remains
isolated and each connector has exactly two ports (P; and P;) connected.

A= {Cl N O,L, Cm e Cnm};

Vi€ [Cny...Cnyl(l Joins(P;, P;)), where

Cn - set of connectors.

Architectural configurations represent either full or sub-architectures. A config-
uration depicts full architecture if and only if it includes all functional properties
X of a particular topological model; otherwise, it represents a sub-architecture.
With these definitions made, general-purpose set operations on architectural
configurations can be devised:

— Inclusion of components is expressed as union of sets of their interfaces and
merger of behaviour descriptions:
CiuCy=B1UBy, 1 UI
Likewise, union of architectural configurations is expressed as:
AT UA =CiUCy,CnyUCny
— Split of a component is a relative complement operation on its interface set;
a new behaviour is also derived:
Ci\C>2 = B1\Bz, L\ I;
Split of architectural configuration:

Al\AQ = Cl\Cg, Cnl\C'ng

The actual implementation of these operations is language-dependent, and is
generally performed by automated means.

4 Example

In order to demonstrate the nature of evolving architectures, the case study in-
volves development of a consumer-grade car navigation system. The zADL v2.0
architccture description language [1] has been chosen as the formal carrier for
architectural design elements. It is assumed that developer has no ready-made
component libraries and/or frameworks available, thus allowing the example to
show how architectural libraries emerge from ground up. The main function of
car navigation system is to display the current position of vchicle on an elec-
tronic "moving” map. Maps should be uscr-upgradeable from an external USB
flash-memory module.

Genomial Co-Design: An MDA-compliant Approach for Embedded Architectures 25

Step 1: analysis of description and creation of CIM

The initial high-level design, as devised from the non-formal natural-language
description and represented by means of topological model of functioning, has
been given in Fig. 2a. Acting as CIM if speaking in terms of MDA, this model
does not address implementation-related problems and remains highly abstract,
but nevertheless provides useful information that clarifies how the architecture
should be built. The high-level model depicts main functional properties that

|
Y X p
@‘"m a, «

AN
4 ~ S i N 1
o o 9‘*‘*? X

EY b}]

Fig. 2. Topological model of navigation system

arc linked together by causal relationships, as well as ties with the surround-
ing environment that cxist beyond the development scope but are sufficiently
close-coupled with the system in question. The list of main functional proper-
ties (nodes) has been extracted from given description and forms the main cycle
of functioning: a) manage power supply and initiate low-power mode; b) ac-
quire GPS position data; c) prepare digital map data; d) display current map on
screen; ¢) accept user’s input commands from thumbwheel and react on them.

The system receives information and power from the environment, thus in-
teracting with it: f) power from car battery (constant supply); g) power from
ignition system (sporadically interrupted supply); h) signal from GPS satellite
system; i) graphical display image; j) user’s input commands; k) digital maps
from external source (flash module).

In order to support proper GPS hot and cold start-up times, the model is
refined further by expansion of node b (see Fig. 2b) and now contains provisions
for support of proprietary GPS low-power modes. This extension allows for GPS
module to be ”woken up” for periodic ephemeris checks while the rest of system
remains in inactive state.

The topological model now contains a number of functional sub-nodes that
form a first-level sub cycle: 1) manage GPS power; m) manage active external
antenna; n) receive satellite signal; o) decode position data.

Likewise, node ¢ has been extended for better understanding of map prepara-
tion phasc (see Fig. 2c). Maps in digital form are pre-loaded from external media,

26 J. Silins

cached and sorted for faster access to them, and selected for subsequent display
on scrcen. The following functional nodes have been added in lincar manner: p)
read maps from external media; q) cache geospatial outlines of maps; r) deter-
mine map visibility; s) pre-load visible maps; t) place visible maps on coordinate
grid.

Although refinement of the topological model of functioning can proceed fur-
ther, the basic functionality has been already included. With that, transition to
PIM can commence.

Step 2: Transition to PIM

Each functional node present in the topological model is being mapped onto
an unique component in ADL namespace, and cach arc is being represented as
ADL connector. In order to preserve arc directions, a default interface is created
for cach component with In or Out port defined for each respective arc (see
Fig. 3). Arcs that conncct the system with outer world are omitted, and only
their associated ports (or collections thereof) remain. Figure 5 depicts a naive
architecture (designated A,) in box and arrow equivalent of zA DL notation. A,
is abstract, for no behaviour has been defined for any of its components, and
still platform-independent. All components and constructions resident therein
have been entered into the repository of architectural genome after being sorted
by origin and complexity: A = {A, }; K = {a,b,c,d,e,l,m,n,0,p,q,7,5,t}; L =

{(b0={}sH={}

Fig. 3. Naive architccture of navigation system

As the next step, contents of A,, arc being gradually replaced with their less
abstract derivatives. This process is influenced by non-functional requirements
that originate from both system’s initial description and nature of problem do-
main. Tts source topological model contains one first-order sub-cycle; therefore,
the sub-cycle has to be implemented as a separate thread that runs in context

Genomial Co-Design: An MDA-compliant Approach for Embedded Architectures 27

of the main process (main cycle of topological model). The following changes to
architecturc A,, have been made:

— Sub-architectures of process (u) and thread execution models (v) have been
created and included in genome’s repository; they both, although abstract,
are operating system services: O = {u, v};

— Component b has been merged with sub-architecture v that together form
b,. It now cxposes interfaces of both b and v:
by =bUv; K = {a,{b,b,},c,d,e,l,m,n,0,p,q,7,5,t}

~ Components a, ¢, d, e are merged into new component z since they share a
common exccution context (reside in the same process):
z=aUcUdUe; K = {{b,b,},{a,c,d, e, z},I,m,n,0,p,q,7,5,t}

— Component z has been merged with u to form the main process zy:
zo =2Uw K = {{bb,},{a,c,d,e,z},l,m,n,0,p,q,7,5,t};

— Since component b forms a separate thread, its outer connectors can be
implemented as shared variables and have been assigned typc Cs,. Their
behaviour can now be specified, thus they cease to be abstract:

L= {{Clv Ca, Csv}};

— All other connectors reside inside a common exccution context and will form
programming language function entry and exit points (C,), depending on
their direction: L = {{01, Ca, CSU}, {Cg, Cy, Cs, Ch1, Crz2, Cb3, Cha, Ca}}.

The changed architecture is designated A,1 and saved in repository:
A= {{Anv Anl}}

Fig. 4. Architecture refinement: second stage

By gradually supplying computation parts to components and extending
them, the architecture becomes complete and ready for implementation. Com-
ponents whose behaviour cannot be implemented in software or it is impractical
to do so, will be excluded from their respective parent configurations. One of
such components is n that, in reality, performs functions of a GPS receiver:

28 J. Silins

— Component n is excluded from b; b is replaced by derivative b, and b, with
byn:
bn = b\”; K= {{{bm bvn}: {ba bn}}y {aa C, d, €, Z}, l, m,n,o0,p,q,T, S, t}

— Connectors Cjs and Cps will be implemented as serial lines and typed as Cj:
O = {u,v,Cy}

The changed architecture is designated 4,2 and saved in repository (see Fig. 4):
A= {{An ATL17 AnQ}}

All of the changes made to architecture are reflected in the topological model
via PIM-CIM transformation. The model of architecture A,» can be considered
functionally complete and ready for transition to PSM.

5 Conclusion

The example of practical application of the genomial co-design approach shows
some of the possibilities offered by the concept of evolving architectures. With
an established repository of ready-made architectures and their separate compo-
nents, new systems can be created more effectively. Thus, a step is made towards
reuse of models, specifications and code across single or multiple problem and
application domains.

Further research has been planned concerning tool support and automated
model checks. Its purpose is to improve merge and split operations on descrip-
tions of behaviour so that their correctness and completeness can be guaranteed
before and after each transformation of a model.

This work has been partly supported by the Furopean Social Fund within the
National Programme ”Support for the carrying out doctoral study program’s and
post-doctoral researches” project ”Support for the development of doctoral studies
at Riga Technical University”.

References

1. E. M. Dashofy, A. van der Hock, and R. N. Taylor. An infrastructure for the
rapid development of xml-based architecture description languages. In ICSE "02:
Proceedings of the 24th International Conference on Software Engineering, pages
266-276. ACM Press, 2002.

2. N. Mcdvidovic and R. N. Taylor. A framework for classifying and comparing archi-
tecture description languages. In M. Jazayeri and H. Schauer, editors, Proceedings of
the Sizth European Software Engineering Conference (ESEC/FSE 97), pages 60-76.
Springer-Verlag, 1997.

3. J. Osis. Formal computation independent model within the MDA life cycle. Inter-
national Transactions on Systems Science and Applications, 1(2):159-166, 2006.

4. M. Sgroi, L. Lavagno, and A. L. Sangiovanni-Vincentelli. Formal models for em-
bedded system design. IEEE Design and Test of Computers, 17(2):14-27, June
2000.

5. J. Silins. The genomial co-design approach for design of embedded systems. In
Proceedings of IFAC Workshop on Programmable Devices and Embedded Systems
PDeS 2006, pages 150-155. Brno University of Technology, 2006.

