
Genomial Co-Design: An MDA-compliant
approach for embedded architectures

Riga Tcchnical University,

Janis Silins

Irrstitute of Applied Cornputcr Systcms, Meza str. 1/3,

LV-1048 Riga, Latvia
j anis . s i l ins@Iep . lv

Abstract. This paper proposes a modified, genomial, version of func-

tion - architecture co-design rnethod so that wider cvaluation of architec-

turcs from both functional arrd structural point of view can bc pcrformed.

The topological rnodellirrg technique is used to creatc thc Computatiorr
Irrdependent Modcl that is abscnt in thc original method. A case study
has been performcd that clarif ics thc kcy idcas of this approach.

Keywords: Embedded, architecture, co-design, forrnal

Introduction

The rising complcxity and quality rcquircmcnts for modern embedded systems
calls for dcvelopmcnt and use of highly intcgrated and formal dcsign approaches.
Many rescarchers agrec that a novcl perception of cmbedded architecture is re-
quired - one that does not draw strict boundaries between hardware and softwarc
components of a single system. The problem of unified view on embedded sys-
tems is addressed by various formal techniques, such as function - architecture
co-design [4]. Unfortunatcly, this approach has certain drawbacks that havc been
discussed in [5]. A number of modifications and improvements have been pro-
posed therein, having been consolidated into a new, gcnomial, approach.

2 The architectural genome

'I 'he most significant shortcomings of function - architecture co-design approach
can be corrected by inclusion of evolving architectures in its meta-model. In gen-
eral, the process of architecting should based on both functional and structural
aspects of the system. Although the functional specification still remains a cor-
nerstone for developmcnt of any architecture, the implementation details must
not be left out of thc architecting scope. The method should provide means of
traceability; in the context of Model Drivcn Architccture (MDA), the trail is
used to provc corrcctness of transformations. Finally, multiple iterations of thc
dcvclopment process must be properly supported. The architecture, although
being modified, should keep its original integrity without any ad hoc solutions.

22 J. Silins

Such evolving architectures are materialised in the modified co-design method as

the " architectural genome" - a collection of formal dcscriptions and transforma-

tions. It acts as a repository that holds architectural components, cxpresscd in

pre-defined fbrmal notation, supports join, merge and other operations on them,

and enables thc dcveloper to revisc and extcnd its contents during the develop-

mcnt process. The dcscription of embcdded architecturcs has been accordingly

extended and consists of:

- sct of functional rcquirements or functional spccif icat ion (X : {X0...X1});
- set of architectural constructs (A : {A0 . . . A}) as a combination of primi-

tivcs: elements of thc utilized programming language (r), services provided

by operating system (O) and services provided by hardware components

(H) ;
- set of rcquirements enforced on the model of communications (Cr).

It must be noted that the set of architectural constructs (set A) includes members

of various degrees of complexity and levels of abstraction, as listed below (in order

of increasing complcxity) :

- Architectural primitives that are pcrceived as "black boxes". Their descrip-

tions are included in the gcnome before devclopment process starts, are

trcatcd as read-only information and can bc freely re-used. The primitive

set P : {O, H, L) contains both abstract and real-world elemcnts.
- Thc set of architectural constructs contains various combinations of primi-

tives, therefbre significa,ntly rnore cornplex parts of the system can be devel-

oped. They still are not self-sufficient but nevertheless can be included in the

models of either current or future svstems. The specifications of members

o f t h i s s e t K : { { O r , H r , L t } , { O r , H z , L z } . . . { O n , H " , L . } } a r e c r e a t e d

by using merge operations on members of specific subsets of P. The set of

architecturc constructs is also suitable for re-use in other projects.
- The set of architectures consists of implcmentation candidates that are fully

functional and self-sufficient. Its members are creat,ed from t;he elements of

set of architecture constructs and primit ives (A: {{Kr, Pr}, {Kz,Pz}
.. .{Kn,P,}}), and dif fer f iom them by being non-universal and val id only

within boundaries of a particular project.

Genomial architcctures are created as abstract entities (if the original require-

rnents do not irnply inclusion of particular COTS components), a,nd a,fter verifi-

cation thc abstract parts are gradually replaccd with their real-world equivalcnts.

Although thc genomial approach scems to bear a strong resemblance to thc

well-known componcnt-based architecture dcsign and style-bascd development

methods, it, shows significant dilfcrcnces from l,hem. Genomial architecture con-

structs, unlike those of the component-based architecture, can be extcnded at

will. If some of thcm are perccived as black boxes, it is an cxclusion, not a

rulc. Also, architectural dcsigns derivcd from a common genomial basc, do not

havc the same vocabulary. In most cases, their constructions arc only distantly

related: thcy may be dcrivatives of common abstract objects.

-*1,,.
I

Genomial Co-Design; An MDA-compliant Approachfor Embedded Architectures 23

Extension of function - architecture co-design approach also deals with selec-

tion of suitable formalisms with emphasis on aspccts significant to architecture'

Onc of such methods is topological modclling of functioning [3]. Its role in the

cfM

, , .
:FIM

Fig. 1. Corrclation between function - architecture co-design and MDA

gcnomial co-dcsign environmcnt is depicted in Figure 1. It covers all of thc prob-

lem and application domain specification needs as well as a part of funcl,ional

description - the portion of it that deals with high-level abstractions. By us-

ing the topological model as basis, the white areas of functional specification

can be fillcd in with descriptions in functional algebraic notation (e.g., CSP).

This specia,lized part of functional specification can be created simultaneously

with the macro-architecturc. Unlikc the sct of high-level functional properties,

CSP-cxpresscd requirements do not havc to exist a priori.

3 Architecture description language requirements

Sincc thc gcnomial co-design process is intendcd to cover all levcls of MDA,

including transition betwcen CIM and Platform Independent Model (PIM)' all

f'eatures of it must be applicable to functional specifications and architectural en-

tities alike. To keep thc framework of genomc as universal as possible, operations

on architecture should be performed only on such essential properties that are

provided by the most "minimalist" architecture description languagcs (ADL).

As stated in [2], an ADL must provide a means of depicting at least (or seman-

tic equivalents of) components and their intcrfaces, connectors and architectural

configurations. For purposes of generality, a component and its interfaces can be

exprcssed as structurc
C : { 8 , l t . . . \ } ; n > 0
I : { P r . . . P ^ } ; m } 0

24 J. Silins

B Implements(Xi . X j) , where
B - behaviour cxpressed in formal way (e.g., using CSP) as implementation of
onc or morc functional properties {X} taken from the topological model,
.I - sct of interfaces,
P - set of ports that accommodate connectors.
Ports represent precise points of interaction betwecn componcnt and the outer
world via connectors; at least one port per interface is required. Likewise, ar-
chitcctural configurations dcfinc topology and can bc described as collections of
components and connectors arranged in such a way that no component remains
isolated and each connector has exactly two ports (fl and Pi) connected.
A : { C t . . . C , , , C n t . . . C n ^ } ;
Vl e lCn1 . . . Cr^)(l Joi,ns(P;, Pi)), where
Cn - set of connectors.
Architectural configurations represent either full or sub-architectules. A config-
uration dcpicts full architccturc if and only if it includes all functional properties
X of a particular topological modcl; othcrwisc, it reprcscnts a sub-architecture.
With these defirritions rna,de, general-purpose set operations on architectural
configurations can be devised:

- Inclusion of components is expressed as union of sets of their intcrfaces and
merger of behaviour descriptions:
C t U C z : B r U 8 2 , 1 1 U 1 2
Likewise, union of architect,ural configural,ions is expressed as:
A t U A z : C r l) C 2 , C n l u C n 2

- Split of a component is a relative complement operation on its interface set;
a new behaviour is also derived:
Ct\Cz - Bt\82,.I1\.I2
Split of architectural configuration:
Ar\Az: Cr\Cz,Cn1\Cn2

The actual implementation of thcsc operations is languagc-dependcnt, and is
generally performed by automated means.

4 Example

In order to dcmonstrate the nature of evolving architectures, the case study in-
volves development of a consumer-grade car navigation systcm. Thc uADL v2.0
architccture dcscription language [1] has been chosen as the formal carrier for
architectural design elements. It is assumed that developer has no ready-made
componcnt libraries andf or frameworks available, thus allowing thc cxamplc to
show how architectural librarics emcrge from ground up. The main function of
car navigation system is to display the current position of vchiclc on an elcc-
tronic "moving" map. Maps should bc uscr*upgradeable from an external USB
flash-memory module.

Genomial Co-Design; An MDA-compliant Approachfor Embedded Architectures 25

Step 1: analysis of description and creation of CIM

The initial high-levcl design, as devised from thc non-formal natural-language

description and rcprescnted by means of topological model of functioning, has

been given in Fig. 2a. Acting as CIM if spcaking in terms of MDA, this model

does not addrcss implementation-related problems and rcmains highly abstract,

but neverttrelcss provides useful infbrmation that clarifics how the architecture

should be built. The high-level modcl depicts main functional propertics that

Fig.2. Topological

bl

model of navigation systcnt

arc linked together by causal relationships, as wcll as ties with the surround-

ing environment, that, cxist beyond the developmcnt scope but, are sufficientlv

close-coupled with the system in question. The list of main functional propcr-

ties (nodes) has been cxtracted from given description and forms the main cycle

of functioning: a) manage power supply and initiate low-power mode; b) ac-

quire GPS position data; c) prepare digital map data; d) display current map on

scrcen; c) accept uscr's input commands from thumbwheel and react on them.

The system receivcs information and power from the environment, thus in-

teracting with it: f) powcr from car battery (constant supply); g) power from

ignition system (sporadically interruptcd supply); h) signal from GPS satellite

system; i) graphical display image; j) user's input commands; k) digital maps

liorn cxtct'rtal source (flash modulc).

In order to support proper GPS hot and cold start-up timcs, the model is

refined further by expansion of node b (sec Fig. 2b) and now contains provisions

for support of proprietary GPS low-power modcs. This extension allows for GPS

module to be "woken up" for periodic cphemcris checks whilc the rcst of systcm

rcmains in inactive state.

The topological model now contains a number of functional sub-nodes that

form a first-level sub cycle: I) manage GPS power; m) manage act,ive external

antenna; n) receive satellite signal; o) dccode position data.

Likewise, node c has becn extcnded for better understanding of map prepara-

tion phasc (see Fig. 2c). Maps in digital form are prc-loaded from external media,

6ii

26 J. Silins

cached and sorted for fastcr access to thcm, and selectcd for subsequent display

on scrcen. Thc following functional nodes have been added in lincar manner: p)

rcad maps from external media; q) cachc geospatial outlines of maps; r) dcter-

mine map visibility; s) pre-load visible maps; t) place visible maps on coordinate

grid.
Although refinement of the topological model of functioning can proceed fur-

ther, the basic functionality has been already includcd. With that, transition to

PIM can commcnce.

Step 2: TYansit ion to PIM
Each functional node prcsent in the topological model is being mapped onto

an uniquc component in ADL namespacc, and cach arc is being reprcsented as

ADL connector. In order to prescrve arc directions, a dcfault interfacc is created

for each component with In or Out porl defined for each respective arc (see

Fig. 3). Arcs that conncct the system with outcr world are omitted, and only

thcir associated ports (or collections thercof) remain. Figure 5 dcpicts a naive

architecture (designated A,) in box and arrow equivalent of rADL notation. -4,,

is abstract, for no behaviour has been defined for any of its components, and

still platform-independent. All components and constructions rcsident therein

have been cntered into the repository of architectural genome after being sorted

by o r i g i n and comp lex i t y : A : {A . } ; K : { a ,b , c ,d ,e , l ,m rn)o ,P ,Q , r , s , t } ; L :

{ } ;o : { } ;s : { } .

Fig.3. Naive architccture of navigation systerrl

As the next stcp, contents of A,, arc being gradually replaced with their lcss

abstract derivatives. This process is influenced by non-functional requirements

that originate from both system's initial description and naturc of problcm do-

rnain. Its source topological model contairn one first-order sub-cycle; there{bre,

the sub-cycle has to be implcmented as a separatc thread that runs in context

Genomial Co-Design; An MDA-compliant Approach for Embedded Architectures 27

of thc main proccss (main cyclc of topological model). The following changes to

architecturc A,, have becn made:

- Sub-architccturcs of process (u) and thread cxecution models (o) have becn

created and included in genome's repository; they both, although abstract,

are opcrating system services: g : {u,u};
- Component b has bccn merged with sub-architccture u that together form

bu. It now cxposes interfaces of both b and u:

b u : b u u ; K : { a , { b , b , } , c , d , e , l , m , n , o , P , Q , r , s , t }
- Componcnts a, c, d, e are mcrged into new component z sincc they share a

common exccution context (residc in thc same process):

z : a U c U d " V e ; K : { { b , b u } , { o , c , d , e , z } , l , m , n , o , p , q , r , s , t }
- Componcnt z has been merged with z to form the main process zu:

z u : z U u ; K : { { b , b , } , { o , c , d , e , z } , 1 , m , D , o , P , q , r , s , t } ;
- Since component b forms a separatc thread, its outer connectors can be

implemented as shared variables and have been assigned typc C",. Their

behaviour can now be specified, thus ttrey cease to be abstract:

L : { { C t , C z , C " ,) } ;
- All other connectors reside inside a common exccution contcxt and will form

programming language function entry and exit points (C"), depending on

the i r d i rec t ion: I : { {Cr , Cz, C
" , } , {C s , C q, C s , Cr , t , Cbz, C bs, C us, C

" } }
.

The changed architecture is dcsignated A,,t and saved in rcpository:

A : { { A , , , A _ r } }

Fig.4. Architecture refinement: second stage

By gradually supplying computation parts to components and extcnding

them, thc architecture becomes complete and ready for implcmentation. Com-

ponents whose bchaviour cannot bc implemcnted in software or it is impractical

to do s<.r, will be excluded from their respective pa,rent configura,tions. One of

such components is n that, in reality, performs functions of a GPS receivcr:

A

I p
L Q - ,

t

I
- -T

, a 6
1 " I L v c a rq ? f c +' K)] r ! :

t-rli r

28 J. Silins

- Component n is excluded from b; b is

bu rr'.

replaccd by derivative b, and b, with

b, , : b \n ; K : { { {b" , b , , , } , {b , b . } } , {a , c , d , e , z) , l , r r l , n , o , P, Q, r , s , t }
- Connectors C1,2 and C63 will be implemented as serial lines and typed as C":

O : { u , u , C r }

Thc changed architecture is dcsignated A,,2 and saved in repository (see Fig. 4):

A : { {A . , A , , , r , A -z) }
All of the changes made to architecture are reflected in the bopological model

via PIM-CIM transformation. The model of architccture A.,,2 ca,r1be considcred

functionally complete and ready for transition to PSM.

5 Conclusion

The example of practical application of the genomial co-design approach shows

some of thc possibilities offered by thc concept of cvolving arctritectures. With

an established repository of ready-made architectures and their separate compo-

nents, new systems can be created more effectively. Thus, a step is made towards

reuse of models, specifications and code across single or multiple problem and

application domains.
Further rcsearch has bccn planned concerning tool support and automated

model checks. Its purpose is to improve merge and split operations on descrip-

tions of behaviour so that their correctness and completeness can bc guaranteed

bcfore and after each transformation of a model.

Thi,s work has been partly supported by the European Soci,al Fund wi'th'in the

Nat,ional Programme " support for the carrg'ing out doctoral studg progran'L's and

post-d,octoral researches" project "support for the deuelopment of doctoral studi'es

at Ri,ga Techni,cal Uni,uersi'ty" .

References

1. E. M. Dashofy, A. van der Hock, and R. N. Taylor. An infrastructure for the

rapid dcveloprncnt of xml-based architccture dcscription languages. In ICSE '02:

Proceedzngs of the 2lth Inte'mati,onal Confe're'nce on Soft'wa're Err'gi'neerinq' pages

266 276. ACM Prcss, 2002.
2. N. Mcdvidovic and R. N. Taylor. A framcwork for classifyirrg and comparirrg archi-

tccture description languagcs. In M. Jazayeri and H. Schauer, cditors, Proceedi'ngs of

the si.rth EuroTtean softwa,re Engi,neering conference (ESEC/FSE 97), pages 60 76.

Springer-Vcrlag, 1997.
3. J. Osis. Forrnal computation irrdependent model within thc MDA life cyclc. Irt'ter'

national Transact'ions on Systems Sc'ience and Appli,cat' ions,1(2):159 -166' 2006.

4. M. Sgroi, L. Lavagno, and A. L. Sangiovanni-Vincentelli. Formal models for em-

bedded systcm design. IEEE Design and Test of Computers, 17(2):14 27, June

2000.
5. J. Silins. The gcnornial co-design approach for design of embedded systems. In

P'roceedings of IFAC Workshop on Program,rno,ble Deuices and Ernbedded, Systems

PDeS 2006, pages 150-155. Brno University of Technology, 2006.

