Modeling of Services and Service Collaboration
in UML 2.0

Petr Weiss and Jaroslav Zendulka

Dept. of Information Systems, Faculty of Information Technology, Brno University of
Technology, Bozetéchova 1, 612 66 Brno, Czech Republic
{weiss, zendulka}@fit.vutbr.cz

Abstract. One of many definitions of Service-Oriented Architecture
(SOA) says that SOA is an architectural style for building next-generation
distributed information systems. If we want to get a reliable and good
working system, it must be well designed first. This paper deals with
Service-Oriented Architecture Design (SOAD), especially with modeling
of services. Furthermore, abstraction layers of SOA are introduced and
possible using of object oriented approach on each layer is discussed in
this paper. Besides, three types of service collaboration are presented.
The main objective of the paper is to demonstrate how these types of
collaboration can be described in UML 2.0.

Keywords: Service-Oriented Architecture, Service-Oriented Architec-
ture Design, Service Co-operation, service, component.

1 Introduction

Although service-oriented architecture is not a new concept in the area of dis-
tributed softwarc architectures, it comes to the fore in recent years thanks to
modern technical solutions, e.g. well-defined communication networks and mod-
eling disciplines. SOA implementation rarely starts on the green field. That
mcans creating a SOA solution is almost based on integrating existing systems
by decomposing them into services, business processes, and business rules. As
a consequence, the SOAD is composition of well-established practices such as
Object-Oriecnted Analyse and Design (OOAD), Enterprise Architecture Design
(EAD), Business Process Modcling (BPM) and some other innovative elements.
The idecas presented in this paper are a part of a greater project, which deals
with a methodology for SOA systems modcling. More precisely, the methodology
is aimed at building models of inner-enterprise services and models of collabo-
rations of such services . Inputs for the methodology are elements generated by
decomposition of legacy (nonSOA) systems. For the decomposition an appro-
priate method (e.g. SOMA [1]) is used. Another goal of the methodology is to
find how to make the inner-enterprise services accessible for consumers who stay
outside of a given enterprisc.

This paper describes which object-oriented (OO) features and techniques
can be used in SOAD and how UML can be used for modeling of components,
assembling componcnts into services, services and a service collaboration.

30 P. Weiss and J. Zendulka

2 Background

There is no ’standard’ definition of SOA. In [5] SOA is presented as an approach
for building distributed systems that deliver application functionality as services
to either end-user applications or other services.

An abstract view depicts SOA as a partially layered architecture. In this
view, SOA consists of three layers: component layer, service layer and business
process layer. There are two sections in parallel with these layers. They provide
tools for integrating components to services and services to business processes
and tools for monitoring and maintaining security and QoS of SOA applications.

Business process Business process layer

Service Service layer

O QO Q O

uonje.baju)

Bunopuow ‘Anaes 'sep

O Component
 — | S—— — —]
| —— [] | 3

Component layer

Fig. 1. SOA as a partially layered architecture.

It is evident that the key element of SOA is a service. Each service is a com-
position of collaborating components. Components are responsible for providing
service’s functionality and maintaining the quality of service.

Services are loosely coupled software entities with well-defined, published
inter faces. The scrvice interface separates provided functionality from its imple-
mentation (services are implementation-independent) and forms so-called service
description. The service description is available for searching, dynamic binding
and invocation of a given service by a service consumer. The communication
between services is based on message sending.

On a higher abstraction level, services can be assembled into a business
processes. In SOA terms, a business process consists of a series of operations
which are executed in an ordered sequence according to a set of business rules.
The process of sequencing, selection, and exccution of business rules is referred
to as service choreography. Typically, choreographed services are invoked in
order to respond to business events.

More information about SOA principles can be found in [5] and [4].

Object-oriented analysis and design (OOAD) is an approach in which a sys-
tem is modecled as a collection of classes. The system behavior is achieved by

Modeling of Services and Service Collaboration in UML 2.0 31

collaboration of instances (objects) of these classes, and the state of the system
is the combined state of all the objects in it. Collaboration among objects is
achieved by sending messages. Since SOA is a new paradigm and services and
objects are two different concepts, the question is ”Could OOAD or a part of
OOAD be used in SOAD?” The following paragraph discusses which OO fea-
tures and techniques [8] can be used in SOAD. As mentioned in Introduction,
this paper deals only with components and services. Conscquently, using OO at
the business process layer is not described.

— Information hiding: SOA services are for service consumers black boxes
with well-defined interfaces. The goal is to separate what service does (its
interface) from how it does it (its implementation). From the services point of
view, components are also black boxes. Services have only information about
components interfaces and route requests (for a service) from a consumer to
subordinate components.

— Messaging is the fundamental communication model for components and
services in SOA.

— Inheritance can only be considered on a specification level of component
and service modcling.

— Polymorphism describes the situation where the result (of a behavior) de-
pends on the class of an object the behavior of which is invoked. In other
words, two or more classes accept the same message, but respond on it differ-
cntly. The possible use of polymorphism in SOAD is similar to inheritance.

— Classes and instances: Classes are templates for creating instances (ob-
jects). From SOA point of view, this concept can be applied to both compo-
nents and services.

— Encapsulation: A service encapsulates the state and behavior of a number
of components.

It results from the previous paragraph that except inheritance and polymorphism
the underlying OO features can be used in SOA for modeling of components or
services. It should be pointed out that all OO features including inheritance and
polymorphism can be used for modeling the inner structure of components.

3 Three Types of Collaboration among Services

To model collaborations of services inside an enterprise, it is useful to distin-
guish several categorics ol collaborations. Each category is defined by a set of
communication rules (a protocol) and by the purpose of the collaboration. The
categories are following:

— The Service Co — operation describes a collaboration of services, in which
one service has to use another service(s) to fulfil incoming requests.

— The Service Aggregation is a set of rules which defines how to create a
new service from two (or more) existing services. The new service provides
combined functionality of its building services.

32 P. Weiss and J. Zendulka

— The Service Choreography is such collaboration of services that supports a
business process.

The basic concept of service co-operation modeling is explained latter in this
paper. More about service choreography can be found in [5], [4] and [2], the
scrvice aggregation is object of future research.

4 Using UML in SOAD

As mentioned before, object-oriented technology and languages are great ways
to design and implement components. Unified Modeling Language (UML) is
a specification language for object modeling. Since there exists a relationship
between OO and SOAD (described in section 2), UML can be used in SOAD.
UML provides extension mechanisms (stereotypes, tagged values, constraints)
which cnable to model services. This chapter describes the use of UML 2.0
[10] for modeling components, services and scrvice collaboration. Furthermore,
stercotypes for modeling SOA components and services are presented.

4.1 Models of Components and Services

In this paper, we use a simple example of co-operating services to demonstrate
the use of the proposed modeling techniques. We assume two collaborating ser-
vices: Smath and Splus. Smath offers calculation of some mathematical opera-
tions, but in fact it docs not perform the operation. It collaborates with other
scrvices. We consider only one operation here the sum. The service that really
performs it is referred to as Splus. A part of this example is shown in Figure 2.
The figure depicts a model of Smath. The structure of this model is explained in
the following paragraph.

A service is modeled as a stereotype service , which is derived from the
clement component of the UML. Therc are two possible abstract views of a
service - an cxternal and internal one. The internal view (or "white-box” view)
shows how the external behavior is realized internally. In this case, the inner
structure depicts how component instances arc interconnected to provide the
required functionality. An example of this view is shown in Figure 2 . This level
is used only for components interconnection modeling inside a service. The other
abstract view, the extcrnal view (or ”black-box” view), is used to model services
in scrvice collaboration. It hides the inner structure (implementation) of services.

The mapping between the internal and external view is by means of a delegation
connector . It is represented by a port and an UML predefined-stereotype of
dependency delegate . The port is shown as a small square symbol on the
boundary of the symbol denoting a service.

A port delegates to a set of subordinate components (and vice versa). At
cxecution time, signals will be delivered to the appropriate instance. In the
cases where multiple target instances support the handling of the same signal,
the signal will be delivered to all these subordinate instances.

Modeling of Services and Service Collaboration in UML 2.0 33

Component modeling is easy, because UML provides a modeling element
component (a subclass of Class in the UML metamodel). A component is a self
contained unit that is able to interact with its environment through its provided
and required interfaces (Classifiers in the UML metamodel). A component
can be replaced at run-time by a component that offers equivalent functionality
based on interface compatibility. Components are modeled as "black-boxes”.

<RgerviceRe
Simath

«xgelegitass CECOMPUTRTRe>
o S o AV BRI BRI

wmath p icourt p oy H =l

imathr

Icheck
|

<=component=>»
:Ccheck

Fig. 2. A Service diagram - internal view of Smath. Notation: Imath.p is the provided
interfacc of the scrvice Smath, Imath.r is the required interface of Smath.

4.2 Co-operating Services
Co-opcrating services have following properties:

— service can receive infinite number of incoming messages

— incomming requests are qucued up into the input queue

— request processing and communication are processed in parallel
the service description of each co-operating service is known

Following two sections introduce fundamentals of static and dynamic mod-
eling of service co-operation. Since we focus on modeling services inside an en-
terprise, we assume services with fine-grained interfaces.

4.3 Static Models of Co-operating Services

In general, cach service can provide its functionality to other services and it can
also require some functionality from other services. The former role of the service
is referred to as a "service provider” and the latter one as a ”service consumer”.
Because each service can play both roles, it should realize a provided interface
of the service provider and has a required interface of the service provider. In

34 P. Weiss and J. Zendulka

addition, since the communication of the services is asynchronous, our model is
based on the Observer pattern [6].

Figure 3 depicts a static model of co-operating scrvices Smath and Splus.
Here, the service Smath plays the role of a service consumer and the service Splus
plays the role of a service provider. Both services realize interfaces: IProvider
and IConsumer. IProvider contains a method attach(service). Using this
method, a service consumer registers at the service provider. The registration
also includes a service request, which is represented as a service parameter of
the attach() operation in the model. Such requests arc queued. It is modeled by
mcans of aggregation with the service provider being an aggregate. As soon as the
service provider completes the request processing, a method notifyConsumer ()
sends a message with the result to the service consumer. The corresponding
operation in the model is setResult(servicerslt).

<<interface=>» sauges> <<interface»»
IConsumer | . _ > {Provider
.
{ordered} <
setResult(servicerst) attach (service)
ray notifyConsumer() of 4
I !
R e — 1 & 1

|
! ! 4 theConsumer- > setResult(servicerst)

<<SErvice»» <<service=»
Smath Splus

Fig. 3. A model of co-opcrating services (Service diagram - external view).

4.4 Dynamic Models of Co-operating Services

If we want to model service-to-service connection during service co-operation,
we can not usc the approach we used to model components composition inside
a service (section 4.1). Components are assembled into services in advance in
design time. On the other hand, services can be discovered and are bound dy-
namically. Consequently, we can model service co-operation only by means of
UML behavioral models, namely state machine and interaction diagrams. We
have chosen a sequence diagram to model communication of services. Since the
modeled entities are services, the diagram have to fulfill the following restrictions:

— Lifelines are services.
— All messages among scrvices are asynchronous.

Modeling of Services and Service Collaboration in UML 2.0 35

The second restriction ensures that a sender does not wait for a replay (after
a request was sent) and the sender can accept another incoming messages or
process stored requests (replies). Figure 4 shows communication of services Smath
and Splus from Figure 3.

Service Communication

% :Smath 1Splus
|
t
i
1
|
|
|
|
|
|
|
!
1
e
<
|
1

attach (service)

attach (service)

notityConsumer()

setResult(servicerstt)

notityConsumer()

setResult(servicerst) [

Fig. 4. A Scquence diagram. This diagram shows details of communication between
Smath and Splus.

5 Conclusion and Future Work

This paper briefly discusses the use of object-oriented approach in SOAD. It is
shown that information hiding, messaging, classcs and instances, and cncapsula-
tion arc concepts that can be used in SOAD. In addition, they are supported by
UML. Thereforc, UML was chosen as a modeling language for components, ser-
vices and service co-operation. UML provides well-defined diagrams for modeling
composition of components inside a service and for modeling collaborations of
services including their communication. The future work will focus on improve-
ment and extension of the approach mentioned above, especially on creating a
meta-model of service co-operation and service aggregation that will enable to
develop more advanced and sophisticated models. In addition, it would be uscful
to create some verification methods for created models .

This research has been supported by the Grant Agency of Czech Republic grants
No. 102/05/0728 ”A Framework for Formal Specifications and Prototyping of

36

P. Weiss and J. Zendulka

Information System’s Network Applications” and by the Research Plan No. MSM
0021630528 ”Security-Oriented Research in Information Technology”.

References

10.

Arsanjani, A.: Service-oriented modeling and architecture. Document is avail-
able on URL http://www-128.ibm.com/developerworks/wcbservices/library /ws-
soa-designl/

Benatallah, B., Dijkman, R., Dumas, M. and Maamar, Z.: Service Composition:
Concepts, Techniques, Tools, and Trends. In Stojanovic, Z. and Dahanayake, A.
(Eds): Service-Oriented Software System Engincering. Idea Group (2005), ISBN
1-59140-426-6.

Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide.
Addison-Wesley (1999), ISBN 0-201-57168-1

Endrei, M., et al.: Patterns: Service-Oriented Architecture and Web Ser-
vices. IBM Redbooks (2004), ISBN 0-738-45317-X. Also available at URL:
http://www.redbooks.ibm.com/redbooks/pdfs/sg246303.pdf (February 2006)
Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR (2005), ISBN 0-13-185858-0

Gamma, E. et al.: Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional Computing Series (1995), ISBN-10: 0201633612
Heckel, R., Lohmann M., Thone, S.: Towards a UML Profile
for Service-Oriented Architectures. Document is available on URL
ttp://citeseer.ist.psu.edu/heckelO3towards.html (April 2006)

Jacobson, 1.: Object-oriented software engincering, A Use-Case Driven Approach.
ACM Press (1992), ISBN 0-201-54435-0

Johnston, S.: UML 2.0 Profile for Software Services. Document is available on URL
http://www-128.1ibm.com/developerworks/rational/library/05/419_soa/
(February 2006)

Unified Modeling Language - UML 2 Superstructure. Document is available
on URL http://www.omg.org/technology/documents/formal/uml.htm (Febru-
ary 2006)

