Performance Comparison of Distributed Object Server
Implementations

Petr Kroha!, Mathias Kurth?, and Michael Fleischer!

1 Dept. of Information Systems, Faculty of Informatics, Technical University Chemnitz,
Strasse der Nationen 62, 09111 Chemnitz, Germany
kroha@informatik.tu-chemnitz.de
2 Department of Computer Science, Humboldt University Berlin, 10099 Berlin, Germany
kurth@informatik.hu-berlin.de

Abstract. In this paper we present performance measurements in a cluster envi-
ronment. First, we briefly explain our version of optimistic concurrency control
and load balance. Then we compare performance and speed-up of a CORBA- and
an AspectC++-implementation of a distributed object server for pessimistic and
optimistic concurrency control.

Keywords: Distributed processing, cluster environment, object server, aspect-
oriented application, performance of cluster applications

1 Introduction

Object-oriented databases represent an implementation tool for data repositories of
some specialized applications, which often process not only selected attributes of ob-
jects but complete objects. When using relational databases, attributes of many objects
can be processed very quickly if they are stored as columns in one table. Processing of
complete objects stored in a relational database means to synthesize objects from many
tables where they are spread because of the necessary normalization of relations. There
is a rule of thumb that if it is necessary to join more than six tables to answer a query,
an object-oriented database could bring advantages [4].

CASE tools are usually built as a chain of editors that have a common data reposi-
tory, in which all input and output data of editors are stored as fine-grained objects [1].
We have built a CASE tool with an object-oriented data repository and have found that
its performance is not sufficient especially for multi-user environment. This was our
motivation to investigate possibilities of parallel and distributed object servers. In the
next step we built an object server for the parallel computer Parsytec and have analyzed
its performance [6]. Thereafter we switched from a parallel to a cluster environment,
improved the used software architecture and algorithms to increase performance, and
used various implementation technologies (Aspect], AspectC++, CORBA) because of
the planned porting. We supposed that optimistic concurrency control can bring us big
advantage because semantic features of our application mean that conflicts and roll-
backs should be only rare exceptions. We wanted to know how much we can win by
using optimistic concurrency control.

40 P. Kroha, M. Kurth and M. Fleischer

The rest of the paper is organized as follows. In section 2 we discuss related work. In
section 3 we briefly explain which cross-cutting concepts of concurrency we modelled
as aspects in our proposed and implemented optimistic concurrency control method. In
section 4 our new version of the optimistic concurrency control for cluster environment
1s presented. Section 5 describes our approach to load balancing. In the last section we
present some measurement results and conclude.

2 Related work

Empirical comparisons between optimistic and pessimistic concurrency control have
been published in [8] and [3]. The former compares both approaches with respect to
shared disk systems. The outcome is that the lock protocol outperforms the optimistic
approach in terms of performance but the performance strongly depends on a central-
ized or distributed realization. On the other hand, the optimistic protocol scaled up
better than the pessimistic one. The latter concludes that an optimistic approach could
be a better choice for object-oriented database systems in terms of performance and
scalability, especially in client-server environments.

We have not found quantitative measurement results that would be relevant for our
shared-nothing cluster system that should work as a data repository of a CASE tool.

The applicability of aspect-oriented techniques to database systems is known and
was already investigated, e.g. in [9]. We aspectized concurrency control from the main
program. Our goal was to support portability of our application. In addition, it was
simply possible to implement not only the optimistic but also the pessimistic concur-
rency control, which helped us to compare performance of both methods. It is another
indication for the broader applicability.

3 Aspects and Concurrency Control in OODBMS

The term aspect-oriented programming (AOP) covers approaches for reaching separa-
tion of concerns.

We concentrated on concurrency control as a cross-cutting concern at DBMS-level.
For most systems the dominant dimension of decomposition is transaction processing
and resource management. This leads to a scattering of code related to concurrency
control.

In OPAS (Object-oriented PArallel Server [5], [6]), the optimistic concurrency con-
trol (OCC) crosscuts the Transaction Manager (TM). The interactions between TM and
OCC are as follows. During transaction processing the TM acquires a set of resources,
namely objects in our case. It processes orders on acquired objects, which may read or
change it. The start and end time of an object access and the corresponding access mode
(read,write) must be noted and handed over to the OCC in order to validate the access.
If the validation fails, the transaction must be aborted.

Using AOP both TM and Validation Manager (VM, conceptual component for
OCC) could be implemented in a separate manner and then put together by the weaver
AspectC++ in the preprocessing phase. An aspect captures the acquisition of an object

Performance Comparison of Distributed Object Server Implementations 41

through an advice and stores the start time of access. The completion of an object access
is intercepted, too. The corresponding advice (join-point model of AOP) determines the
end time and access mode. It calls the VM for validation using the collected information
and processes the validation result. We do not explain aspect-oriented programming in
more details because it is not the main topis of this paper.

4 Optimistic Concurrency Control

Isolation is one of the ACID properties. It protects concurrently running transactions
from seeing each others’ uncommitted data, which could lead to inconsistency. Serial-
izability is the correctness criterion for isolation. It states that the concurrent execution
of several transactions must be equivalent to at least one serial execution [?].

A common approach to isolation is locking, which basically means that locks are
granted to transactions to protect a resource from concurrent access. One of the main
drawbacks of locking is the need to resolve deadlocks, especially global deadlocks in
distributed environments. Another disadvantage is that for some special application the
probability of a concurrent access is very small and the locking overhead decreases
performance.

A non-locking and therefore deadlock-free approach to isolation is optimistic con-
currency control (OCC). It acts on the assumption that conflicts are rare, so that locking
causes only unnecessary overhead. Transaction execution is divided into the phases
read, validate and write. In the read phase transactions are executed without interven-
tion of the OCC. They are validated a posteriori in the validation phase, where conflicts
with other transactions are detected. Conflicts are resolved by rolling back an involved
transaction. Successfully validated transactions reach the write phase and their changes
are made persistent and visible to others.

Existing validation schemes could be subdivided into backward
(BOCC) and forward (FOCC) oriented methods. BOCC takes only already finished
transactions into account whereas FOCC validates against running ones. It is essential
for both to be able to determine the read and write sets of transactions.

We integrated OCC into our object repository OPAS and therefore replaced the ex-
isting solution using two phase locking and pre-claiming. In the application domain of
CASE systems conflicts are unlikely. The validation is done in a distributed manner.
For this reason only the BOCC approach was applicable, because there is no efficient
way to determine all currently running transactions. The validation authority is parti-
tioned among all nodes and accommodated to the data distribution in order to maximize
locality. An object is validated on the node where it is stored.

Local serializability is achieved as follows. The start time, end time and mode
(read,written) of an object access arc used for validation. A conflict is occurred if the
given interval overlaps with another of an already successfully validated change trans-
action.

This test is our original extension of the BOCC validation algorithm. Traditional
validation algorithms consider only object access in the associated read and write sets
without the concrete point in time of the access. As a consequence, these algorithms
mark certain transaction schedules as conflicting although the schedules are serializable.

42 P. Kroha, M. Kurth and M. Fleischer

The presented validation schema considers the concrete points in time of object access.
Therefore it is inscnsitive to false conflicts whereas the test itself remains simple. A
prerequisite for the validation schema is the existence of synchronized clocks within
the cluster computer. This drawback is acceptable because the local system clocks of
the the cluster nodes are regularly synchronized in order to run the Andrew File System
(AFS).

But the given criterion for local serializability does not guarantee a sufficient level of
isolation. The validation order of sub-transactions belonging to different global transac-
tions could differ. To reach global serializability transaction numbers (TAN) were intro-
duced. They are unique, linearly ordered and therefore comparable. For each object the
TANS of the already validated transactions last read and last written are stored. A con-
flict with respect to global serializability has occurred if the read object was meanwhile
written (own TAN less than the TAN of the object for last write access) or the written
object was meanwhile read (own TAN less than the TAN of the object for last read ac-
cess). This procedure produces the same validation order on all nodes and guarantees
global serializability.

The validation is done on a basis of sub-transactions in the read phase. Thus there
is no global validation phase. For this reason already validated changes are uncertain
and therefore must be protected until the write phase is reached. This is done with
locks on changed objects. We were able to integrate the validation into the two phase
commit protocol to reduce communication. Compared to the former locking combined
with pre-claiming the new approach offers a higher degree of parallelism. The achieved
performance is presented in section 6.

5 Load Distribution Approach

Load distribution has been well-investigated in operating systems theory. In central-
ized realizations only a single instance makes decisions concerning load distribution,
whereas a distributed realization lacks this instance. Load is distributed by initial place-
ment and could be combined with migration schemes, the movement of an already
placed load. The processing time of a parallelized request is determined by the pro-
cessing time of the slowest sub-operation. Execution skew refers to the variance in
processing time and often goes back to data skew. Therefore data allocation has a great
impact on load distribution especially for shared-nothing systems. It determines how
much data locality could be utilized during request execution.

In OPAS data allocation is done on a per-object basis without replication. A hash
function assigns an object to a certain node. Furthermore, client requests are divided
into sub-operations in order to utilize intra transaction parallelism. These sub-operations
are initially placed using a static and centralized schema, and are assigned to the node
holding the associated data for the purpose of maximizing locality. They are executed
non-preemptively without migration.

With increasing number of processing nodes the hashed data allocation schema lead
to data skew. Because of the tight coupling between allocation and sub-operation pro-
cessing, execution skew arose, too.

Performance Comparison of Distributed Object Server Implementations 43

First of all, we replaced the hashed allocation by a round robin strategy in order to
achieve a broad object distribution and minimize data skew. Furthermore, we introduced
a two level load sharing. On the first level, sub-operations were scheduled in a central
and dynamic way. Initial placement decisions are made using a load index and capacity
of the execution units. On the second level there is a randomized workstealing. It could
be classified as a distributed load sharing approach. The basic idea is that underloaded
nodes send steal messages to other randomly selected participants. Nodes which receive
steal messages while they are overloaded send a certain number of sub-operations to the
initiator. We present the results of the performance tests in section 6.

6 Achieved Results and Conclusion

The first implementation Parsytec-OPAS was designed for the parallel computer Parsytec
GC/PowerPlus128 (shared-disk) [5], [6]. To get data for our experiments we considered
structured analysis where the top-down method of stepwise refinement will be used. The
application of the principle of decomposition creates hierarchical data structures where
each set of neighbors represents a level of abstraction.

Using a sequential machine, object components will be searched after each other.
When using a parallel machine object components which have the common father can
be searched in parallel. This kind of parallelity will be called as the intra-object paral-
lelity. In data processing typical for CASE tools there are frequently used operations
like GET OBJECT and SHOW OBIJECT. This means, that all components of asked ag-
gregated objects have to be found on the disk, in the object buffer or in the page buffer
[5] and displayed on the screen. We used data of a CASE tool collected during analysis
of two projects. Their features are in [6]. The measured speed-up for intra-object par-
allelism as shown in Fig. 1 has already been published in [6]. We found that there is a
important influence of the number of instructions that accompany the fetch of an object.
These instructions represent the object processing between its fetch and its use. With
growing number of such instructions the advantages of parallel processing are growing,
too.

To compare performance of both new implementations with the old system perfor-
mance we used the same data.

The system had been ported to the "Chemnitzer Linux Cluster (CLiC)”, which has
the following features: 528 nodes, each has 512 MB RAM and 20 GB local disk, 800
MHz frequency, fast Ethernet (100 MBits/s) node communication, throughput maximal
128 GBit/s, minimal latency 100 us.

Parsytec-OPAS was adapted for the shared-nothing environment of CLiC using
CORBA [2]. We refer to the system as CORBA-OPAS. It makes use of MICO as imple-
mentation of the CORBA standard. Another version of the object server (called MPI-
OPAS) uses the Message Passing Interface (MPI) and the aspect weaver AspectC++. It
is presented in [7].

The speed-ups for both implementations for intra-object parallelism are shown in
Fig. 2 and 3. The performance of CORBA-OPAS is slightly better, although the graph
shapes mainly correspond. Compared to Parsytec-OPAS both CLiC implementations
perform better. The exchanged concurrency control mechanism provides an explanation

44 P. Kroha, M. Kurth and M. Fleischer

number of
instruction units per method number of transaction managers

Fig. 1. Parsytec-OPAS speed-up for intra-object parallelism

for the arisen difference. The former implementation used locking combined with pre-
claiming, whereas the latter benefits from optimistic concurrency control.

We compared the performance of the two concurrency control mechanisms (locking
and OCC) as used in MPI-OPAS. The outcome is as follows. Optimistic concurrency
control outperforms the locking in almost every measured point. For the series using
fewer instruction units, the speed-up is about 20% higher on the average, whereas the
maximum speed-up is increased up to 30%. Concerning the series with a greater amount
of instruction units, the increase of the speed-up turned out to be smaller and levelled
off at about 10% on the average. The results indicate that OCC not only increases the
actual system performance, but also raises the inherent potential for parallelization.

Fig. 4 and 5 show the achieved results concerning inter-object parallelism for CORBA-
OPAS and MPI-OPAS. Both implementations performed almost identically. Particu-
larly for a greater amount of clients the speed-up increased nearly linearly. Due to op-
timistic concurrency control and load distribution, performance could be increased. In
former versions like Parsytec-OPAS, but also CLiC-OPAS versions with pessimistic
concurrency control, speed-up did not exceed 15. The dependency between processor
nodes and speed-up was not linear, but logarithmic in these versions.

Although the speed-ups for both CLiC implementations are almost identical, the
runtime differs greatly. Fig. 6 presents the runtime curve for the CORBA-OPAS. MPI-
OPAS is about 15 — 25 times faster than CORBA-OPAS as shown in Fig. 7. It is already
very well known that the usage of middleware like CORBA causes overhead, but we
did not expect that the overhead ratio would be that high.

Furthermore, it is interesting that the impact of applied optimizations on the perfor-
mance was different for the two versions. CORBA-OPAS did benefit greatly from load
sharing. Its maximum speed-up could be increased by 41% from 22.4 to 31.6 (see Fig.
4). Initial placement of objects was not considered with respect to CORBA-OPAS and
therefore had been left unchanged.

Performance Comparison of Distributed Object Server Implementations 45

w

»

number of
instruction
units per method

number of
transaction managers

Fig. 2. CORBA-OPAS speed-up for intra-object
parallelism

number of clients

transaction managers

Fig. 4. CORBA-OPAS speed-up for inter-object
parallelism

number of
instruction
units per methods

number of
transaction managers

Fig. 3. MPI-OPAS speed-up for intra-object
parallelism

speed-up

transaction managers

number of clients

Fig.5. MPI-OPAS speed-up for inter-object
parallelism

The benefits from dynamic load sharing as mentioned in section 5 were dispropor-
tionally smaller for MPI-OPAS. In terms of numbers they are 3.8% on the average and
1.0% at the maximum. Whereas the initial placement of objects had a stronger effect on
the performance, the round robin strategy reduced data skew and raised the speed-up
by 32% from 25.4 to the maximum of 33.4 as displayed in Fig. 5.

For MPI-OPAS, we measured the impact of concurrency control on performance
for inter-object parallelism. The result is that OCC outperformed pre-claiming locking.
In direct comparison speed-up for OCC is about 60% higher. Thereby the ratio between
the speed-ups did increase for a greater number of processing nodes. Consequently this
behavior causes the almost linear speed-up rising illustrated in Fig. 5. Furthermore,
we measured the influence of synchronization conflicts on performance. The speed-up
decreased while increasing the conflict rate. Without conflicts, the maximum speed-up

46 P. Kroha, M. Kurth and M. Fleischer

runtime (sec)

runtime (sec)

number of

40 36 nunber of
number of clients transaction managers sunber of clients transaction managers

Fig. 6. CORBA-OPAS runtime for inter-object Fig.7. MPI-OPAS runtime for inter-object par-
parallelism allelism

was 33.4. At a conflict rate of 1 % (resp. 5 %, 10 %, 20 %) the maximum speed-up
decreased to 30.8 (resp. 29.0, 27.4, 25.5).

We believe that our results can be used for performance and speed-up estimation of

proposed cluster systems and also for the choice of implementation technology.

References

1.

Emmerich, W., Kroha, P., Schifer, W.: Object-oriented Database Management Systems for
Construction of CASE Environments. In: Marik, V., Lazansky,J., Wagner,R.R.(Eds.): Proceed-
ings of 4th International Conference DEXA’93, Lecture Notes in Computer Science, No. 720,
Springer, September 1993.

Fleischer, M.: Tuning of CORBA-based Object-Repository in Shared-Nothing Cluster Envi-
ronment. M.Sc. Thesis, TU Chemnitz, 2003 (In German).

Gruber, R. E.: Optimism vs. Locking: A Study of Concurrency Control for Client-Server
Object-Oriented Databases. Technical report MIT/LCS/TR-708, 1997.

Kroha, P.: Objects and Databases. McGraw-Hill, 1996.

Kroha, P., Rosenbaum, S.: Object Server on a Parallel Computer. In: Wagner, R.R. (Ed.):
Proceedings of the 8th International Workshop on Database and Expert Systems Applications
DEXA’97, IEEE Computer Society, Toulouse 1997.

. Kroha, P, Lindner, J.: Parallel Object Server as a Data Repository for CASE Tools. In: Croll,

P./ El-Rewini, H. (Eds.): Proceedings International Symposium on Software Engineering for
Parallel and Distributed Systems PDSE99, pp. 148-156, IEEE Computer Society, ICSE99,
Los Angeles, May 1999.

. Kurth, M.: Tuning of Distributed Object-Repository OPAS. M.Sc. Thesis, TU Chemnitz, 2005

(In German).

. Rahm, E.: Empirical Performance Evaluation of Concurrency and Coherency Control Proto-

cols for Database Sharing Systems. ACM Trans. Database Syst., 18(2):333-377, 1993.

. Rashid, A.: Aspect-Oriented Database Systems. Springer, Berlin, 2004.

